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Minimum volume of long liquid bridges between noncoaxial,
nonequal diameter circular disks under lateral acceleration
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The stability limit of minimum volume and the breaking dynamics of liquid bridges between
nonequal, noncoaxial, circular supporting disks subject to a lateral acceleration were experimentally
analyzed by working with liquid bridges of very small dimensions. Experimental results are
compared with asymptotic theoretical predictions, with the agreement between experimental results
and asymptotic ones being satisfactory. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2107747�
In the simplest configuration a liquid bridge consists of
an isothermal drop of liquid held by surface tension forces
between two parallel, solid disks as shown in Fig. 1. Disre-
garding electric and magnetic fields effects, the equilibrium
interface shapes and hydrostatic stability limits of liquid
bridges are determined by the slenderness, �=L / �2R0�,
where L is the distance between the supporting disks and the
characteristic length R0 is the mean radius, R0= �R1+R2� /2;
the ratio of the radius of the smaller disk, R1, to the radius of
the larger one, R2, that is K=R1 /R2, or the equivalent param-
eter h= �1−K� / �1+K�= �R2−R1� / �R2+R1�; the dimension-
less eccentricity, e=E /R0, 2E being the distance between the
disks axes; the dimensionless volume, defined as the ratio of

the actual volume V̄ to the volume of a cylinder of the same

length L and diameter 2R0 :V= V̄ / ��R0
2L�; and the lateral

Bond number, B=��gR0
2 /�, where �� is the difference be-

tween the density of the liquid and the density of the sur-
rounding medium, g is the lateral acceleration acting on the
liquid drop, and � is the surface tension.

The stability limit of the minimum volume of long axi-
symmetric liquid bridges held between unequal, noncoaxial
parallel circular supporting disks subject to lateral accelera-
tion can be theoretically analyzed by using an analytical ap-
proximation based on the standard bifurcation theory
�Lyapunov-Schmidt technique1�. This problem was first ana-
lyzed a decade ago, both analytically and experimentally,2

with the following asymptotic expression for the stability
limit of minimum volume obtained:
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2
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+
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2
B2 +

3
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where the eccentricity e is assumed to be positive when the
relative position of the disks is as indicated in Fig. 1 �the
smaller disk axis over the larger disk one�. According to
expression �1� the combined effect of lateral acceleration and
eccentricity becomes maximum when the angle � vanishes;
this case is the only one considered in this Brief Communi-

cation. The variation of the minimum volume with the ec-

1070-6631/2005/17�10�/108101/4/$22.50 17, 10810
centricity for a lateral Bond number B=0.05 and different
values of the parameter h �assuming �=0� of liquid bridges
with slenderness �=2.7 is shown in Fig. 2.

Expression �1� is only valid when the liquid bridge con-
figuration is close enough to the reference one �defined by
the Rayleigh stability limit, �=�, V=1, B=h=e=0�, and far
from this configuration of reference, Eq. �1� gives only a
rough approximation of the influence on the stability limit of
the different parameters considered. However, expression �1�
shows the quantitative and the qualitative influence of the
different parameters, which is determined by the exponent of
each group of terms. Such an influence can be understood by
considering the effect of the imposed perturbation on the
necking of the liquid column. In fact, within the validity
range of this asymptotic analysis the expression for both
stable and unstable equilibrium interface shapes is

f�z� = 1 + � sin
�z

�
, �2�

where � is a small parameter that measures the magnitude of
the interface deformation �whose value depends on the per-
turbations acting on the liquid bridge�. Therefore, when the
instability develops, the liquid bridge interface bulges in one
half of the liquid column and necks in the other �the insta-
bility is antisymmetric with respect to the midplane parallel
to the disks�. According to this behavior, any perturbation
leading to an antisymmetric deformation of the interface will
decrease the maximum stable slenderness �that means to in-
crease the minimum volume�, the reduction being propor-
tional to the two-thirds power of the perturbation.2 Note that
since the difference in disk radii causes an antisymmetric
deformation in the same manner as the combination of lateral
Bond number and eccentricity �provided ��� /2�, these two
effects can be additive or subtractive, and can even cancel
one another.

The relative influence of the involved parameters �h, B,
and e� on the instability can be studied by analyzing the size
of the drops resulting after liquid bridge breakage. Since the
unstable equilibrium interface shapes are given by expres-
sion �2�, it is clear that any perturbation leading to an anti-

symmetric deformation of the interface will force a neck in
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the liquid bridge that will determine further the breaking
process. When two antisymmetric effects act in opposite di-
rections, the interface deformations associated to each one of
the parameters will be also opposite, so that the position of
the interface neck along the liquid bridge axis will depend on
the relative importance of the parameters involved.

The neck migration is very accentuated when the fluid
configuration is close to the peak corresponding to a local
minimum of each minimum-volume stability limit curve
�Fig. 2�, which is reached at the critical value
ecrit=−2h / �3B�. Actually, according to the quoted asymptotic
analysis2 the bifurcation equation ��=0� is
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with �=1−� /� and v=V−1. Then, for each liquid bridge
configuration �h, B, e, and v� the stability limit is defined by
the value �min, where d� /d�=0. As is known, the bifurcation
equation �3� has three roots for �	�min �that means �

�max�, two of them representing unstable solutions
whereas the third �the root with the smallest ���� corresponds
to the stable solution. On the other hand, for �
�min there is
only one real root that represents an unstable configuration.

FIG. 1. Geometry and coordinate system for the liquid bridge problem.

FIG. 2. Dimensionless minimum volume of the liquid bridge, V, vs eccen-
tricity of the disks, e, for liquid bridges with slenderness �=2.7 under a
lateral Bond number B=0.05 aligned with the plane defined by the disk axes
��=0�. Numbers on the curves indicate the value of the parameter h that

measures the ratio of the smaller disk diameter to the larger disk diameter.
Hence d� /d�=0 implies �=0 if 2h+3Be=0, or �
= ��2h+3Be� / �3���1/3 in the case 2h+3Be�0. This last so-
lution means that at the stability limit, irrespective of the
value of the reduced slenderness, it will be �
0 when e

ecrit=−2h / �3B�. Therefore the liquid bridge will bulge
close to the small disk and then a large drop will be formed
at the smaller disk, and a small drop at the larger one after
the liquid bridge rupture. On the other hand, when e	ecrit it
will be �	0, hence the liquid bridge will neck in opposition,
so that the size of the drops resulting after breaking will be
just in opposition to the ones resulting when e
ecrit.

Aiming to experimentally check the above conclusion,
an experimental apparatus like the one sketched in Fig. 3 has
been used. The experimental setup consists of a vertical plat-
form that supports the liquid bridge cell �A�, two CCD cam-
eras �B�, and two LED background illumination devices �C�.
The liquid bridge cell, already described elsewhere,2–5 is a
three-axes system that allows the displacement along each
one of the axes through micrometric screws. One of the sup-
porting disks is anchored to the x ,y plane �which in this
arrangement is vertical� whereas the second one is fixed to

FIG. 3. Experimental apparatus: �A� liquid bridge cell, �B� CCD cameras,
and �C� background illumination devices.
the z-axis displacement screw.
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Liquid bridge supports �disks� are made of brass tubes,
their surfaces in contact with the working liquid being care-
fully polished to provide very sharp edges. One of these
tubes �the one anchored to the z-axis displacement screw� is
used for feeding and removing liquid, whereas the hole on
the second one is sealed to avoid undesirable and uncon-
trolled changes of the liquid bridge volume during experi-
mentation. The disk diameters used in experiments are indi-
cated in Table I, as well as the main dimensionless
parameters of the tested configuration. To estimate the nomi-
nal value of the lateral Bond number, it has been assumed
that density and surface tension are the nominal values for
water, �=1000 kg/m3 and �=0.072 N/m, respectively. In
all the experiments the separation between the disks, L, has
been appropriate to get a slenderness �=2.7.

A typical experiment is as follows: once the value of the
angle �=0 is set by rotating the platform, supporting disks
are placed close enough and a small amount of water is in-
jected through the injection disk until a small liquid bridge is
formed. Then the disks are slowly separated by moving the
feeding disk along the z axis and the opposite disk along the
y axis �vertical� until the desired configuration is reached
�normally in this process some additional amount of water
must be injected to prevent liquid bridge breakage during
manipulation�. When the desired configuration �slenderness
and eccentricity� is reached, manipulation ceases and the ex-
periment runs alone: because of evaporation the liquid bridge
volume continuously decreases and the liquid bridge breaks
when the stability limit is reached. Such a volume reduction

FIG. 4. Experimental results: Dimensionless cross-sectional area distribu-
tions, S�z�, of liquid bridges between unequal disks, h=0.114, subject to a
lateral Bond number B=0.059. Numbers on the curves indicate the value of

TABLE I. Nominal configurations used in experiments: radius of the larger
disk, R2, radius of the smaller disk, R1, mean radius, R0, unequal disks
parameter, h, and lateral Bond number, B. In both configurations the liquid
bridge slenderness was �=2.7.

Configuration 2R2 �mm� 2R1 �mm� 2R0 �mm� h B

A 1.47 1.47 1.47 0.000 0.074

B 1.47 1.17 1.32 0.114 0.059
the eccentricity, e.
process is recorded by the CCD cameras, so that from the
recorded images just before the breaking, the liquid bridge
contours are determined by using standard interface detec-
tion techniques already used in liquid bridge problems,6,7 and
from these contours the liquid bridge volume, V �the mini-
mum volume stability limit�, as well as the volume of liquid
between the smaller disk and the liquid bridge neck, Vd, are
calculated. To calculate such volumes it is assumed that liq-
uid bridge cross sections are ellipses, which agrees with pub-
lished analytical approximations for the shape of liquid
bridge interfaces3,8 �additional details can be obtained upon
request from the authors�. Cross-sectional area distributions,
S�z�, of liquid bridges at stability limits corresponding to
different values of the eccentricity are represented in Fig. 4.

This process is repeated as many times as required to
assure experimental results are representative �because of the
large deformation of the liquid bridge in many experimental
sequences, the liquid bridge interface spreads over the lateral
surfaces of the supporting tubes, thus these sequences are
rejected�. Amongst all the valid experimental runs corre-
sponding to a given value of the eccentricity, the cross-

FIG. 5. Experimental results: �1� dimensionless minimum volume, V, vs
eccentricity, e, and �2� relative volume of the liquid drop formed at the
smaller disk, Vd /V, vs eccentricity, e, of liquid bridges between unequal
disks. Labels identify the liquid bridge configuration as indicated in Table I.
Symbols indicate the value of the relative volume of the liquid drop of
reference: Vd /V	0.5 �solid symbols�, Vd /V
0.5 �open symbols�. Solid
lines in �1� correspond to theoretical predictions according to expression �1�,
whereas dashed lines in �2� are only to show data trends.
sectional area distribution plotted in Fig. 4 corresponds to the
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run in which the smaller value of the minimum volume sta-
bility limit has been reached.

Experimental results corresponding to the configurations
listed in Table I are shown in Fig. 5. As can be observed,
experimental results corroborate the above theoretical predic-
tions: at least when the parameters under consideration �B
and h� are small enough there is a critical value of the ec-
centricity and an associated minimum in the corresponding
stability limit curve �Fig. 5�1��. Obviously the agreement
with asymptotic predictions is only qualitative because ex-
perimental configurations ��=2.7� are far from the validity
range of an asymptotic approach �����.

It must be stressed that the relative volume Vd /V
changes drastically at e=ecrit �ecrit�−2.2 for the configura-
tion with h=0.121, Fig. 5�2��. When e
ecrit most of the
liquid moves to the smaller disk when the liquid breaking
occurs, while the larger drop appears at the larger disk when
e	ecrit. Obviously, because of uncontrolled perturbations
there is some scattering on the relative volume Vd very close
to the critical eccentricity, and the larger drop is formed ei-
ther at the larger or at the smaller disk depending on the
relative importance of the two effects under consideration

�unequal disks and Bond number�.
The authors are indebted to the referees for their helpful
comments.
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