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Abstract Lift and velocity circulation around airfoils are two aspects of the same phenomenon when
airfoils are not stalled and the Kutta—Joukowski theorem applies. This theorem establishes a linear
dependence between lift and circulation, which breaks when stalling occurs. As the angle of attack
increases beyond this point, the circulation vanishes. Since the circulation determines to a great extent
the position of the forward stagnation point on an airfoil, the measurement of this position is an easy
and simple way to determine the circulation, which is of help in understanding the role of the latter in
the generation of aerodynamic forces on airfoils.

Introduction

Wing profiles are acrodynamic devices which are designed to provide high values
of the ratio lift/acrodynamic drag, I/d. Airfoils are characterised by the camber
line, the thickness distribution and the angle of attack. These streamlined two-
dimensional bodies generally have a rounded leading edge and a wedged trailing
edge, the latter being of paramount importance in generating lift.

As is well known, due to the airfoil’s shape, in normal operation the flow is accel-
erated on the airfoil’s upper side and decelerated on its lower side. Hence, the pres-
sure decreases on the upper side and increases on the lower side, and thus a net force
appears. The component of this force normal to the upstream unperturbed flow is
the lift, whereas the component in the direction of the flow is the aerodynamic drag
(in which viscous effects are also accounted for).

Although viscosity must be considered to explain lift, in normal flight conditions
viscosity effects are much smaller than inertial ones (which means high values of
the Reynolds number), and they are limited to both the upper side and the lower side
boundary layers that develop at the forward stagnation point, close to the leading
edge. Since in many practical situations normal pressure gradients are negligible in
these boundary layers [1], viscosity effects can be neglected when pressure forces
acting on the airfoil surfaces are calculated. This explains why aerodynamic poten-
tial models are so accurate in predicting pressure forces on airfoils when the bound-
ary layer is not separated.

A measure of the flow acceleration and deceleration on the airfoil surface is the
circulation, I', defined as the integral of the flow velocity, V, on the airfoil surface:

r=3€V~dl D



Within the frame of incompressible potential flow the circulation is related to the
lift, I, through the well known Kutta—Joukowski theorem, [ = p. . U.I', where p..
and U., are the fluid density and the fluid velocity far upstream from the airfoil,
respectively [2].

In aerodynamics, instead of the aerodynamic forces, the lift coefficient and the
drag coefficient are used:
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where ¢ is the airfoil chord. For a wide range of angles, the lift coefficient varies
linearly or almost linearly with the angle of attack. Then, assuming the airfoil is not
equipped with any leading-edge or trailing-edge high-lift devices (like slats or flaps),
since in normal flight conditions the airfoil geometry (camber and thickness) is fixed,
and assuming the flight speed is also fixed, the only way to increase the lift coeffi-
cient (hence the circulation) is to increase the angle of attack. However, this cannot
be done indefinitely because, at high angles of attack, separation of the boundary
layer at the airfoil’s upper side takes place and the airfoil stalls. Once stalling occurs,
the lift, hence the circulation, ceases to grow, and beyond this point any further
increase in the angle of attack leads to both a decrease in lift and an increase in aero-
dynamic drag.

When the angle of attack increases, a suction pressure peak is created on the upper
surface near the airfoil’s leading edge, and the adverse pressure gradient behind this
peak may result in boundary layer separation and stall. The boundary layer, which
(as stated above) starts to develop at the forward stagnation point, is laminar when
it reaches the pressure peak. Therefore, behind the suction peak any one of the four
following types of flow may be obtained:

(1) laminar separation without subsequent reattachment;

(2) laminar separation with immediate reattachment or with reattachment after a
certain distance;

(3) transition from a laminar to a turbulent boundary layer, with subsequent
separation;

(4) transition from a laminar to a turbulent boundary layer, without subsequent
separation.

Following McCullough and Gault [3], three basic types of stall may occur,
depending on the maximum dimensionless thickness of the airfoil (the ratio of
the maximum airfoil thickness to the chord, 7) and the Reynolds number (see also
[4, 5]), namely:

(1) Stall through trailing edge separation on thick profiles (7 > 0.15). The bound-
ary layer has become turbulent and separates near the trailing edge. With



increasing angle of attack, the separation point moves forward, and the slope
of the lift curve decreases gradually until maximum lift is obtained.

(2) Stall through leading edge separation followed by flow reattachment (short
bubble) on medium-thick profiles (0.08 < T'< 0.15). At a certain angle of attack,
the immediate reattachment of the separated laminar boundary layer (short
bubble) ceases and complete disruption of the flow suddenly occurs over the
entire upper surface of the airfoil. The plot of lift against angle of attack is
linear up to the maximum lift.

(3) Stall of thin profiles (T < 0.08). At a certain angle of attack, laminar separa-
tion is obtained, but after some distance the flow reattaches (long bubble). As
the angle of attack is increased, the point of reattachment moves gradually
towards the trailing edge, whereby the lift curve deflects to a maximum value
which is lower than for the other cases.

Whatever the type of stall, stalling means a drastic decrease in circulation. Once
separation of the upper boundary layer takes place, the Kutta—Joukowski theorem,
[ = p..U.T, 1s no longer valid and the circulation decreases quickly. However, the
lift coefficient is stll high due to the difference in pressures between both sides of
the airfoil (where the boundary layer is detached, pressure coefficients are negative,
whereas at the airfoil’s lower side there is a stagnation point). In this configura-
tion both lift and drag are of the same order and the airfoil’s efficiency, //d, is
very low.

According to potential-flow models, the airfoil circulation is determined by the
so-called Kutta condition at the trailing edge, which in turn fixes the position of the
forward stagnation point. As the angle of attack increases, the forward stagnation
point moves smoothly away from the leading edge. When the airfoil is not stalled,
the stagnation point remains close to the leading edge, its position being accurately
predicted by models. Once stalling occurs (at high values of angle of attack) models
fail, but even in such a case reasonable analytical predictions can be obtained, pro-
vided the appropriate value of the circulation is set. Therefore, the position of the
forward stagnation point is a simple and easily observable measure of the effect of
circulation on the airfoil’s acrodynamics.

In the following sections some simple analytical models of the position of the
leading edge’s stagnation point, both with and without circulation, are presented.
The experimental apparatus used to check theoretical results is described, and mea-
sured experimental results corresponding to three different profiles (Fig. 1) are pre-
sented and analyzed. Finally, conclusions are outlined.

Analytical background

To analyze the influence of the circulation on the position of the forward stagnation
point, let us consider a biconvex airfoil formed by two arcs of circle, as sketched in
Fig. 1. Assuming potential flow, the problem can be solved by using the classical
tool of conformal mapping, by transforming the contour of the airfoil into that of a
circle. The Karman—Trefftz-like conformal transformation:



Fig. 1 Sketches of the different tested airfoils: (1) NACA 0018 airfoil, (2) biconvex airfoil,
and (3) isosceles triangular profile. Circles on the profiles indicate the position of the
pressure taps.
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with y=2(7r — §)/7 maps a biconvex airfoil in the complex z-plane onto a circle in
the complex 7-plane (to write the above expression, it has been assumed that all
lengths have been made dimensionless, by relating them to half the airfoil chord,
¢/2). When T — e, the variable ¢ behaves as:
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From this last expression it may be deduced that the uniform flow of velocity UL in
the 7-plane (whose direction is at angle o to the horizontal axis) is transformed into
a uniform flow with the same angle of attack, ¢, in the t-plane, but with intensity
U.Jy (instead of U..).

The complex potential of the problem defined in the #-plane is the sum of the
complex potentials of a uniform flow, a doublet placed at the origin of coordinates
and a vortex of the appropriate intensity, also at the origin of coordinates:

f(T)=lUu(e‘i“T+e—+—££lnT (5)
Y T  2nU.

At the stagnation points, the complex velocity vanishes:
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and from this equation the value of the circulation, T, is obtained once the Kutta
condition for the airfoil’s trailing edge is imposed (the transformed trailing edge of
the airfoil on the circumference must be a stagnation point on the circle). Then,
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After the introduction of this value of the circulation in equation 7, the equation
for the stagnation points becomes exp(2i0) + [exp(2i) — 1]exp(i6) — exp(2ic) = 0,
whose roots are 8= 0 and 0 = 7+ 2¢. Note that if the circulation is cancelled, " =
0, the roots giving the positions of the stagnation points on the circle are 8 = o and
6= m+ . Hence the stagnation point close to the leading edge can be expressed as
O=rm+ko withk=1whenI'=0and k=2 when I" 0.

As the forward stagnation point on the circumference lies on a regular point of
the conformal transformation, the forward stagnation point on the airfoil directly
results from equation 3. Taking into account that 75 = expli(x + k)] = —explikw),
and that {"= —exp(—id), after some manipulation it is possible to obtain:

_ Hcosé—1—-iHsind
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where H = (tanke)”. Finally, the real part of g gives the dimensionless position of
the forward stagnation point on the airfoil chord, xs, that is:
B H*-1
H*+1+2Hcosd
It must be pointed out that in dimensionless variables the airfoil chord spans from
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The wedged leading edge of the biconvex airfoil, in a real flow, forces the bound-
ary layer detachment at the leading edge irrespective of the value of the angle of
attack, provided that this angle is high enough. It must be also pointed out that the
potential solution without circulation is absolutely unrealistic at the trailing edge: in
the potential solution a rear stagnation point appears at the airfoil’s upper side.

To analyze the effect of a rounded leading edge, the well known Joukowsky trans-
formation can be used. The Joukowski transformation, r = 7+ 1/7, maps a circum-
ference centred in 7, = —A and radius 1 + A onto a symmetric Joukowski airfoil
spanning in the f-plane from —(1 + 24) — 1/(1 + 2A) to 2, A being a dimensionless
parameter related to the airfoil’s dimensionless thickness, 7, through the expression
T=09611"+0.729A.

Taking into account the above reasoning on the stagnation point on the circum-
ference (equations 5-7 are the same), the forward stagnation point (the one defined
by the root 8 = 7+ ko) is now:

Is=—[A+ (1 + Q) exp(ika)] (10)

whose real part is:

xsz—[l+(l+l)coska](l+ > ! j 1)
A +(1+A) +22(1+ A)coska



Obviously, the same comments on the convenience of rescaling the results to a
normalised dimensionless chord length already introduced for a biconvex airfoil
apply to this case. Note that equation 11 with A =0 corresponds to a flat plate defined
in [-2, 2], the forward stagnation point being x5 = =2 cos(ka). Obviously, for small
values of the angle of attack the position of the forward stagnation point behaves as
xs = =2 + (ka)®. The same results can be obtained from equation 9, taking & = 0
(which means y= 0), although in this case, since analytical results are referred to
the interval [—1, 1], the resulting expression for the position of the forward stagna-
tion point is xg = —cos(ka). Obviously, the same comment already made for the
biconvex airfoil concerning the rear stagnation point applies here.

Analytical results are presented in Fig. 2, where the variation with the angle of
attack of the position of the forward stagnation point for different airfoils, either with
circulation or without circulation, are plotted (in the same graph experimental results
are also presented). As can be seen, for the same value of the angle of attack, the
position of the stagnation point is quite different, depending on the value of the

Fig. 2 Variation with the angle of attack, o, of the dimensionless position of the forward
stagnation point, Xs, for different airfoils: (a) the whole range 0° <o <90°; (b) details
close to o = 0°. Line type indicates potential result with circulation (solid) and without

circulation (dashed) and the labels on the lines indicate the airfoil type: biconvex (B), flat

plate (F) and Joukowski (J). Symbols identify experimental results according to the
Jollowing key: NACA 0018 airfoil (circles), biconvex airfoil (rhombi), and isosceles
triangular profile (triangles).



circulation, T, this factor being even more important than the airfoil’s shape. Accord-
ing to this plot, one can expect that, for small values of the angle of attack, the posi-
tion of the stagnation point will be similar to the theoretical predictions for " # 0,
but for large values of ¢ (once the airfoil has stalled) the real behaviour should be
close to the theoretical predictions for I' = 0. Hence, the position of the forward stag-
nation point (which can be easily measured with non-sophisticated instrumentation)
gives a good qualitative description of the properties of the flow past the airfoil.

Apparatus and experimental results

An open-circuit, home-made, closed-test-chamber wind tunnel was used for the
experiments reported in this paper. The wind tunnel test chamber is 0.15m
wide, 0.80m high and 1.20m long. The wind velocity profile at the model test
section is uniform within £1%, the turbulence intensity being around 4%. The wind
velocity of the stream at the test section of the wind tunnel is up to 30m-s™', which
provides Reynolds numbers higher than 4 x 10°, based on the tested model chords
(cz=0.2m).

Three different airfoils were tested (Fig. 1): a NACA 0018 airfoil (without camber
and a relative thickness 7' = 0.18), a biconvex airfoil with a relative thickness T =
0.3, and an isosceles triangular profile with a main vertex angle of 30°. Each airfoil
was equipped with at least 39 static pressure taps installed on both the upper and
the lower surfaces. Each pressure tap consisted of a brass tube, of 1 mm inner dia-
meter, which was connected to the pressure measurement instrument by a plastic
tube of 1 mm inner diameter. The plastic tubes were connected to a 48-position pres-
sure scanner from Scanivalve Corp., equipped with a Druck PDCR22 differential
pressure transducer. Transducer outputs were sampled at 20Hz for 12.5 seconds for
each measurement. Pressure measurements have been made dimensionless by using
the values of both the static pressure and the dynamic pressure of the incident wind.
Therefore, the pressure coefficient is defined, as usual, as ¢,= (p — p..)/q.., where p
is the measured pressure on each tap, and p.. and g.. are the static and dynamic pres-
sures upstream of the testing model, respectively.

Pressure distributions were measured for values of the angle of attack ranging
from o= 0° to or=90°, in different steps, Ao, between A= 1° and A= 5° (depend-
ing on the region of angles of attack under consideration). From the measured pres-
sure distributions, the position of the forward stagnation point (the dimensionless
distance along the chord from the leading edge to the point where ¢, = 1) as well as
the acrodynamic force coefficients (both lift and drag coefficients) were determined.

Experimental results in the whole range 0° < o < 90° are shown in Fig. 2(a), and
an enlarged view of the experimental results close to ¢ = 0° is shown in Fig. 2(b).

The variation with the angle of attack of the lift coefficient, ¢;, for the airfoils
under consideration is shown in Fig. 3, and the results concerning the acrodynamic
pressure drag, ¢, are plotted in Fig. 4. In both cases, experimental values have been
corrected by using standard blockage correction methods [6] to take into account
the blockage of the wind tunnel test chamber due to the model under testing. On the
same plots, results from another source [7], measured at Reynolds numbers much
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Fig. 3 Variation with the angle of attack, o, of the lift coefficient, ¢, of the tested airfoils.
Symbols identify experimental results according to the following key: NACA 0018 airfoil
(circles), biconvex airfoil (rhombi), and isosceles triangular profile (triangles). Result from
Blevins [7] for a flat plate (FP) and for NACA 0018 airfoils (NA) are also included.
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Fig. 4 Variation with the angle of attack, o, of the pressure drag coefficient, ¢, of the
tested airfoils. Symbols identify experimental results according to the following key: NACA
0018 airfoil (circles), biconvex airfoil (rhombi), and isosceles triangular profile (triangles).

Results from Blevins [7] for a flat plate (FP) and for NACA 0018 airfoils (NA) are also

included.

higher than those considered here, are also shown (that fact, together with the very
different testing conditions concerning both flow uniformity and turbulence level,
could explain the differences on the drag coefficient of the NACA 0018 airfoil,
Fig. 4).

Lift and pressure drag are defined, as usual in aerodynamics, as the component
normal to the flow velocity far upstream of the model and the component in the
direction of the flow velocity, respectively. According to Fig. 5, for a given value of
the angle of attack the components of the pressure force in the dimensionless body
axes (&, n) are:
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Fig. 5 Components of the aerodynamic pressure force in body axes and in wind axes.
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Thus, the lift and pressure drag coefficients become:
€)=y COSO —C:SINQL
=t _ s (13)
Cap = CoSINQL +Cz COS O

Obviously in the above expression for the drag coefficient only pressure forces have
been considered, the total drag coefficient being ¢, = ¢, + ¢4, Where ¢, is the viscous
drag coefficient.

Concerning the experimental results presented in Fig. 2, in the case of airfoils
with a well defined trailing edge (here the NACA 0018 and the biconvex airfoil),
the forward stagnation point moves accord to predictions for I # 0 up to moderate
values of the angle of attack, say ¢ = 10°. Beyond this boundary (¢ = 157) the
stagnation point excursion almost stops for a given interval of values of the angle
of attack. When the angle of attack reaches large enough values (& = 20°) the stag-
nation point position behaves as predicted in the I' =0 case. Obviously, experimental
and theoretical results cannot be fully compared when o is large, because of the very
different characteristics of the two flows (real and theoretical) close to the trailing
edge. However, it is remarkable that the two tested airfoils that have a well defined
trailing edge (the NACA 0018 and the biconvex airfoil) behave in a similar way, in
spite of their very different leading edges. The reason for such agreement resides in
the existence of a sharp, wedged trailing edge, which forces the fulfilment of the
Kutta condition at small angles of attack.

With the biconvex airfoil, at small angles of attack the shape of the pressure dis-
tribution is roughly similar to that of the airfoil itself, except close to the leading
edge, where a stagnation point appears on the lower side of the body and a suction



pressure peak appears on the upper side. Because of the wedge leading edge, the
boundary layer separates just at that edge, although it reattaches at some distance
from the edge, thus forming a recirculation bubble. As the angle of attack grows,
the reattachment point moves downstream and the upper boundary layer starts to
separate at the trailing edge (as happens with thick airfoils), this separation point
moving upstream as the angle of attack grows. At o =~ 20° the whole upper-side
boundary layer is separated, and the circulation practically vanishes (however, the
lift is still large for the reasons explained above, the maximum lift coefficient being
reached at o = 60°).

The results corresponding to the triangular airfoil have been partly published
elsewhere (those concerning the dependence on the angle of attack of the coefficients
¢;and ¢, [8]). Anisosceles triangular body is very different from the shapes of standard
airfoils: there is no trailing edge, and these is then a reasonable doubt about the
suitability of the Kutta condition to explain lift generation. However, the triangular
profile behaves like a standard-shaped airfoil provided the angle of attack is small
enough, with an almost linear variation of the lift coefficient with the angle of attack.
Although boundary layer separation takes place at the leading edge for very small
values of the angle of attack, the shear layer reattaches on the airfoil’s upper side and a
recirculation bubble is formed close to the leading edge, as happens in the biconvex
airfoil case. As the angle of attack grows, the reattachment point moves towards the
trailing edge, so that in this range of values of the angle of attack the lift can even
increase as « grows. This behaviour ends when the reattachment pointreaches the base
of the triangle (¢ =~ 18°), and beyond this angle of attack reattachment is no longer
possible.

For very small values of ¢, the forward stagnation point keeps close to the leading
edge, until a threshold value of the angle of attack is reached, as shown in Fig. 2.
Such a situation corresponds to the existence of a very small recirculation bubble at
the leading edge of the upper side, whose size is almost independent of ¢ (the same
behaviour has been reported in the case of flat plates with sharpened edges at o =
0° [9]). If ¢ is increased, the position of the stagnation point jumps a distance from
the leading edge, analogous to the situation for airfoils with a well defined circula-
tion, and from this point the distance grows as the angle of attack grows. This behav-
iour holds until the reattachment point of the recirculation bubble on the upper side
reaches the base of the triangle; then, the flow separates over the whole upper
surface, the lift decreases as the angle of attack increases further, and the stagnation
point moves to a new curve, closer to the I' = 0 ones.

It must be remarked that, in spite of its non-acrodynamic shape, a triangular airfoil
generates circulation while the recirculation bubble at the upper side (whose for-
mation can not be avoided) remains anchored to the airfoil surface, as happens in
the case of very thin standard airfoils [3-5].

Conclusions

The Kutta—Joukowski theorem stating the relationship between lift and circulation
for airfoils holds for a range of angles of attack close to o= 0°, the flow morphology




within this range being characterised by a non-separated boundary layer. When
boundary layer separation and airfoil stalling occur, the circulation starts to decrease
and then vanishes, although the airfoil still produces considerable lift (as well as
considerable drag, which makes the airfoil very inefficient from the aerodynamic
point of view).

A simple way to visualise the effect of the airfoil circulation is by measuring the
position of the forward stagnation point, since, as the angle of attack increases,
drastic changes in its position take place, because of the effect of the circulation on
the flow pattern over the airfoil.
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