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Abstract 

In this work we report, for the first time at room temperature, experimental results that prove, simultaneously in the 

same device, the two main physical principles involved in the operation of intermediate band solar cells: (1) the 

production of sub-bandgap photocurrent by two optical transitions through the intermediate band; (2) the generation of 

an output voltage which is not limited by the photon energy absorption threshold. These principles, which had always 

required cryogenic temperatures to be evidenced all together, are now demonstrated at room temperature on an 

intermediate band solar cell based on InAs quantum dots with Al0.3Ga0.7As barriers.  

 

1. Introduction 

The structure of an intermediate band solar cell (IBSC) enables an increase of the photo-generated current, as a 

consequence of the reduction of the photon absorption energy threshold, without the output voltage of the cell being 

limited by this threshold. This break in the trade-off between current and voltage makes the efficiency limit of an 

IBSC surpasses the Shockley-Queisser (SQ) limit established for single gap solar cells (63.2% vs 40.7% 
[1]

 ).  

In IBSCs an electron-hole pair is generated by two mechanisms: the absorption of one photon whose energy is higher 

than EG (arrow 3 in Fig. 1), and the absorption of two sub-bandgap photons whose energies are higher than EH (arrow 

1) and EL (arrow 2) via two pumping-processes through the IB.  The energy reference within the IB for defining EL 

and EH is assumed to be at the center of the intermediate band. On the other hand, in devices implemented with 

quantum dots (QDs) as it will be our case, the IB is considered to emerge from the fundamental energy level 

associated to the confined electrons and expected to be narrow and even reduced to a degenerated energy level if QDs 

are far apart.  The isolation of the IB from the metal contacts through the emitters implies that the output voltage is 

proportional to the difference between the quasi-Fermi level of electrons and the quasi-Fermi level of holes, EFC and 

EFV respectively. Hence, as in a conventional solar cell, the open-circuit voltage (VOC) remains limited by the bandgap 

of the host semiconductor, EG. 
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Fig. 1. Band diagram of an IBSC under operating conditions (illumination and forward 

bias). The three absorption processes and the relationship between the output voltage, V, 

and the quasi-Fermi levels of electrons and holes, EFC and EFV, are shown. 

Quantum dots (QDs) are one of the approaches used to implement IBSCs because the energy states of the electrons 

confined in the dots can lead to the formation of the IB
[2]

. The IBSC operating principles have already been 

demonstrated in InAs/GaAs QDs
[3],[4],[5]

. Unfortunately, this material is not the best candidate to implement a high 

efficiency IBSC because of the GaAs low bandgap, (~1.42 eV, to be compared to the optimum value, 1.9 eV
[1]

). 

Furthermore, in this material, it has been obtained experimentally a low value for EL, which leads to undesired thermal 

escape of electrons between the IB and the CB at room temperature. Thus, there is interest in shifting towards barrier 

materials with higher bandgaps
[6]

 and higher EL. 

In this respect, IBSCs based on InAs/AlGaAs QDs have been considered as good candidates. This QD system has 

been studied, providing encouraging results such as a larger EL
[6]

, the generation of two-photon below bandgap  

photocurrent and voltage-up conversion of low-energy photons
[7]

. Unfortunately, the use of low temperature has still 

been required in order to decrease thermal escape and obtain some of these results. 

In order to work towards the demonstration of the IBSC operating principles at RT, we have manufactured InAs QDs 

based on AlGaAs barriers with a concentration of aluminum slightly larger than the one used in the works cited above 

(Al content of 30% instead of 25%). These cells have been characterized by photocurrent measurements and current-

voltage curves under concentrated white-light illumination and the results will be shown in following sections. 

2. Material and methods 

2.1. InGaAs/AlGaAs solar cell 

The solar cells studied in this work were grown on 350μm thick n
+
-GaAs substrates by molecular beam epitaxy (MBE) 

at the University of Tokyo. The layer structure of these samples is shown in Fig. 2. Two different types of samples 

were manufactured: a sample with 25 layers of InGaAs/Al0.3Ga0.7As QDs in the region labeled as “Middle”, and a 

reference sample without QDs in which this middle region consists of Al0.3Ga0.7As. In both samples this layer has no 

intentional doping and is sandwiched between conventional p (2x10
18 

cm
-3

) and n (8x10
16 

cm
-3

) type Al0.3Ga0.7As.  

 

Fig. 2. Layer structure of the QDs solar cell studied in this work. The 

middle region consists of 25 layers of InGaAs/ Al0.3Ga0.7As QDs spaced 

60 nm. In the case of the reference cell, the middle region consists of 

Al0.3Ga0.7As with no QDs.  

A back surface field layer (Al0.75Ga0.25As n-type doped 1x10
17 

cm
-3

) was grown on top of a 250nm n
+
-GaAs buffer 

layer (1x10
18 

cm
-3

). A window layer (Al0.75Ga0.25As p-type doped 5x10
18 

cm
-3

) was grown on top of the emitter, 



followed by a p
+
-GaAs (2x10

19 
cm

-3
) contact layer. Finally, metal contacts were deposited by thermal evaporation both 

on the back (AuGe/Ni/Au) and the front (Cr/Au) sides of the device.    

InGaAs QDs were fabricated by the growth interruption technique. Hence, the QDs were formed during the growth 

interruption after 10.5 MLs of InGaAs were deposited, at high growth rate of 1ML/s, on intrinsic Al0.3Ga0.7As spacers 

of 60nm
[8, 9]

. Due to the doping level and the thickness of the layers in Fig. 2, the QDs were located inside the space-

charge region of the solar cell. Hence, as described in [10], in equilibrium, it is warranted that some QD layers are 

partially filled with electrons at the prize that some other layers are either filled or emptied of electrons. 

2.2. Photocurrent measurements  

The photocurrent measurements are performed at RT by illuminating the samples with sub-bandgap photons with 

energy in the range from 0.2eV to 1.4eV (the Al0.3Ga0.7As bandgap is around 1.8eV
[11]

).  Therefore, the photocurrent 

must be generated by optical transitions that involve intermediate levels, which exist, in principle, only in the solar 

cells with QDs. Hereinafter, we will refer to these levels as IB. 

The measured photocurrent responds to the monochromatic light that comes from the output of a 1/4m 

monochromator. Inside the monochromator, the light of a 100W halogen lamp is diffracted and, at the output, 

appropriate optical filters are placed to guarantee the monochromaticity of the photon beam. In order to maximize the 

measured photocurrent, the output monochromatic beam is concentrated as much as possible with a parabolic mirror, 

guaranteeing that the light spot covers the total area of the solar cells (0.032cm
2
). The spectral photon flux is in the 

range of 4.3x10
14

 - 3.7x10
20

 m
-2

·s
-1

·nm
-1 

for photons with energy above 0.9 eV and is measured for each energy with a 

calibrated Newport photodetector. This calibration also allows measuring the external quantum efficiency of the cell 

(EQE) for photon energies above 0.9 eV.  It can be assumed that for energies lower than 0.9 eV the photon flux that 

illuminates the solar cells is lower than the values of this range but no absolute calibration has been possible. 

The intensity of the monochromatic beam is modulated at 33Hz using an optical chopper, and the alternate 

photocurrent generated by the cell in response to this illumination is measured with a lock-in amplifier. For each of the 

two samples studied in this work, this photocurrent is measured under two different operation conditions, to know, 

with and without illumination by means of a continuous-wave (cw) laser diode of 1.32eV (energy lower than EG). The 

latter illumination alone produces a continuous photocurrent density of 0.52mA/cm
2
 in the QD solar cell. This 

photocurrent density is equivalent to the current density generated by this solar cell when  illuminated by 0.5 suns 

(resulting from integrating the EQE of the cell for photons with energy higher than 0.9 eV with ASTM-G173-0 

spectrum). During all photocurrent measurements, samples were biased at 0V. 

2.3. Concentration measurements 

The short-circuit current density (JSC) vs. VOC curves under different levels of illumination are measured at RT using 

the experimental technique described in [12]. In this technique, the light of a Metz Mecablitz 54 MZ-3 xenon flash 

lamp is concentrated by a CaF2 lens to illuminate the cells with different irradiances during the time of the flash 

discharge. This time is approximately 20 ms long, although 90% of the energy is discharged approximately within the 

first 5 ms. Two flash pulses are used to obtain the JSC - VOC pairs. During the first pulse, samples are biased at 0V 

using a 4-wire Keithley source meter, so that JSC values at different irradiances are obtained as the intensity of the light 

of the flash decays. During the second pulse, samples operate at open-circuit, so that VOC values at different irradiances 

are obtained. Both sets of data, JSC and VOC, are acquired with a sampling rate of 200kHz by the analog inputs of a 

National Instrument PCI DAQ card. This DAQ system only can measure voltage signals, so that, in order to convert 

JSC into a measurable voltage signal, the use of a calibrated shunt is required. The correlation between these two sets of 

data is obtained by a silicon reference detector, which is placed close to the sample during the measurements. The 

illumination level is estimated by dividing the measured photogenerated-current density (JL), which is assumed 

proportional to the irradiance level, by the theoretical value of the photogenerated-current density at one sun (for the 

QD solar cell, this current density is 1.05 mA/cm
2
 under ASTM-G173-0 spectrum). 

 

3. Results 

3.1. Two-photon below bandgap absorption at room temperature 



For comparison, the measured photocurrents for the sample with QDs and for the reference sample are plotted in Fig. 

3. These measurements reveal the generation of a notable sub-bandgap photocurrent in the QD solar cell (dashed red 

line) which increases, when the sample is also illuminated with the cw laser diode of 1.32eV (solid red line), in the 

range from 0.3eV to 1.17eV. Under these conditions, photocurrent is produced using the far infrared (IR) down to 

0.3eV. There is an abrupt change in photocurrent around 1.17eV. This photon energy corresponds to the sub-bandgap 

EH as we shall see in the discussion. 

 

Fig. 3. Sub-bandgap photocurrent density at room temperature from the 

reference cell (blue lines) and the QD solar cell (red lines). The solid lines are 

the photocurrent density extracted when the light of a laser of energy 1.32eV 

biases the samples. In the case of the QD solar cell this light bias produces a 

photocurrent density of 0.52mA/cm2, equivalent to the illumination of 0.5 

suns. The position of the IB is identified at 1.17 eV from the VB and the 

absorption threshold for the sample with QDs is 0.3eV. Photocurrents at 20K 

are plotted for comparison (green and black lines). 

An unexpected photocurrent appears in the reference sample when illuminated with photons of energies from 1.2 eV 

to 1.4 eV (dashed blue line). In this case, however, the presence of the 1.32 eV light bias does not change the 

photocurrent curve (solid blue line). This measured photocurrent could be related to the presence of intermediate levels 

(resulted from native defects in the Al0.3Ga0.7As
[13]

) which do not perform as an IB (there is no response to two-photon 

subbandgap illumination). Similar results have been obtained in other materials
[14],[15]

.  

3.2. Open-circuit voltage surpasses the absorption threshold 

Fig. 4 shows that the VOC produced by the QD solar cell at RT covers the range from 0.73 V to 1.07 V when it is 

illuminated by a Xenon lamp with irradiance levels from 0.5 suns to 390 suns. 



 

Fig. 4. JSC vs. VOC at room temperature for different levels of illumination. The 

maximum concentration achieved is 390 suns. It produces a VOC of 1.07V in the 

QD solar cell. 

4. Discussion 

In an ideal IBSC, with selective absorption coefficients, it is not possible to extract photocurrent when the solar cell is 

illuminated with a monochromatic sub-bandgap photon energy beam. The reason is that, in such an ideal cell, photons 

with a specific energy can only be absorbed in one optical transition. However, the results plotted by the dashed red 

line in Fig. 3 shows that it is possible to produce photocurrent when the QD solar cell is illuminated only with 

monochromatic light, whose photon energy varies from 0.9 eV to 1.4 eV. Previous works
[16],[17]

 have explained the 

origin of this sub-bandgap photocurrent as the result of two pumping-processes: optical transitions of electrons from 

the VB to the IB and a thermal escape processes from the IB to the CB. This thermal escape is undesired because no 

electrical work can be extracted from it and its thermal origin is identified because this sub-bandgap photocurrent 

disappears when the temperature decreases.  The same results are obtained in the QD solar cell studied in this work. 

The photocurrent generated when the QD solar cell is illuminated only with monochromatic photon energies from 0.9 

eV to 1.4 eV (dashed red line in Fig. 3) disappears when the temperature decreases down to 20K (black line in Fig. 3). 

This may be because, once thermal excitation from the IB to the CB has been suppressed, there is no second photon 

capable of pumping and electron form the IB to the CB. The suppression of sub-bandgap photocurrent at 20K suggests 

that the absorption coefficients associated to sub-bandgap generation processes (labeled as 1 and 2 in Fig. 1) do not 

overlap at low temperature since, otherwise, a photon energy (larger than 0.9 eV) should also be able to pump an 

electron from the IB to the CB. These absorption coefficients depend on the electron concentration in the IB. In the 

case of the QD solar cell, we assume that this concentration is determined by the fact that the IB is located inside 

space-charge region (as discussed in section 2.1) and therefore, it should not change significantly with temperature. 

According to this assumption, we would expect that absorption coefficients associated to sub-bandgap generation 

processes do not overlap at room temperature either. 

According to this argument, it is possible to identify EH from the results represented by dashed red line in Fig. 3, as the 

photon energy at which there is an abrupt change in photocurrent (~1.17 eV). It is more difficult to resolve EL if we 

illuminate the solar cell with only monochromatic light, because it is more difficult to pump electrons from the VB to 

the IB by thermal escape since EH is larger than EL. Hence, to resolve EL we need to increase the pumping of electrons 

from the VB to the IB by illuminating  the sample also with photons with energy larger than EH
[18]

. This is how the 

results represented by the red line in the Fig. 3 have been obtained. In this case, a cw laser diode of 1.32 eV has been 

used to illuminate continuously the solar cell, producing a continuous photocurrent equivalent to 0.5 suns illumination. 



Under these conditions, we have identified the two sub-bandgaps, EL≈0.3eV and EH=1.17eV. Therefore, taking into 

account that  EG is around 1.8eV
[11]

, it is possible to infer a VB QD offset of around 0.33eV.  

These results have been obtained because of the presence of two sub-bandgap transitions, between the VB and the IB, 

and between the IB and the CB. Previous works have reported the presence of these transitions at RT in QD-IBSCs
[19]

. 

However, up to now, low temperature has always been required to spectrally resolve them 
[7]

. In Fig. 3 we present, for 

the first time at RT, the spectral resolution of both sub-bandgap transitions (solid red line). 

The upgrades carried out in this work to reach this result are based on improvements of the experimental setup and the 

manufacturing of QDs based on barriers with a concentration of aluminum larger than those used in previous works 

(Al content of 30% instead of 25%). The setup’s improvements have been aimed to increase the intensity of the 

monochromatic light that illuminates the samples by two orders of magnitude approximately. The increase in the 

aluminum concentration has been aimed to reduce the thermal escape by enlarging the bandgap EG. Notice that, in 

spite of using larger values for EG, thermal escape still has a significant role in the performance of the device and 

therefore this QD solar cell still does not operate as an ideal IBSC, capable of significantly increasing its efficiency 

over single gap solar cells  

These two strategies have favored the detection of the lowest absorption threshold measured at RT in a QD-IBSC. The 

absorption threshold is 0.3 eV and corresponds to EL. At this temperature, to illuminate the samples with an irradiance 

of 0.5 suns results in a VOC of 0.73 V. Therefore, the VOC surpasses the absorption threshold at RT, for the first time 

without the use of concentrated illumination. In order to the efficiency of the QD solar cell surpass the SQ limit, it is 

necessary, however, that the VOC surpasses both sub-bandgaps (EH and EL), which is not the case.  

An important observation is that, the two operation principles of an IBSC have been proven under illumination 

conditions which imply similar photocurrent generations (0.52mA/cm
2
, equivalent to the photocurrent density 

generated by 0.5 suns).  

5. Conclusions 

The important goal which has been reached in this work is to prove, for the first time at RT, the two operation 

principles of an IBSC: the sub-bandgap photocurrent production by two optical transitions through the IB, and the 

generation of an output voltage which is not limited by the absorption threshold. This has been possible because the 

spectral resolution of EL has lead to the detection at RT of a low absorption threshold of 0.3 eV. These results have 

been obtained from a solar cell based on InGaAs/Al0.3Ga0.7As QDs, under operation conditions equivalent to 

illuminating the IBSC with 0.5 suns.  
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