
ENVIRONMENTAL ANALYSIS OF A CONCENTRATED SOLAR POWER (CSP) PLANT 1 

HYBRIDISED WITH DIFFERENT FOSSIL AND RENEWABLE FUELS. 2 

 3 

B. Corona, G. San Miguel* 4 

Universidad Politécnica de Madrid, ETSII, Department of Chemical Engineering and Environment. 5 

c/ José Gutiérrez Abascal, 2, Madrid, 28006 (Spain) 6 

Corresponding author. Tel.: (+34) 91 336 31 54. 7 

 E-mail address: g.sanmiguel@upm.es 8 
 9 

Abstract 10 

The environmental performance of a 50 MW parabolic trough Concentrated Solar Power (CSP) 11 

plant hybridised with different fuels was determined using a Life Cycle Assessment methodology. 12 

Six different scenarios were investigated, half of which involved hybridisation with fossil fuels 13 

(natural gas, coal and fuel oil), and the other three involved hybridisation with renewable fuels (wheat 14 

straw, wood pellets and biogas). Each scenario was compared to a solar-only operation. Nine different 15 

environmental categories as well as the Cumulative Energy Demand and the Energy Payback Time 16 

(EPT) were evaluated using Simapro software for 1 MWh of electricity produced. The results indicate 17 

a worse environmental performance for a CSP plant producing 12% of the electricity from fuel than 18 

in a solar-only operation for every indicator, except for the eutrophication and toxicity categories, 19 

whose results for the natural gas scenario are slightly better. In the climate change category, the results 20 

ranged between 26.9 and 187 kg CO2 eq/MWh, where a solar-only operation had the best results and 21 

coal hybridisation had the worst. Considering a weighted single score indicator, the environmental 22 

impact of the renewable fuels scenarios is approximately half of those considered in fossil fuels, with  23 

the straw scenario showing the best results, and the coal scenario the worstones. EPT for solar-only 24 

mode is 1.44 years, while hybridisation scenarios EPT vary in a range of 1.72 -1.83 years for straw 25 

and pellets respectively. The fuels with more embodied energy are biomethane and wood pellets. 26 

 27 

Keywords: Life Cycle Assessment, Cumulative Energy Demand, Energy Payback Time, biomass, 28 
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 30 

1. Introduction 31 

Concentrated Solar Power (CSP) is receiving increasing attention as a technology capable of 32 

transforming solar radiation into electricity in a sustainable and cost effective way. Spain and the 33 

USA are world leaders in the deployment of CSP technology, accumulating more than 90 % of the 34 

installed capacity worldwide. Spanish installed capacity of CSP plants amounts to 2300 MW, 35 

distributed into 50 power plants [1]. At present, other countries with high solar Direct Normal 36 

Irradiance (DNI) such as India, Chile and South Africa are also significantly increasing their CSP 37 

installed capacity. Parabolic trough solar collectors are the most mature and widely deployed of the 38 

CSP technologies, representing over 85 % of the installed capacity worldwide. Forty five of the fifty 39 

power plants installed in Spain are based on parabolic trough technology. These plants use parabolic 40 

mirrors with sun tracking systems to concentrate direct solar irradiation into a tube receiver that runs 41 

along the focal point of the collector. A Heat Transfer Fluid (HTF) circulating inside the receiver 42 

absorbs the solar energy to increase its temperature from around 295 ºC in the cold end of the system 43 

to 395 ºC at the exit of the solar field. The hot HTF is circulated through a series of heat exchangers 44 

that result in the production of a superheated steam (typically at 100 bars/375 ºC) which is used to 45 

drive a steam turbine for electricity generation, following a conventional Rankine cycle. Modern CSP 46 
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plants also incorporate thermal energy storage systems, usually based on molten nitrate salt mixtures 47 

to increase the number of operating hours and their capacity factor [2]. 48 

Hybrid CSP integrates an auxiliary boiler operated with fuel to facilitate start-up operations, provide 49 

system stability, avoid freezing of HTF and increase power generation. Natural gas is used most 50 

frequently as a backup fuel due to its low cost, clean combustion and rapid response, although the use 51 

of fuel oil, mineral coal and biomass has also been reported [2-4]. 52 

The Spanish legislation regulating the feed-in tariff for electricity from sustainable resources 53 

allowed CSP plants to produce up to 12 % of their electricity from fossil auxiliary fuels [5]. Hence, 54 

most of commercial CSP plants in Spain have been operating according to this strategy in order to 55 

maximize economic revenues. This legislation was superseded by Royal Decree Law 1/2012 and 56 

Royal Decree Law 413/2014 [6], which changed the retribution system for electricity generation from 57 

renewable sources. However, for the sake of this study, we have decided to maintain the same 58 

proportion of hybridisation (12%), since most of the CSP plants currently operating in Spain generate 59 

between 12 and 15% of the electricity from natural gas combustion. 60 

Hybridisation with fossil fuels can significantly improve the performance and profitability of a CSP 61 

plant; however, it increases its carbon footprint, reduces its share of renewable energy and, in the case 62 

of Spain, it increases its dependence on foreign natural gas and fuel oil. On the contrary, a biomass 63 

alternative allows an electricity to be produced that is fully renewable and locally available.  64 

Biomass combustion plants’ efficiency increases when operating at large scales [7]. However, this 65 

involves large amounts of available biomass and high capital investments, which so far have been the 66 

main setbacks in the implementation of this technology in Spain [8]. One alternative to solving this 67 

problem is to hybridise CSP with biomass: a large scale facility can be used to produce renewable 68 

electricity from biomass and at the same time increase power generation of the plant with transient 69 

clouds or at night. Another solution which is having increasing attention is biomass co-firing [10, 11] 70 

which usually consists of the co-combustion of biomass in coal fired power plants. However, this 71 

operation decreases the boiler efficiency and needs biomass pre-treatments. 72 

Biomass resources from the forest and agriculture industrial sector (by-products and wastes) are 73 

some of the cheapest and most used resources. Facilities around the world are increasing the 74 

generation of electricity from these recourses, especially straw, which is one of the most abundant 75 

and utilised in the bioenergy sector [11].  76 

The international pellet market is also growing, and it is expecting an increase of wood pellet 77 

combustion for power generation in Europe [10, 12]. In 2010 Spain produced 100,000 tons of pellets, 78 

just 1% of the European production; however, it has the potential to produce three times as much 79 

[13].  80 

 81 

Life Cycle Assessment (LCA) is a methodology used to assess the environmental impacts of a 82 

product or system attending to all the stages of its life cycle, from extraction of raw materials to 83 

disposal of components. It evaluates the data collected in a comprehensive inventory of all the 84 

processes and the materials involved in its life cycle and determines the impacts of such activities in 85 

the form of environmental categories, such as climate change (analogue to global warming), 86 

acidification, eutrophication, depletion of fossil fuels, human toxicity or environmental ecotoxicity. 87 

LCA has been largely used to evaluate energy systems, allowing a comparison of different energy 88 

technologies and different configurations of the same technology to occur [14-17]. 89 

The environmental performance of CSP plants have been analysed before, including different 90 

configurations for thermal storage, cooling systems and hybrid modes [18-25]. Although the 91 



hybridisation of CSP plants with natural gas and biogas has been previously  analysed [21, 22], never 92 

was the environmental performance of the hybridisation with coal, oil, wood pellets and straw 93 

determined; neither was an environmental comparison of these fuels analysed, assuming the same 94 

scope and methodological choices.  95 

In this study, the environmental performance of a hybrid CSP operating in 6 different scenarios 96 

(12% of hybridization with coal, natural gas, fuel oil, biomethane, wood pellets and wheat straw) was 97 

evaluated and compared to a solar-only scenario where no hybridisation took place.  98 

 99 

2. Methodology 100 

 An LCA model was produced for a 50 MWe commercial CSP parabolic trough plant located 101 

in the Ciudad Real (Spain). The analysis was conducted according to ISO 14040 [26] and included a 102 

flow diagram and a complete inventory of the life cycle of the process, including extraction of raw 103 

materials and manufacturing of components, construction, operation and dismantling phases. 104 

Quantification and aggregation of environmental impacts was performed using standard method 105 

ReCiPe Midpoint and Endpoint Europe (H) v1.09, with 1 MWh as the functional unit. 106 

Cumulative Energy Demand (CED) accounts for the primary energy source consumed throughout 107 

the life cycle of the technology. CEDs were determined for different scenarios using the Cumulative 108 

Energy Demand v1.08 evaluation method, based on the method published by ecoinvent version 2.0 109 

and expanded by PRé Consultants. Energy payback time (EPT) describes the time required by the 110 

CSP plant to generate (as net electricity output) the primary energy consumed in the construction 111 

(including extraction of raw materials and manufacturing of plant elements) and dismantling of the 112 

installation. EPTs were determined for different operating scenarios using an equation described by 113 

Lechon et al. [25]. 114 

 115 

2.1. Characteristics of the CSP plant 116 

The installation has a lifetime of 25 years, uses synthetic oil as HTF and incorporates a 7.5 hour 117 

molten salt thermal energy storage based on a two tank configuration. The power plant location 118 

(Ciudad Real, Spain) receives a direct normal irradiance of 2030 kWh/m2/yr.  The plant allows 2,800 119 

h/yr of full load equivalent operation when operated using solar energy only for a gross electricity 120 

output of 165,687 MWh/yr. Since 16% of this electricity is consumed onsite for operation and 121 

maintenance, net energy injected into the grid amounts to 139,725 MWh/yr. The hybrid mode 122 

operation was assumed to involve an additional 12 % gross power generation from the auxiliary fuel, 123 

producing 158,703 MWh/yr of net energy. Thermal efficiency of the steam cycle is 37 %. 124 

The minimum amount of backup energy required to operate the CSP plant (for start-up operations 125 

and anti-freezing purposes) has been estimated to be around 6.28·106 MJ/yr. This energy input is 126 

generated in a 10MWth boiler, and does not have a net contribution to electricity generation.  127 

The plant operating in hybrid mode has two auxiliary boilers, each having a capacity of 20 MWth, 128 

with 95 % efficiency when operating with fossil fuels and 90 % with biomass. The total fuel cycle 129 

efficiency, calculated as the product of multiplying the steam cycle by the boiler efficiencies, is 33 % 130 

for straw and pellets, and 35 % for the rest of the scenarios. 131 

 Operating the CSP plant in hybrid mode would require the provision of 2.39·108 MJ/yr of auxiliary 132 

energy input. Quantities of fuel consumed in the operation phase were determined considering the 133 

low heating value of each gas as follows: natural gas 39 MJ/Nm3; coal 22.0 MJ/Kg [27], fuel oil 41.2 134 

MJ/kg [28], mixed manure (upgraded to methane) 24.0 MJ/Nm3 [28], wood pellets 12164 MJ/m3 135 

DM [29] and wheat straw 16.73 MJ/kg DM [9]. 136 



2.2. Life Cycle Inventories 137 

 The inventory related to the CSP plant was obtained mainly from engineers specialised in this 138 

technology, and whenever it was not possible, data was taken from established databases and 139 

scientific literature. Ecoinvent database v2.2 was used for background data. 140 

Full inventory of the solar-only CSP plant base case, including data sources, is available in Corona 141 

et al. [22]. 142 

Boiler inventory for the operation of each hybridisation scenario have been assumed to be the same 143 

as in a natural gas combustion, considering that impacts derived by differences in design or 144 

manufacturer were negligible compared to the whole life cycle of the plant. This assumption is based 145 

on the small environmental effect of this component detected in previous studies by the authors [22].  146 

LCA inventory of fuels was mainly obtained from the ecoinvent 2.2 database, with data adapted to 147 

the Spanish system. Specifications for each fuel are as follows: 148 

- The impacts derived from a natural gas life cycle were determined by the ecoinvent database, 149 

adapting the CORES percentages of Spanish natural gas imports [30] to the following 150 

composition: 69% from Algeria, 16% Nigeria, 10.9 % Norway and 3.9% Netherlands. 151 

- The coal and fuel oil life cycles were taken from the corresponding Spanish process available 152 

in the Ecoinvent database. 153 

- Mixed slurry biogas derives from the co-fermentation of slurry from swine and cattle mixed 154 

with 20 wt% biowaste substrate made of paunch, oil and vegetable waste, (“Biogas, from 155 

slurry, at agricultural co-fermentation, covered, CH” process from Ecoinvent 2.2 detailed in 156 

Jungbluth et al. [28]). Slurry digestion usually fulfils three functions: livestock farming waste 157 

disposal, biogas production, and the production of digested matter as fertiliser. It has been 158 

reported that the storage and application of digested matter is a source of emissions of CH4, 159 

NH3 and N2O, which are responsible for impacts in climate change and acidification 160 

categories. In the ecoinvent database, it is assumed that digested matter is covered to avoid 161 

such emissions, but NH3 and N2O are still emitted due to the application of digestate (even if 162 

the emissions which occur in addition to those that would occur with undigested manure are 163 

only reported). However, some studies analysing these emissions for digested and undigested 164 

manure, report higher emissions for these gases in undigested manure [31,32], presenting a 165 

positive impact for the digestion process. Some consequential LCA also present positive 166 

impacts for this process because of the avoided impacts when applying digestate instead of 167 

chemical fertilisers [33]. Due to these  differences, for the sake of this study, the ecoinvent 168 

process was modified and  a cut-off allocation method was applied [34], considering that only 169 

the impacts and benefits of biogas production are included (and not the ones of digestate 170 

application as fertilizer). Operating the CSP with mixed manure biogas would require the 171 

provision of 9.9·106 Nm3/yr of biogas. This volume of raw biogas may only be produced in a 172 

very large centralised biogas facility, which does not exist in the place studied (Ciudad Real). 173 

Hence, operation of the CSP plant in hybrid mode was investigated assuming the upgrading 174 

of biogas to biomethane (and injected into the gas grid from different locations), which in the 175 

proposed conditions would require 6.93·106 Nm3/yr of biomethane. The impact associated 176 

with upgrading the biogas to biomethane, as well as its injection and transportation through 177 

the gas grid was also incorporated into the model. 178 

- The wood pellets were manufactured out of dried industrial residual wood with 10 % moisture 179 

content. Manufacturing processes have been taken from the ecoinvent database [28]. An 180 

average transport distance (by lorry) of 300 km from pellet mills to the CSP plants was 181 

assumed. The only data for the combustion of wood pellets available in established databases 182 



was found to be for a 50 kW furnace. It has been reported that emissions in large-scale 183 

industrial boilers are lower than in small combustors due to the higher combustion efficiency 184 

in the former [35]. Hence, taking a precautionary perspective, NOx and particulate emission 185 

values from a 50 kW furnace (as included in ecoinvent 3.0 database) were reduced by 90 %. 186 

It is assumed that 50 % of the combustion ashes were disposed of in a landfill and 50 % was 187 

spread in soil, as assumed in the corresponding ecoinvent process.  188 

- Wheat straw is transported and burned in the form of bales with a moisture content of 10 %.  189 

Soil cultivation, harvesting and the processing of straw were included in the study with an 190 

economic based allocation for cultivation and harvesting of 7.5 % [36]. A wheat straw yield 191 

of 2300 kg/ha, according to Spanish values, was assumed [11]. The average distance for 192 

transportation of straw bales to the CSP plant was assumed to be 70 km (by lorry), transporting 193 

in each trip a maximum of 25 bales of 700 kg each. Emissions data for the combustion of 194 

straw bales were taken from Nielsen et al. [37], taking into account the reduction due to the 195 

gas treatment system defined for the wood scenario. Straw is known for producing high 196 

amounts of ash during combustion compared to other forms of biomass. Different values for 197 

ash generation are reported in scientific literature, varying from 3 to 11 %. In this study, an 198 

ash production of 6.3 % (of dry fuel mass) was assumed as an average of the values reported 199 

in 6 different studies [9, 38-42]. Composition of ash was extrapolated from data about solid 200 

straw biofuel composition in standard UNE EN 14961:2011 [43]. Straw ashes are disposed of 201 

by landfarming. 202 

 203 

3. Results and discussion 204 

The life cycle impact associated with the generation of 1 MWh of electricity in the solar-only mode 205 

CSP plant and the hybrid CSP plant operating on different fuels is described in Table 1.  206 

The characterised results suggest that the operation of the CSP plant in solar-only mode produced 207 

the lowest environmental impact in almost every category.  This was especially relevant  in regards 208 

to  climate  change  (26.9  kg  CO2  eq),  terrestrial acidification  (168  g  SO2  eq)  and  photochemical  209 

oxidant  formation  (160  g  NMVOC) categories. Utilization of different auxiliary fuels had a 210 

determinant effect on the environmental performance of the plant. The coal scenario produced the 211 

highest scores in every category except for natural land transformation (whose highest score was 212 

found in the  fuel oil scenario).  213 

Table 1 Characterised values for a CSP plant operating on different fuels compared to a solar-only operation. 214 

  Hybrid CSP (12% fuel) 
Solar- 

only 
  

Natural 

gas 
Coal 

Fuel 

oil 
Biomethane 

Wood 

pellets 

Wheat 

straw 

Climate change kg CO2 eq 125 187 159 64.1 37.5 34.2 26.9 

Terrestrial acidification g SO2 eq 216 1686 1024 284 277 286 168 

Freshwater 

eutrophication 
g P eq 9.4 84.7 12.6 14.9 14.9 11.3 10.0 

Human toxicity kg 1,4-DB eq 12.1 64.3 20.1 20.0 21.4 19.4 13.0 

Photochemical oxidant 

formation 
g NMVOC 300 892 844 276.1 242 213 160 

Particulate matter 

formation 
g P eq 89.1 524 323 107 105 96.9 68.3 

Freshwater ecotoxicity g 1,4-DB eq 306 1600 420 480 428 355 329 



Marine ecotoxicity g 1,4-DB eq 324 1579 549 495 461 348 340 

Natural land 

transformation 
m2 0.020 0.011 0.070 0.010 0.011 0.006 0.005 

 Figure 1 shows the normalised profile for each case scenario. The represented values show the 215 

differences between the normalised results for each case and the corresponding solar-only value. The 216 

negative values for a natural gas scenario ( in  freshwater  eutrophication  and   toxicity  ) indicate a 217 

better performance for that scenario than in a solar-only operation, due to the increase of electricity 218 

generation and the low impact of this life cycle fuel on those categories (as indicated in Corona et al. 219 

[22]). 220 

Results of each category of the hybrid scenarios are described in the following sections.  221 

3.1. Climate Change 222 

The hybrid scenario with the lowest impact on climate change, after the solar-only scenario, is wheat 223 

straw (34.2 kg CO2 eq), followed closely by wood pellets (37.5 kg CO2 eq). The biomethane scenario 224 

impact (64.1 kg CO2 eq) almost doubles the one for the straw and pellets scenarios, but it is also half 225 

of the impact of a natural gas scenario (125 kg CO2 eq). Impacts in coal and fuel oil scenarios are 226 

even higher (187 and 159 kg CO2 eq). These higher impacts in fossil fuels are mainly due to the 227 

emissions given off during fuel combustion. In the case of a biomethane scenario some methane 228 

leakage takes place due to the upgrading process (from biogas to biomethane). 229 

3.2. Acidification 230 

 The highest impact in acidification is found with  the coal and fuel oil scenario, whose value is 231 

almost one order of magnitude greater than in other scenarios. This high impact in both cases is due 232 

to the combustion emissions given off during the operation of the power plant. 233 

The biomethane scenario result in acidification is quite similar to the wood and straw ones, and its 234 

main contributing activity is the upgrade from biogas to biomethane (34% of the acidification impact 235 

in the whole life cycle of the plant). However, it has been detected that the acidification results could 236 

change significantly depending on the end of life allocation method used for the digestate (as 237 

introduced in the methodology section). When using data provided by ecoinvent, the digestate 238 

emissions are responsible for increasing the acidification potential of the system studied to 1320 g 239 

SO2 eq (instead of 283 g SO2 eq), and the global warming potential to 102 kg CO2 eq (instead of 63.4 240 

kg CO2 eq). However, when considering the benefits of substituting the digestate for chemical 241 

fertilisers, impacts reported in biogas production literature for acidification are below zero [33]. 242 

 In the case of the wood scenario, the main activity contributing to acidification impacts is the pellets 243 

manufacturing (34%), and for the straw scenario, the main contributor is the wheat cultivation (35%).  244 

3.3. Toxicity categories (human, marine and freshwater) and eutrophication 245 

The coal scenario result in the human toxicity category more than triples the impact of the other 246 

scenarios. Impacts in toxicity from the coal case scenario derive primarily from the disposal of coal 247 

mining spoil, which is associated with high concentrations of contaminants, especially heavy metals 248 

[44, 45]. That activity is associated with 65% of the marine ecotoxicity impact for the whole life cycle 249 

of the plant and 66% of human toxicity, but also the disposal of coal combustion ash contributes to 250 

the toxicity categories with 8.8% and 6.1% respectively.  Eighty seven percent of the freshwater 251 

eutrophication impact for the coal scenario (which is more than five times higher than in the others 252 

scenarios) is also derived from the disposal of mining spoil. 253 



Wood pellets are the second scenario and have the highest impacts on human toxicity. This is mainly 254 

due to the emission of contaminants during pellets combustion, which contributes to 46% of the 255 

impact in the human toxicity category (for the whole life cycle of the plant), but also because of the 256 

manufacturing of pellets, with a contribution of 15%. This last process is also responsible for 24% of 257 

the impact in marine ecotoxicity. 258 

The biomethane scenario presents similar impacts than the wood one in marine ecotoxicity and 259 

freshwater eutrophication. Main impacts in these categories for the biomethane scenario are due to 260 

the upgrading of biogas to biomethane, which contributes to a 34% (in marine ecotoxicity) and 35% 261 

(in freshwater eutrophication). 262 

3.4. Photochemical oxidant formation and particulate matter formation 263 

Coal and fuel oil scenarios again have the highest impact in photochemical oxidant formation and 264 

particulate matter formation. In both cases, the main impact is due to the emissions during 265 

combustion, which contributes to more than 65% of the life cycle impact in both scenarios and 266 

categories. 267 

The results for other scenarios are higher than in the solar-only scenario mainly due to the emissions 268 

given off during combustion and production of each fuel, except for wood pellets whose impact is 269 

mainly attributed to the electricity consumption during its manufacturing. 270 

3.5. Natural land transformation category 271 

The results suggest that natural land transformation is the category with the biggest differences 272 

regarding the solar-only operation, and it also has the highest values in almost all the scenarios except 273 

for wheat straw and coal, whose main impact is associated with toxicity and eutrophication 274 

respectively. The fuel oil scenario has four times the impact on natural land transformation than the 275 

natural gas scenario (the next scenario most impacted in this category), due to the high level of 276 

transformation of natural land when building the extraction wells. Wood pellets have more impact in 277 

this category due to the land used in the production of wood, even if it comes from industrial wood 278 

waste with an allocation of 1%. 279 

 280 
Figure 1 Variations in the normalised profile of the CSP technology hybridised with different fuels with respect 281 

to solar-only scenario 282 
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3.6. Single score 283 

As shown in Figure 2, the single score (sum of weighted results according to ReCiPe Endpoint 284 

Europe H) evidences that solar-only configuration is the best environmental option, followed by 285 

biomass derived fuels. Fossil fuels more than double the single score value compared to renewable 286 

fuels.  287 

In the case of biomass derived fuels, the biomethane scenario performs better in ecosystems than 288 

straw and wood, however it has more impacts on human health (mainly due to the sulphur dioxide 289 

and hydrogen sulphide emitted during the upgrading process). The wood scenario’s higher impact on 290 

ecosystems is due to a greater electricity consumption in pellets manufacturing. Main impacts in the 291 

straw scenario are derived from the wheat cultivation (25% contribution of this process to the single 292 

score indicator). 293 

     294 
Figure 2 Weighted LCA profiles of the CSP plant operating on different fuels and in solar-only configuration 295 

3.7. Energy indicators 296 

The cumulative energy demand associated with the manufacturing, construction and dismantling 297 

phases (CEDc) and the Cumulative Energy Demand associated with the operation and maintenance 298 

phase (CEDo) were calculated for each scenario and compared to the solar-only operation. Raw 299 

energy from renewable resources (solar, wind, hydro energy) is not included in the calculations. 300 

 Results are described in Table 2. CEDc in hybridisation scenarios is slightly higher (1.3%) than in 301 

solar-only mode, due to the inclusion of extra boilers for the fuel’s combustion. CEDo results vary 302 

significantly in each scenario, since it accounts for the fuel’s embodied energy. The energy indicators 303 

suggest higher energy intensity for the renewable fuels, except for wheat straw, whose CEDo is the 304 

lowest (3.873· 108 MJ/yr) followed closely by natural gas (3.876· 108 MJ/yr). 305 

Higher embodied energy in biomethane and wood pellets is mainly derived from the electricity 306 

consumption in their manufacturing process. 307 

The total cumulative primary energy demand per functional unit of the CSP plant operating with 308 

solar energy was only  calculated to be 1158 MJ/MWh. Total CED results (per functional unit) for 309 

the six hybridisation scenarios more than doubled the result for the solar-only mode, increasing its 310 

value from 2.4 to 2.7 times. 311 

 312 

Based on CED values, the EPT of each scenario was also calculated. Calculations where made 313 

according to the following equation: 314 

 315 

𝐸𝑃𝑇 (𝑦𝑟) =  
𝐶𝐸𝐷𝑐

(
𝐸𝑛𝑒𝑡

𝑔
− 𝐶𝐸𝐷𝑜)

 
[25] 
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 317 

Enet represents the yearly net electricity output of the plant (in MJ/yr), CEDc is the cumulative 318 

primary energy demand associated with extraction, manufacturing, construction and dismantling of 319 

the CSP plant (in MJ) and CEDo is the cumulative primary energy demand associated with operation 320 

and maintenance (in MJ/yr). The average efficiency in the transformation of primary energy to 321 

electricity is represented by g, and has been calculated to be 48.74 %, using data from the Spanish 322 

National Energy Report for 2011 [46]. 323 

EPT results for solar-only mode were1.44 years, while hybridisation scenarios’ EPT vary in a range 324 

of 1.72-1.83 years (see Table 2). These results are in accordance with the CED results, since a higher 325 

EPT is related with a higher amount of the energy embodied in the fuels considered. 326 

 327 

Table 2  Enet, CED and EPT of the CSP plant operating in solar-only mode and fuel hybridisation alternatives. 328 

 
CEDc (MJ) 

CEDo 

(MJ/yr) 

Enet 

(MJ/yr) 

CED 

(MJ/MWh) 
EPT (yr) 

Natural Gas 1.348E+09 3.876E+08 5.713E+08 2782 1.72 

Hard coal 1.348E+09 4.079E+08 5.713E+08 2910 1.76 

Fuel oil 1.348E+09 4.226E+08 5.713E+08 3003 1.80 

Biomethane 1.348E+09 4.264E+08 5.713E+08 3026 1.81 

Wood pellets 1.348E+09 4.338E+08 5.713E+08 3073 1.83 

Wheat straw 1.348E+09 3.873E+08 5.713E+08 2780 1.72 

Solar-only 1.331E+09 1.086E+08 5.030E+08 1158 1.44 

   329 

 330 

4. Conclusions 331 

According to the ReCiPe Endpoint evaluation method, the solar-only operation of the Concentrate 332 

Solar Power plant produced the best environmental performance from a life cycle point of view, even 333 

considering that the power generation is lower than in the hybrid mode. Hybridisation significantly 334 

affected the environmental performance of the plant, while renewable fuels were the best 335 

environmental option to hybridise, having less than half the impact than that of fossil fuels. The coal 336 

scenario, whose main impacts derived from the coal mining spoil, was the worst case. 337 

Single endpoint score impact presented similar results for the three renewable fuel case scenarios; 338 

however, their performance in characterised environmental categories presented significant 339 

differences in the categories of human toxicity, climate change, marine ecotoxicity and natural land 340 

transformation. Terrestrial acidification in the biomethane scenario was similar to the other biomass 341 

derived fuels, yet a high sensitivity has been observed in this category as well as in that of climate 342 

change, according to the allocation method for manure digestate. The main contributor for 343 

environmental impact in the wheat straw scenario was the cultivation of wheat, representing 25% of 344 

single score impact.  The main environmental impacts in the wood pellets scenario were derived from 345 

the pellets manufacturing process and emissions during combustion. However, natural land 346 

transformation was the category most affected due to the impact associated with wood acquisition 347 

from forests. 348 

Energy results indicated the lowest Cumulative Energy Demand (1158 MJ/MWh) in the solar-only 349 

mode, and hence, the lowest Energy Payback Time (1.44 yr). Cumulative Energy Demand results for 350 

the six hybridisation scenarios more than doubled the results for the solar-only mode, increasing its 351 

value from 2.4 to 2.7 times. The fuels with more embodied energy were biomethane and wood pellets. 352 



The straw scenario had the lowest impacts both in the environmental single point indicator and the 353 

energy indicators. 354 

 355 
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