
Architecture to Support Automatic Grading Processes in Programming Teaching

Revista Politécnica - Septiembre 2015, Vol. 36, No. 1

1. INTRODUCCIÓN

The learning path in programming-related courses involves

the development of an increasing amount of skills and

techniques by students. Correspondingly, lecturers must

assess the acquired knowledge and practice, by applying and

combining different grading criteria, and provide students

with proper and timely feedback that allows them to improve

their abilities.

Delays in providing feedback after the submission deadline

reduces the impact of these feedback comments drastically,

as the student may not be concentrated on the subject any

longer, has no means to improve his knowledge and skill on

that particular topic and for that submission and, therefore,

reduces the engagement of students towards analyzing and

applying them. It is therefore of great importance that the

assessment procedure be done for each student several times

per assignment such that, when the students are fully

dedicated to the subject, they spend time assimilating and

incorporating the feedback before resubmitting the

assignment improving their final grade as well as their

comprehension of the different topics. The above assessment

procedure is an unmanageable task if dealing with a

numerous group with allowed resubmissions per assignment.

Among others, current gaps identified include:

 Supporting many grading processes, which

considers many and variable criteria.

 Supporting the fast, and easy development of new

assessment tasks.

Architecture to Support Automatic Grading Processes in

Programming Teaching

Caiza J. C.*; Del Alamo J. M.**

*Escuela Politécnica Nacional, Departamento de Telecomunicaciones y Redes de Información, Quito, Ecuador

 e-mail: julio.caiza@epn.edu.ec

** Universidad Politécnica de Madrid, Departamento de Ingeniería de Sistemas Telemáticos, Madrid, Spain

 e-mail: jmdela@dit.upm.es

Resumen: La calificación automática de tareas de programación es un tema importante dentro del campo de la

innovación educativa que se enfoca en mejorar las habilidades de programación de los estudiantes y en optimizar el

tiempo que el profesorado dedica a ello. Uno de los principales problemas vigentes está relacionado con la

diversidad de criterios para calificar las tareas de programación. El presente trabajo propone e implementa una

arquitectura, basada en el concepto de orquestación de servicios, para soportar varios procesos de calificación

automática de tareas de programación. Esto es obtenido a través de las características de modularidad,

extensibilidad y flexibilidad que la arquitectura provee al proceso de calificación. La arquitectura define como pieza

clave un elemento llamado Grading-submodule, el mismo que provee un servicio de evaluación del código fuente

considerando un criterio de calificación. La implementación se ha llevado a cabo sobre la herramienta Virtual

Programming Lab; y los resultados demuestran la factibilidad de realización, y la utilidad tanto para el profesorado

como para los estudiantes.

Palabras clave: evaluación de tareas de programación, proceso de calificación automática, arquitectura.

Abstract: Automatic grading of programming assignments is an important topic in academic research. It aims at

improving students’ programming skills and optimizing the time of teaching staff. One important gap is related to

the diversity of criteria to grade programming assignments. This work proposes and implements an architecture,

based on the services orchestration concept, to support many kinds of grading process of programming assignments.

It is achieved due architecture’s features including modularity, extensibility, and flexibility. The cornerstone of the

architecture is a new software component named Grading-submodule, which provides of an evaluation service for

the source code considering a grading criterion. The implementation has been done on Virtual Programming Lab.

Results show workability, and uselfulness for teaching staff and students.

Keywords: programming assignments assessment, automatic grading process, architecture.

Caiza J. C.*; Del Alamo J. M.**

 Revista Politécnica - Septiembre 2015, Vol. 36, No. 1

 Supporting users and feedback interoperability by

integrating the evaluation and grading processes

with a LMS.

This work aims to propose a services-based architecture to

deal with the identified gaps. The service orchestration co has

been taken from IT domains and applied into automatic

grading processes, to provide it of features as modularity,

extensibility, and flexibility. Further, this proposal could

help with an important challenge as automatic grading in

Massively Open Online Courses.

2. RELATED WORK

Douce et al. [3] analyzed the systems for assessing

programming assignments up to 2005 and identified three

different generations comprising 1) tools for internal use in

each university or department where the assessment was only

made considering a right or a wrong answer; 2) command-

line tools that leverage on operating system commands or

shell scripts to assess features beyond functional correctness;

and, 3) web-based tools that allow engaging a wider

audience. This study highlighted security, flexibility, and

interoperability as major issues for future work.

Douce study was updated by Ihantola et al. [7] and Romli et

al. [12], including those tools developed from 2005 to 2010.

The authors reported security improvements through the

introduction of secure environments (sandboxes) that support

the controlled and isolated execution of the code submitted

by students. However, flexibility and interoperability

remained an issue, since nearly every single tool managed

their own users and grades, and defined a limited and closed

set of grading metrics and procedures, which let lecturers

little freedom to introduce new assessment criteria and

schemas in the evaluation processes.

Regarding the grading criteria, several studies [6, 12] have

highlighted their enormous diversity. Most authors split the

grading criteria into two rough groups, namely static and

dynamic. The former focuses on the source code while the

latter focuses on testing the runtime behaviour of programs.

For example, static assessment may include checking the use

of specific structures, proper coding styles such as

indentation and variable names, measuring the program

complexity, etc. On the other hand, dynamic assessment may

include checking the functional correctness, measuring the

performance by means of e.g. latency and throughput, etc.

The CourseMarker system [6, 5], previously known as

Ceilidh, is probably one of the grading systems that

incorporates more different grading criteria. It defines about

120 marking tools that wrap UNIX commands, shell scripts,

or c and Java programs, which in turn mark one quality of the

student submission. A marking scheme dictates which

marking tools must be used to mark a specific assignment,

the order in which the tools must be called, and the weight

assigned to each mark obtained, so that after calling all of

them an overall mark and feedback are provided.

CourseMarker supports the development of new marking

schemes by means of creating new Java classes. While this

provides a greater degree of control over the marking

process, it also means that the system must be restarted

whenever the marking process changes. In addition,

CourseMarker works in standalone mode, providing their

own Graphical User Interfaces for all the users involved e.g.

lecturers and students. This allows for a greater control over

the submission and grading processes, but on the other hand

forces the users to learn a new environment focused just on

programming assignments.

Lately, the interoperability issue has been further investigated

by Queirós and Leal [11]. The authors identified three

interoperability facets required for flexible assessment

systems, namely easy configuration of new exercises,

management of users, and report of assessment results i.e.

marks and feedback. They further evaluated 15 programming

assignments assessment tools according to these criteria,

including the previously mentioned. The conclusions of the

survey highlighted the need for interoperability and propose

their integration with LMSs, since these systems are ready for

production, most universities have them deployed, and

already include interoperability features for users, grades and

feedback.

Further, LMSs provide lecturers and students with a usable

GUI: a complete set of tunable parameters for nearly any

kind of assignment management for the former; and, an

integrated, overall vision of the learning process including

feedback and grades for the latter. Although, they usually

lack support for assessing programming assignments of any

kind, they allow for the development of new modules that

provide more functionality to the basic installation. For

example, Virtual Programming Lab [10], JUnit Question

Type [8], Online Judge [14], JAssess [13], or EPAILE [1] are

some Moodle extensions that allow assessing programming

assignments. Unfortunately, they allow just for basic grading

criteria such as compilation and functional correctness, and

developing a new, customized assessment requires modifying

deep parts of the system.

In [2] and [4] a comparison among relevant tools was carried

out, one key feature considered was the grading criteria used

for the automatic grading. It is shown in Table 1. The

conclusion was that every institution and even every teacher

has his own criterion to grade an assignment, then the lack of

a common model to grade is still an important and persistent

problem. Although, some of the reviewed tools offer the

possibility of support any grading criterion through the

building of plugins. The authors recommend that considering

a complete grading process would be better. This grading

process would have as features: a high level of

configurability and flexibility to support any metric or

criterion.

Therefore, we propose an architecture, based on the services

orchestration concept, to support many grading processes,

Architecture to Support Automatic Grading Processes in Programming Teaching

Revista Politécnica - Septiembre 2015, Vol. 36, No. 1

based on software units to provide support to any grading

criterion; which has been tested in a Moodle extension.

Table 1. Grading criteria applied by automatic assessment tools [2, 4]

Tool's name Grading criteria

CourseMarker

Typography

Correctness

Structures use
Objects design

Objects relations

Marmoset Dynamic and static analysis

WebCat

Code correctness

Completeness
Test validity

Extensible by plugins

Virtual Programming Lab
Correctness based on test cases

Open for new methods

Grading Tool (Magdeburg

University)

Compilation

Execution
Dynamic tests

JavaBrat Correctness

AutoLEP
Static analysis

Dynamic analysis

Petcha Based on test cases

JAssess Compilation

RoboLIFT Unit testing (public and private)

Moodle ext. (Slovak
University of Technology)

Compilation

Syntactic analysis

Functionality by comparison

BOSS Characters comparison

BOSS2
Dynamic analysis based on

Plagiarism and JUnit

SAC Dynamic analysis

Automata
Rubrics based on regression

models

eGrader Static and dynamic analysis

CAP Static and dynamic analysis

YAP3 + APAC Functional testing

IT VBE
Dynamic analysis through white

box testing

3. PROPOSED ARCHITECTURE

The proposed architecture is based on the services

orchestration concept [9], then some features have been

inherited:

 The use of an orchestration engine to control the

process, and services’ calls, and the provision of a

compound service (the automatic grading process

itself).

 The context preservation among the different

grading components inside the grading process.

 The use of an XML document to model and define

the grading process.

 The use of request/response between the

orchestrator and the components inside the grading

process.

There are two main components, the orchestrator and a new

component called Grading-submodule. The former

orchestrates the process and calls one by one a set of services

provided by the Grading-submodules execution. Every

Grading-submodule’s call is considered as an independent

service. This software component has been designed to

provide of modularity, flexibility and extensibility to any

programming grading process considering diversity of

criteria, and grading metrics.

The architecture will support many kinds of grading

processes, which can be seen as grading services, because

each of them can be modeled as a set of Grading-

submodules. The Grading-submodules can be arranged in any

sort, and they can be reused. Fig. 1 shows the proposed

architecture in a layer-based approach, where the two top

layers are static but the three bottom layers are completely

dynamic.

3.1 Grading-submodule

The cornerstone in the architecture is the Grading-

submodule. This component allows evaluating code

considering one grading criterion, and this last could consider

one or more metrics. Then, the Grading-submodule provides

of a grading service depending of a given criterion.

Figure 1. Proposed architecture for grading process.

The goal of the Grading-submodule is performing an action

on the code to get values for the considered criterion’s

metrics, and then helping to establish a grade. Therefore, it is

mandatory an associated program to perform that action.

Initially, the program could be written from scratch, but it

could be seen as a wrapper too, which could use other already

built tools. Depending on the goal a set of parameters may be

required, so the Grading-submodule supports the inclusion of

Caiza J. C.*; Del Alamo J. M.**

 Revista Politécnica - Septiembre 2015, Vol. 36, No. 1

those parameters. In Java, tools like JUnit or CheckStyle,

could be supported.

The communication from a Grading-submodule to the

Orchestrator is through the Configuration file.

The idea in a system, which implements the architecture, is

that when a Grading-submodule is built and registered, it

could be used/reused in many grading processes.

Finally, it is worth saying that every Grading-submodule has

to be well defined; it means it needs to be associated to an

only grading criterion. This feature will provide of

modularity to a grading process.

3.2 Components

The architecture is expressed in components, and each of

them has a role well defined, so they can be improved or set

as you need.

Environment builder.- This layer aims to set the environment

up to run a grading process. This level could be implemented

to move or copy files, to code or decode data, to export

environment variables, among other actions. After setting up

the environment, it has to call the orchestrator.

An additional advantage of the proposed architecture is that

the environment builder can act as an interface to allow

integration with other systems that could provide the front-

end.

Orchestrator.- This layer aims to control the whole grading

process, based on the information provided by the

Configuration file.

The Orchestrator has a set of ordered tasks:

 It has to read the Configuration file, and load all the

information that it contains.

 It has to call and communicate with every Grading-

submodule associated program. The communication

from the Orchestrator to the Grading-submodule

associated program is not a trivial work. When a

system is deployed by the first time, there are not

Grading-submodules registered, so the system does

not know about the future associated programs to

call. The Orchestrator has to use a dynamic way to

be able to call a program in execution time. In Java

it is done by using Reflection technology.

 It has to process every Grading-submodule results,

which were located in the Configuration file during

the execution of the associated program, to calculate

the final grade and to collect comments.

 It has to send the feedback (grade and comments).

The Orchestrator controls the order inside a grading process.

Submission Configuration File.- This file is aimed to contain

two kinds of information. The first one is submission’s

metadata to be used by the Orchestrator to manage the

grading process. The information may include the student’s

identification, the submission’s identification, the grade-base,

and the list of Grading-submodules to call. The second kind

of information includes all the required parameters to each

Grading-submodule associated program, and their values.

This file saves information about the results of each Grading-

submodule associated program, and the whole process. All

the information has to be ordered and structured, so the

configuration file is an XML.

This file is quite important inside the grading process, it is

required by the Orchestrator to start the process, and acts as a

communication mean between the Grading-submodule

associated program and the Orchestrator.

Grading-submodules.- This layer includes a Grading-

submodules set. There is not a limit for the number of

Grading-submodules registered in a system which

implements the architecture and they can be added as the

teaching staff needs, it implies extensibility.

The number and the arrangement of the Grading-submodules

are not limited, so there is flexibility inside the grading

process. The number of Grading-submodules inside the

process, the order and how they are called are defined in the

configuration file.

Grading-submodule associated programs are called by the

orchestrator inside a grading process.

Libraries and Programs.- This layer includes external

programs, libraries, or packages required by any Grading-

submodules associated program. This component gives a

very important advantage because we can take already built

good tools and include them inside our architecture.

The Grading-submodule associated program will call any

already built library or program. In this case, the Grading-

submodule acts as wrapper and we avoid “reinvent the

wheel”.

Source Files.- This layer refers to source files written and

sent by the students in a submission to accomplish with an

assignment.

The students only have to take their source files and send

them to the system which implements our architecture.

Additional or Configuration Files.- This component includes

files defined by the teaching staff and required by the

Grading-submodules associated program or by Libraries and

Programs inside the grading process. For instance test cases,

rules files, among others.

Architecture to Support Automatic Grading Processes in Programming Teaching

Revista Politécnica - Septiembre 2015, Vol. 36, No. 1

4. TESTING THE ARCHITECTURE

To validate the proposed architecture, we could have used an

existing tool or creating a new tool from scratch. The first

choice was selected. Some criteria have been used to

compare a set of existing tools:

 License, it will allow accessing the complete code to

make changes on this.

 Availability, it is necessary to know if the access to

download the code is possible.

 Architecture suitability, it means a tool’s

architecture which allows testing our architecture.

Additionally, due to the fact that our goal is to use the

architecture in our programming classes, we have three more

requirements:

 Support for Java and extensibility for other

programming languages.

 Communication with Moodle LMS.

 A safe environment to evaluate the code.

VPL (v 1.32) was used as base tool due its next features: the

GNU/GPL license, so it is possible to use and modify this

regarding the own necessities; the easiness to access the

documentation, help and to download the source code; the

feature of working as Moodle plugin; its module for

plagiarism detection; its security features regarding

authentication and working with a safe test environment; its

ability to allow defining assessment scripts, it gives the

possibility to consider more metrics and criteria to grade; and

it can support automatic and semi-automatic processes.

Then, VPL has been adapted to consider the proposed

architecture. The new features added to VPL were:

 Management of Grading-submodules.

 Management and configuration of grading process.

 Automatic grading process considering Grading-

submodules.

4.1 VPL’s Customization

VPL uses two subsystems VPL-Moodle and VPL-Jail (a

sandbox environment), each of them is deployed in a

different server. The first one is a Moodle-plugin oriented to

be the graphical interface for managing the programming lab;

and the second is oriented to provide of a sandboxed

environment for the grading process.

Each VPL subsystems have been modified, in the VPL-

Moodle a grading process management module has been

implemented. In the VPL-Jail, the programs that start the

process were modified, and the orchestrator and the Grading-

submodules were implemented.

4.2 Grading Process Customization (VPL-Jail)

VPL starts the grading process when all the required files are

inside the jail. The Jail server, a service running in the VPL-

Jail subsystem, executes the evaluation script and an ordered

process starts. Fig. 2 shows the whole grading process

through the interaction among a set of necessary programs.

The Jail server, the evaluation script and the execution file

are part of the VPL architecture. The execution file has been

carefully modified to start the new grading process (which

support the proposed architecture). The orchestrator calls

every Grading-submodule associated program, calculates the

final grade, forms the feedback and prints it. Finally, the Jail

server collects the feedback; send it as a HTTP response; and

delete the sandboxed environment.

Figure 2. Elements and calls inside the grading process.

Object Oriented Programming has been used to implement all

the required programs; so, Fig. 3 shows the class diagram

used. Additionally, the implementation has been done using

Java language.

The SubmissionConf and the GradingSubmoduleConf classes

have been abstracted from the configuration file. The first

one includes information about the whole submission and

will be used by the orchestrator to start the grading process.

The second one represents information to be used for every

Grading-submodule associated program.

The GradingSubmoduleProgram class has been abstracted

from the Grading-submodule associated program and has

been defined as abstract because it acts as ‘intermediary’

between the orchestrator and any Grading-submodule

associated program that the teaching staff or administrator

will add.

Caiza J. C.*; Del Alamo J. M.**

 Revista Politécnica - Septiembre 2015, Vol. 36, No. 1

The AnyGradingSubmoduleProgram class is depicted to

represent any Grading-submodule associated program that

will be considered inside the grading process. The

Orchestrator class is quite important because control the

whole grading process, its operations include:

 Loading the data inside the instance of

SubmissionConf.

 Orchestrating the process. It refers to iterate the list

of GradingSubmoduleConf inside the

GradingSubmissionConf to operate sequentially

every Grading-submodule.

 Creating dynamically an instance of

AnyGradingSubmoduleProgram and run a defined

operation on the code. The dynamic creation was

possible through the use of Reflection technology.

 A final processing to calculate the final grade, to

collect the individual comments and to establish a

general comment of the whole process.

 Outputting the response. All the processed

information is output in a format to be recognized as

response feedback by the Jail server.

Figure 3. Classes’ Diagram

To validate the architecture, the implementation of some

classes to test the code has been necessary. These new classes

are oriented to check the structure of a set of files

(CheckGradingSubmodule), to compile a set of source code

files (CompilationGradingSubmodule), to test a set of source

code files against test cases (TestGradingSubmodule), and to

evaluate the style of a source code file

(StyleGradingSubmodule).

The sequence diagram shown in Fig. 4 is helpful to

understand in a better way the real interactions inside the

system. It is useful to highlight the importance of the

orchestrator. The SubmissionConf and

GradingSubmoduleConfclasses have not been represented

because they represent the configuration file (parsing files), a

kind of static element. They do not perform any action as

well.

The configuration file has a remarkable importance. The

orchestrator requires of the submission information, and the

Grading-submodule associated program needs the

information related to each Grading-submodule. The XML

configuration file is shown in Fig. 5. XML Mapper (JAXB)

was used to parse the configuration file.

Figure 4. Grading Process Interaction

The information fields related to a submission includes:

 Student, it has information of the student. This

information can be the name or an id for instance.

 Activity, it has information to identify the activity. It

can be the VPL activity’s id.

 Submission, it has the submission number or the

submission identification.

 Base grade, it is the base over which the final grade

will be calculated.

 Final grade, it is the grade for the submission.

 General comment, it stores a short comment for the

submission.

 Detailed comments, it stores the comments of every

Grading-submodule.

The information fields about every Grading-submodule

include:

:Orchestrator :AnyGradingSubmoduleProgram :CommandExecutor:Jail server

start (grading process)

fillSubmissionConf()

runEvaluation()

executeCommand(command)

executionResults

gradingSubmoduleResults

LOOP: [more anyGradingSubmoduePrograms]

finalProcessing()

(grade, comments)

Architecture to Support Automatic Grading Processes in Programming Teaching

Revista Politécnica - Septiembre 2015, Vol. 36, No. 1

 Program name, it contains the full name of the

Grading-submodule associated program (including

the package). The .class extension is not included.

 Description, it contains a short description for the

current submodule. It has to express the main action

that the submodule will do.

 Program parameters, it has additional data required

by the associated program. It is a string, which

includes parameters’ values separated by a

semicolon and without blank spaces. The parameters

can be pathnames, numbers, and so on. If one

parameter has many values, commas should separate

them.

 Factor, a percentage that represents the submodule

weight in the final grade calculation. The addition of

this field in all Grading-submodules has to be 100.

 Action file list, it has a list of filenames over which

the main action of the submodule will be executed.

The list will be composed of full names (including

the package name) or relative names (just the

filename) and the file extension depending on every

submodule.

 Executed, it shows if the submodule has been

executed; independently of success or fail.

 State, it indicates if the submodule execution

finished perfectly (success), getting a full grade; or

if there were some troubles (failed) and a partial

grade was obtained.

 Grade, it is the grade for the current Grading-

submodule. It is a numeric value between 0.00 and

100.00 with 2 decimal places. There always has to

be a value in this field since its creation.

 Comments, detailed information about the execution

of the Grading-submodule associated program.

Figure 5. Structure of the XML Configuration File

4.3 VPL-Moodle Customization

There is a necessity of implementing new features inside the

VPL Moodle’s plugin, they include: the Grading-submodules

Management, the Grading Process Management and a mean

to communicate with the VPL-Jail; all of them implemented

in a new VPL’s module called Grading Process Management

Module. The implementation of these features required of

some changes in the data infrastructure, the directory system,

and the database.

Regarding to directory system, two new directories were

created in the VPL data directory, one of them is to store the

source code of all the Grading-submodules associated

programs, and the other one is to store additional files for

every VPL activity that has a grading process associated.

Regarding to database, four new entities were added:

 Grading submodule. It is the representation of the

Grading-submodule already defined. This has an

important attribute, the programfilename which

saves the absolute path to the location of the

program file associated to the Grading-submodule.

 Grading parameter. Every Grading-submodule

associated program could require of parameters to

its proper working. This entity will save the

definition of each of them.

 Process grading submodule. Every VPL activity will

have a set of Grading-submodules to be used inside

its grading process. When a Grading-submodule is

selected to be part of this grading process, this is

converted in Process grading submodule.

 Process grading parameter. This entity saves all the

values for parameters required by the Process

grading submodule entity.

Besides the data model, the web pages were coded

considering the VPL architecture and the Moodle API, so, all

of them are very related components.

Finally, when the teaching staff uploads the Grading-

submodule associated program, and when the student sends

his code, it is necessary a connection between the VPL-

Moodle and the VPL-Jail subsystems. The technologies

XML-RPC and base64 were used to pass all the necessary

data between the subsystems.

5. USING THE ARCHITECTURE

To use the tool, which implements the proposed architecture,

it is necessary to create and register the Grading-submodule.

To implement a Grading-submodule, it is mandatory to

define the associated criterion. Four Grading-submodules

were created; CheckGradingSubmodule, to check the

Caiza J. C.*; Del Alamo J. M.**

 Revista Politécnica - Septiembre 2015, Vol. 36, No. 1

structure of a set of files; CompilationGradingSubmodule, to

compile a set of source code files; TestGradingSubmodule, to

test a set of source code files against test cases;

StyleGradingSubmodule, and to evaluate the style of a source

code file.

Any Grading-submodule the teaching staff needs can be

created. The Grading-submodule related program has to

inherit from the class GradingSubmoduleProgram and can

use some useful methods already implemented. After the

creation of the program, it is necessary register the new

Grading-submodule in the system. The required data includes

the name, description, associated program, and any parameter

required. This is shown in Fig. 6.

The registration is done once, and other teaching staff

member can reuse it.

After creating a VPL activity (the process can be reviewed in

the official page), we can set up and configure the grading

process.

The teaching staff can add any Grading-submodule already

registered. It is necessary to configure the factor of each of

them inside the grade calculation. The user can establish the

order of each Grading-submodule inside the grading process,

and set every value for parameters required. It can be seen in

Fig. 7 and Fig. 8.

Figure 6. Registering Grading-submodules

Figure 7. Grading Process Configuration

For the student, the process is very simple; he has to send his

code by selecting a file and uploading to the VPL activity.

After having done that, he receives the feedback in detail as

shown in Fig. 9.

Figure 8. Grading-submodule Addition

Figure 9. Students’ Results Interface

4. CONCLUSIONS

The main contribution of this work is the architecture

proposal based on the services orchestration concept, which

defines an orchestrator and Grading-submodules (in any

number and any arrangement) providing their services, which

could be implemented with any technology. This architecture

can be used by already implemented tools or by new ones.

It is worth highlighting that the idea of the Grading-

submodule artifact can be used or improved to define new

ways of grading or new architectures. In addition, the

elements of the proposed architecture are already

implemented and can be reused to work in new

implementations. It can help to save implementation time in

related projects.

The applied technologies shown can be helpful to provide a

first sight of them, and to think about them as possible

Architecture to Support Automatic Grading Processes in Programming Teaching

Revista Politécnica - Septiembre 2015, Vol. 36, No. 1

solutions for issues in other projects with similar

functionalities. The considerations made in the different

stages can be useful for other similar projects or those that

follow a similar process as performed in this work.

The present work has validated the proposed architecture. It

means that the architecture works as expected but it does not

mean that it could not be improved. Some improvements and

future work include the next ones.

Measuring and comparing time in the grading processes

definition. After the creation and registration of Grading-

submodules, the time to define and configure grading

processes associated with assignments could be shorter than

using other solutions. It could be probed through measuring

the time that the configuration of a grading process takes in

this solution against the time needed by other solutions’

configuration.

Defining a management module for grading processes. The

case-studies have shown that sometimes the grading process

could be very similar. The grading process (without the

parameters’ values) could even be the same among different

assignments. So if it were possible to define a management of

grading processes, it could help to reduce the time of the

grading process definition.

Developing a drag-and-drop interface to define a grading

process.

Annotating the Grading-submodules. By considering a

possible increment in the number of Grading-submodules

registered and a way to sort and filter them when defining the

grading process, it is possible to create tags to make a

classification. These tags could be metrics, criteria, and even

the programming language associated.

Improving the deployment of ancillary programs. The current

solution supports the use of ancillary programs; these

programs have to be placed manually in the libs directory. It

could be possible to implement a management interface for

these programs.

It is possible to think about a solution which can store the

data and maintain the jail environment, and provides

everything as a service. It means that it could provide a

service to access an assignments’ repository, a service to

copy and to store the data inside that system, a service to start

with the grading process, and so on; in this case this solution

would be completely independent and could connect any

system (just a front-end), which would provide interfaces to

connect the solution.

Regarding the Grading-submodule associated program, it acts

as a wrapper written in Java that can call another libraries or

ancillary programs, which have to be located in the libs

directory. But it is possible to think about the possibility that

the wrapper supports calls to other programs in other hosts

through services. The idea appeared because there are already

built tools which can provide the evaluation of some metrics

as a service. In this case the wrapper could be more powerful.

The XML configuration file could be changed to support

more ways to calculate the final grade and additionally to

stop the process if some Grading-submodule was not passed.

These features could be configurable.

REFERENCES

[1] M. Amelung, K. Krieger and D. Rosner, "E-Assessment as a

Service," Learning Technologies, IEEE Transactions on, vol. 4,

pp. 162-174, 2011.
[2] J. C. Caiza, J. M. Del Alamo, "Programming assignments automatic

grading: review of tools and implementations," in 7th International

Technology, Education and Development Conference (INTED2013),
pp. 5691, 5700.

[3] C. Douce, D. Livingstone and J. Orwell, "Automatic test-based

assessment of programming: A review," Journal on Educational
Resources in Computing (JERIC), vol. 5, pp. 4, 2005.

[4] M. Guerrero, D. S. Guamán and J. C. Caiza. (2015, Feb.). Revisión de

Herramientas de Apoyo en el Proceso de Enseñanza-Aprendizaje de
Programación. Revista Politécnica. [Online]. 35(1), pp. 82-90, 2015.

Available:
http://www.revistapolitecnica.epn.edu.ec/revista_archivos/revista_vol
umen_35/TOMO_1.pdf

[5] C. A. Higgins, G. Gray, P. Symeonidis and A. Tsintsifas, "Automated

assessment and experiences of teaching programming," Journal on
Educational Resources in Computing (JERIC), vol. 5, pp. 5, 2005.

[6] C. Higgins, P. Symeonidis and A. Tsintsifas, "Diagram-based CBA

using DATsys and CourseMaster," in Computers in Education, 2002.
Proceedings. International Conference on, 2002, pp. 167-172.

[7] P. Ihantola, T. Ahoniemi, V. Karavirta and O. Seppälä, "Review of

recent systems for automatic assessment of programming
assignments," in Proceedings of the 10th Koli Calling International

Conference on Computing Education Research, 2010, pp. 86-93.
[8] JUnit Question Type. Available:

https://docs.moodle.org/20/en/Junit_question_type.

[9] E. Newcomer .(2005). Understanding SOA with Web services.
[Online].Available:

https://www.safaribooksonline.com/library/view/understanding-soa-

with/0321180860/ch01.html
[10] J. C. Rodríguez-del-Pino, E. Rubio-Royo and Z. J. Hernández-

Figueroa, "A Virtual Programming Lab for Moodle with automatic

assessment and anti-plagiarism features," 2012.
[11] R. A. P. Queirós and J. P. Leal, "PETCHA: A programming exercises

teaching assistant," in Proceedings of the 17th ACM Annual

Conference on Innovation and Technology in Computer Science
Education, 2012, pp. 192-197.

[12] R. Romli, S. Sulaiman and K. Z. Zamli, "Automatic programming

assessment and test data generation a review on its approaches," in
Information Technology (ITSim), 2010 International Symposium in,

2010, pp. 1186-1192.

[13] N. Yusof, N. A. M. Zin and N. S. Adnan, "Java Programming
Assessment Tool for Assignment Module in Moodle E-learning

System," Procedia-Social and Behavioral Sciences, vol. 56, pp. 767-

773, 2012.
[14] S. Zhigang, S. Xiaohong, Z. Ning and C. Yanyu, "Moodle plugins for

highly efficient programmin courses," in Moodle Research

Conference, 2012, pp. 157-163.

https://docs.moodle.org/20/en/Junit_question_type

