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Abstract: We consider a group decision-making problem within multi-attribute utility theory, in which the relative im­
portance of decision makers (DMs) is known and their preferences are represented by means of an additive 
function. We allow DMs to provide veto values for the attribute under consideration and build veto and adjust 
functions that are incorporated into the additive model. Veto functions check whether alternative performances 
are within the respective veto intervals, making the overall utility of the alternative equal to 0, whereas adjust 
functions reduce the utilty of the alternative performance to match the preferences of other DMs. Dominance 
measuring methods are used to account for imprecise information in the decision-making scenario and to de­
rive a ranking of alternatives for each DM. Specifically, ordinal information about the relative importance of 
criteria is provided by each DM. Finally, an extension of Kemeny’s method is used to aggregate the alternative 
rankings from the DMs accounting for their relative importance. 

price, the location, the size or the age. One of the 
two might rule out any house smaller than 40m2, re­
gardless of house price, location and age, whereas the 
other might rule out any smaller than 60 m2. There­
fore, in this group decision-making scenario, a pos­
sible veto range would be [0,40], ruling out the pur­
chase of any house smaller than 40m2, and a possible 
adjust range would be (40,60], decreasing the utility 
of the respective house to account for the DM veto 
values. 

The veto concept has been variously considered 
as a real-world approach for representing the lim­
its of DM preferences in the literature.To establish 
these preferences the veto threshold is represented as 
a quantifiable measure, which becomes an important 
tool in multicriteria and group decision-making. 

In social theory, the concept of veto is justified by 
the prudence axiom enunciated by Arrow and Ray-
naud (Arrow and Raynaud, 1986), whose main idea 
is that it is not prudent to accept highly conflicting al­
ternatives that may result in vulnerable decisions. Re­
garding the previous axiom, Moulin defines the prin­
ciple of proportional veto in a group of DMs (Moulin, 
1981), according to which any subset has the right to 
veto a number of alternatives in proportion to the size 
of the subgroup. 

In MCDM problems the concept of veto has been 

1 INTRODUCTION 

The additive model is considered a valid approach 
in many practical situations for the reasons described 
in (Raiffa, 1982) and (Stewart, 1996). Its functional 
form is 

n 
u(A i)= w ju j(x i j), (1) 

j=1 
where x i j is the performance over the attribute (or cri­
terion) X j for the alternative Ai, u j is the component 
utility function and w j is the weight, respectively, for 
attribute X j. Note that n

j=1 w j = 1 and w j ≥ 0. 
The additive model is a compensatory model in 

the sense that poor performance for an attribute can 
be compensated by good performances for other at­
tributes. 

For some multicriteria decision analysis (MCDA) 
problems and certain attributes, however, DMs may 
find it convenient to provide a veto value that identi­
fies attribute performances that rule out the alternative 
regardless of the value taken in the other attributes. 
In a group decision-making context, moreover, more 
than one DM could provide different veto values for 
different attributes. 

For example, let us consider a couple who decide 
to buy a home, so both have veto power. They iden­
tify several criteria for selecting the house, like the 



used for the management of non-compensatory meth­
ods. In outranking methods the use of veto usually 
represents the intensity of preference of the minority 
(Roy and Slowinski, 2008). Nowak used ELECTRE-
III to build a multi-attribute ranking using preference 
thresholds to distinguish situations of strict and weak 
preference in stochastic dominance approaches (No­
vak, 2004). Later, Munda (2009) implemented a veto-
based threshold using fuzzy set theory to represent 
qualitative information. 

Moreover, additive compensatory methods have 
also incorporated the concept of veto. An example 
is the technique for order preference by similarity to 
ideal solution (TOPSIS) method (Yoon, 1980). The 
basic idea behind TOPSIS is that the selected alter­
native should be as close to the ideal solution as far 
from the anti-ideal solution. Both alternatives behave 
like veto thresholds, not in the strict sense of rejection 
of alternatives but as reference points for solving the 
decision-making problem. 

(Bana e Costa et al., 2002) defines a multi-criteria 
approach for prohibiting alternatives based on the 
measuring attractiveness by a categorical based eval­
uation technique (MACBETH). The methodological 
basis of this technique is indirectly related to the con­
cept of veto power used in the non-compensatory 
models. 

In connection with research based on the power of 
veto, (Marichal, 2004) proposes to axiomatize indi­
vidual indices to valuate when each criterion behaves 
as a veto or for an aggregation by means of the Cho-
quet integral. These indices make it possible to iden­
tify and measure the impact or trend of each criterion 
within the overall evaluation of the alternatives. In 
(Liginlala and Ow, 2006) the same idea of the effects 
of veto is used, expressing degrees of conjunction, 
disjunction, veto and approval given by the indices 
through fuzzy analysis measures, which represent a 
risk tolerance measure of the DM. 

More recently, Daher and Almeida (Daher and 
Almeida, 2012) developed an additive group prefer­
ence model that incorporates a utility reduction factor. 
DMs express their preferences in terms of a ranking 
of alternatives and are able to make an informed veto 
by providing information about the undesirable or un­
acceptable ranking of some alternatives. The ranking 
veto is achieved by using a reduction factor on the 
global utility of the alternatives. 

In this paper we consider that veto values provided 
by DMs are applicable on alternative performances 
rather than on alternative rankings. We propose an ad­
ditive multi-attribute value model accounting for the 
concepts of veto and adjust ranges. Different DMs 
with veto power identify a veto value on each attribute 

to express the limits of their preferences. They consti­
tute the basis for constructing veto and adjust ranges, 
thus extending the classical additive model. 

A l l DMs provide veto values, but the correspond­
ing veto wil l be effective for only the most important 
DMs. These veto values are used to build a veto in­
terval, whereas veto values corresponding to the least 
important DMs are used to build an adjust function 
that reduces component utilities to match the prefer­
ences of other DMs. 

The extension of the additive multi-attribute value 
model to account for veto and adjust ranges is pro­
vided in Section 2. First, a veto and an adjust func­
tion is defined on the basis of the veto values provided 
by DMs. Then dominance intensity methods are in­
troduced and used to derive a ranking of alternatives 
for each D M in Section 2.1. Finally, we aggregate 
the ranking from the different DMs to derive a con­
sensus ranking in Section 2.2. Some conclusions are 
provided in Section 3. 

2 ADDITIVE MULTI-ATTRIBUTE 
VALUE MODEL ACCOUNTING 
FOR VETO 

We consider a set of k DMs, denoted by DMl, l = 
1,.. . , k, whose relative importance is known and de­
noted by wDMl . Without loss of generality we as­
sume that the most important D M is DM1, followed 
by DM2, and so on until DMk. Consequently, wDM1 > 
wDM2 > • • • > wDMk, and Y,l wDMl = 1. 

How to measure the weights of DMs in a group 
decision-making context is an interesting research 
topic. (Yue, 2011) provides a brief overview of ap­
proaches proposed by different authors to determine 
the weights of DMs. Morever, a new approach based 
on an extended TOPSIS method is also proposed. 

Al l DMs are allowed to provide veto values, but 
the corresponding veto wil l be effective for only the r 
most important DMs, r <k. Veto values correspond­
ing to the k — r remaining DMs wi l l be partially taken 
into account, as described later. 

We consider a decision-making problem with m 
alternatives {A1, ...,Am} and n attributes {X1, ...,Xn}. 
D M preferences are modeled by an additive multi-
attribute utility function, see Eq (1). 

Ordinal information about weights is available 
and each DMl provides an attribute importance rank­
ing, arranged in descending order from the most to the 
least important attribute: 

w € W = i w = (w1?..., wn)|w1 > ... > wn > 0 >, 



and £ W; = 1. 
! = 1 

Many methods accounting for ordinal informa­
tion on weights and alternative values/utilities within 
MAVT/MAUT can be found in the literature (Sara-
bando and Dias, 2010; Punkka and Salo, 2013; 
Aguayo et al., 2014; Punkka and Salo, 2014). 

We denote by v'- the veto threshold provided by 
the /-th D M for the attribute Xj, i.e. the /-th D M 
wants the alternative performances to be equal to or 
greater (lower) than v'- i f an increasing (decreasing) 
component utility function is associated with attribute 
Xj. Consequently, the veto interval for the /-th D M is, 
(0,v'] in attribute Xj. For simplicity’s sake, we wil l 
consider from now on that component utility func­
tions are increasing. 

A veto range can then be identified in each at­
tribute [vy',v^], where Vy" = rj1, being [r^,?-^] the at­
tribute range, and v^ = maxi=1,..,r{v'-}, i.e. the high­
est veto value for attribute Xj for the r most important 
DMs. 

We build an adjust range for each attribute Xj, 
(aL:,a^], with oh = v^ = max/=1 ,.. ,r{v'}, i.e. the high­
est veto value for attribute Xj for the r most important 
DMs, and a^ = maxi=1,...,i{v'-}, i.e. the highest veto 
value for attribute Xj considering all DMs. 

We add the above information to the additive 
multi-attribute utility function by means of the follow­
ing functions: 

• v(A;) is the veto function that checks if the per­
formances for a given A; are within the respective 
veto intervals: 

v(A;) = T | Vj(Ai) 
i = 1 

with Vj(Ai) = 
1, if x i j > 

b 0, if Xij < Vj 

Note that v(A,) = 0 i f at least one performance 
is within the veto interval for the corresponding 
attribute. 

• dj(Ai) is the adjust function that decreases the 
utility associated with the alternative perfor­
mances within the corresponding adjust range. 
One possible approach is to apply a linear adjust 
function: 

1 if x i j > a 

dj(Ai) = - ^ Jj; i f fly < Xij < CT: 

i f Xij < a j 

However, we believe that the veto values for the 
k — r less important DMs should be added by 

means of this adjust function. Veto values pro­
vided by the k — r DMs may be within the adjust 
interval. In this case, we use this information to 
build a piecewise linear function. 
For example, let us assume that the adjust range is 
[20,50], 50 being the highest veto value provided 
by the DMs. Then, i f three of the k — r less im­
portant DMs have provided the veto values 23, 28 
and 35, i.e. veto values within the adjust range, 
then the adjust function shown in Fig. 1 could be 
plotted accounting for the above information. 

Figure 1: Example of adjust function. 

The adaptation of the additive multi-attribute util­
ity function to account for the veto and adjust func­
tions would be as follows: 

u (A,-) = [ V Uj(xij)w:dj(Ai)] x v(A;). (2) 

This expression would then be used to derive a 
ranking of the alternative under consideration for each 
DM that should be aggregated taking into account 
the relative importance of DMs to reach a consensus 
ranking. 

In the decision-making scenario under considera­
tion, however, we have assumed ordinal information 
about weights, i.e. each DM has provided an attribute 
importance ranking, w l . In the next section we de­
scribe how to derive an alternatives ranking on the 
basis of the available ordinal information using dom­
inance measuring methods, which are based on the 
notion of pairwise dominance. Then we review meth­
ods for aggregating rankings and select the best one 
for our decision-making scenario, in which complete 
rankings are available as well as their relative impor­
tance. 

2.1 Deriving a Ranking of Alternatives 
for each DM 

A recent approach for dealing with imprecise infor­
mation, such as ordinal information about weights, is 



to compute different measures of dominance to de­
rive a ranking of alternatives (Ahn and Park, 2008; 
Mateos et al., 2012; Jimé nez et al., 2013; Aguayo, 
2014; Mateos et al., 2014). These approaches known 
as dominance measuring methods (DMMs). DMMs 
are based on the computation of a dominance ma­
trix, D, including pairwise dominance values, which 
are leveraged in different ways to derive measures of 
dominance to rank the alternatives under considera­
tion. 

The dominance matrix for the l-th DM, D l , can be 
defined as follows: 

D = 

where 

D 12 

21 

31 D 32 

1(m-1) 
D l 

1m 

D 
1m 

2(m-1) 2m 

3(m-1) ^ 3 m 

D 

D 

m1 

s.t. 

D m2 D f 
m(m-1) 

min{u (Ak) -u(As)} 

w1 > > wi > 0 
(3) 

in our decision-making scenario accounting for veto 
information, see Eq (2), and for ordinal information 
about weights. 

Note that given two alternatives A\ and As, alter­
native Ak dominates As i f Dl

ks > 0, and there exists at 
least one combination of weights such that the over­
all value of Ajc is strictly greater than that of As. This 
concept of dominance is called pairwise dominance. 

The optimization problems to be solved to de­
rive pairwise dominance values are linear optimiza­
tion problems. Consequently, they can be?efficiently 
solved using the simplex method. Note that ordinal 
information could also be considered in the compo­
nent utilities, i.e., providing a ranking of the alterna­
tives and also of the difference between the values of 
consecutive alternatives for each attribute, as in (Sara-
bando and Dias, 2010) or (Aguayo, 2014; Aguayo 
et al., 2014). Then the resulting optimization prob­
lem would likewise be linear. 

As already mentioned, the dominance matrix, D , 
including pairwise dominance values, is used in dif­
ferent ways to derive measures of dominance to rank 
the alternatives under consideration in the DMMs. 
For instance, in (Mateos et al., 2014) a D M M is pro­
posed, which derives a global dominance intensity in­
dex to rank alternatives on the basis that 

D\s < w (u(A,t) - u(As)) < -Dsk, 

Vw' | w1 > ... > wl
n > 0, 

with u(A;) = (M1(X,1) X <f1(A;),..., Un(Xi xd„(Ai)). 

1. I f Dl
ks > 0, then alternative A^ dominates As, and 

the dominance intensity of Ak over As (DIlks) is 1, 

i.e., DIks = 1. 

Else (Dl
ks < 0): 

- I f Dsk > 0, then alternative A; dominates Ak, 

and DIk
l
 s 0. 

Else (Dl
s k < 0), DIk

l
 s = 

-D'-D 

DIk
l
 s, and 

The DMM is implemented as follows: 

2. Calculate a global dominance intensity (GDI) for 
m 

each alternative Ak, i.e. GDIk
l = 

s=1, s=k 

rank the alternatives according to them. 
The performance of this method was compared in 

(Mateos et al., 2014) with other existing approaches 
(surrogate weighting methods, which select a weight 
vector from a set of admissible weights to represent 
the set (Stillwell et al., 1981); modified classical deci­
sion rules (Salo and Hamalainen, 2001; Puerto et al., 
2000), and the DMM proposed in (Ahn and Park, 
2008)), where ordinal information represents impre­
cision concerning weights. 

Monte Carlo simulation was used to demonstrate 
that there is, according to the paired-samples t-test, no 
significant difference between the DMM used in this 
paper and the rank-order centroid weights method 
(ROC), a surrogate weighting method, and that they 
outperform the other methods in terms of average hit 
ratios and rank-order correlations. However, ROC can 
be only applied when ordinal relations regarding at­
tribute weights are provided, whereas DMM is more 
generally applicable since it can also be used when the 
imprecision concerning weights or even value func­
tions is represented in other ways, for example by in­
terval values, probability distributions or even fuzzy 
numbers. 

Note that the described dominance measuring 
method is used to derive k rankings of alternatives, 
i.e a ranking for each DM. 

2.2 Aggregating the Ranking of 
Alternatives 

Different methods for aggregating rankings can be 
found in the literature by different authors. (Lin, 
2010) discusses three classes of methods, namely 
distribution-based, heuristic, and stochastic optimiza­
tion search. 

The original Thurstone scaling and its extensions 
(Thurstone, 1931; Green, 1978) represent the first 
class of methods that are most appropriate for aggre­
gating many short ranked lists. Heuristic algorithms 
and stochastic search methods are applicable for ag­
gregating a small number of long lists. 



Heuristic algorithms are deterministic, ranging 
from simple arithmetic averages of ranks (Borda’s 
methods, (Borda, 1981)) to Markov chains and sta­
tionary distributions, in which only pairwise ranking 
information is used (Dwork et al., 2001; DeConde 
et al., 2006). 

Stochastic search algorithms, on the other hand, 
aim at maximizing a particular criterion. They are 
usually distance measure dependent, and Kemeny 
optimal aggregation (which optimizes the average 
Kendall distances between a candidate aggregate list 
and each of the input lists) is an example. However, 
it is widely recognized that computing the Kemeny 
optimal aggregate is NP-hard even when the number 
of ranked lists to be aggregated is small. Stochastic 
search algorithms based on the cross entropy Monte 
Carlo approach, such as the order explicit algorithm 
(Lin and Ding, 2009), provide an alternative for find­
ing an optimal solution while circumventing the com­
binatorial nature of the problem. Instead of imposing 
a discrete uniform distribution on all the potential so­
lutions, an iterative importance sampling technique is 
utilized to slowly tighten the net to place most distri­
butional mass on the optimal solution and its neigh­
bors. Extensive simulation studies were performed to 
assess the performance of the method, leading to sat­
isfactory results. 

Besides, (Niu et al., 2013) divides rank aggrega­
tion methods into two categories according to the way 
in which rank information is used: explicit and im­
plicit rank aggregation methods. Explicit methods di­
rectly utilize rank information to define the ranking 
function or the objective function, whereas, for im­
plicit methods, other information, such as pairwise 
preference or list-wise ranking is first gathered based 
on the rank information and then leveraged for rank 
aggregation. 

Note also that the above methods can be catego­
rized taking into account whether they assume a com­
plete, partial or top k-rank ranking of the alternatives 
and whether the analysis includes the relative impor­
tance of the rankings. 

In our decision-making scenario, complete rank­
ings and the relative importance of such rankings (rel­
ative importance of DMs) are available. Moreover, 
the values that lead to the corresponding rankings 
(global dominance intensities) are also available. The 
only aggregation methods that exploit all the above 
information is the Kemeny method (Kemeny, 1959) 
and its extensions. 

As already mentioned, Kemeny optimal aggrega­
tion optimizes the average Kendall distances between 
a candidate aggregate ranking and each of the input 
rankings. As computing the Kemeny optimal aggre-

gate is NP-hard even when the number of ranked lists 
to be aggregated is small, we have used the order ex­
plicit algorithm (OEA)(Lin and Ding, 2009) to solve 
the combinatorial problem under consideration. 

OEA uses a global optimization technique, 
called the cross-entropy Monte Carlo method, which 
searches iteratively for an optimal list that minimizes 
a criterion, the sum of weighted distances between 
the candidate (aggregate) list and each of the in­
put ranked lists. The method is, however, general 
and amenable to any other optimization criterion. A 
modified Kendall’s tau measure and the Spearman’s 
footrule, as described in (Fagin et al., 2003), are used 
to measure the distance between two ranked lists. 

3 AN ILLUSTRATIVE EXAMPLE 

We consider five DMs whose relative importance is 
wDM1 = 0.35 > W0M2 = 0.25 > W0M3 = 0.2 > W0M4 = 
0.1 =WDM5 = 0 . 1 . Seven alternatives {A1, ...,A7} wi l l 
be analyzed on the basis of four attributes {X1,.. . , X4 }, 
whose ranges are [0,100] in all cases. 

The corresponding veto wil l be effective for only 
the three most important DMs. Table 1 shows the 
veto values provided by the DMs. Note that except 
for DM1 DMs do not provide veto values for all at­
tributes and the only veto for attribute X4 is provided 
by DM 1. 

Table 1: Veto values for DMs. 

DM1 

DM2 
DM3 

DM4 

DM5 

X1 

20 
15 
25 
30 
27 

X2 

15 
10 
10 
25 
10 

X3 

10 
5 
-
-
-

X4 

20 
-
-
-
-

Each DM expresses the relative importance of the 
attributes under consideration, see Table 2. We as­
sume that the four component utility functions are lin­
ear and increasing in the attribute ranges, [0,100], for 
the five DMs. 

Table 2: Relative importance of attributes for DMs. 

DM1 

DM2 
DM3 

DM4 

DM5 

Relative importance of attributes 
W 1 > W2 > W3 > W4 

W 1 > W3 > W2 > W4 

W3 > W 1 > W2 > W4 

W 1 > W3 > W4 > W2 

W2 > W 1 > W4 > W3 

Table 3 shows the alternative performances for the 
four attributes under consideration as well as the veto 
and adjust ranges for each attribute. 



Table 3: Alternative performances and veto and adjust 
ranges. 

A1 
A-2 
A3 

A4 
A5 
A6 
A7 

Veto range 
Adjust range 

X1 
35 
20 
26 
40 
35 
60 
27 

[0,25] 
(25,30] 

X2 
60 
20 
27 
35 
85 
17 
65 

[0,15] 
(15,25] 

X3 
40 
40 
30 
50 
10 
20 
20 

[0,10] 
-

X4 
35 
65 
94 
63 
33 
45 
45 

[0,20] 
-

The adjust functions for attributes X1 and X2 are 
shown in Fig. 2. Note that the adjust function for at­
tribute X2 is a linear function since none of the DMs 
provided a veto value within the adjust range, whereas 
the adjust function for attribute X1 is a piecewise util­
ity function since the veto value 27 corresponding to 
DM5 is within the adjust range and assigned a value 
0.5. 

Figure 2: Adjust functions for attributes X1 and X2. 

Table 4 shows the values output by the veto and 
adjust function for the alternative performances in­
cluded in Table 3. The performances of alternatives 
A2 and A5 for attributes X1 and X3, respectively, are 
vetoed. The utility for those alternatives will be 0, see 
Eq. 2, and both will always be the two worst-ranked 
alternatives and will, therefore, be worst ranked in the 
consensus ranking. Consequently, we have omitted 
these alternatives from further analyses. 

Besides, adjust functions decrease the component 
utility associated with alternatives A3 and A7 for at-

tribute X1 and with alternatives A2 and A6 for attribute 
X2. 

Table 4: Veto and adjust values. 

A1 

A-2 

A3 

A4 

^5 
A6 

A7 

v{Ai) 

1 

0 
1 

1 

0 
1 

1 

d1(Ai) 

1 

0 

0.25 

1 

1 

1 

0.5 

d-2{Ai) 
1 

0.5 
1 

1 

1 

0.2 

1 

Optimization problems can be solved using the sim­
plex method to derive the dominance matrices corre­
sponding to the five DMs. Dominance matrices are as 
follows: 

D = 

D = 

D = 

D = 

D = 

/ 

/ 

/ 

/ 

-
- .306 
- .099 
- .171 
- .214 

-
- .284 
-.033 
- .171 
- .214 

-
- .237 
-.033 
- .199 
- .207 

-
- .284 
.045 

- .104 
- .214 

-
- .329 
- .249 
- .564 
- .082 

.031 
-

.076 
- .07 
-.035 

.031 
-

.076 
- .022 
-.035 

.031 
-

.076 
- .099 
- .099 

- .067 
-

.075 
- .072 
-.173 

.008 
-

.035 
-.235 
-.035 

.05 
- .334 

-
- .149 
- .281 

.075 
- .334 

-
- .149 
- .264 

- .099 
- .266 

-
- .299 
- .299 

-.143 
- .334 

-
- .149 
- .281 

-.045 
- .207 

-
-.315 
- .111 

- .248 
- .532 
- .198 

-
-.463 

- .248 
- .532 
- .198 

-
-.463 

- .024 
- .216 

.05 
-

- .231 

- .248 
- .532 
- .198 

-
-.463 

.072 
- .148 
.058 
-

.037 

.066 
- .224 
- .017 
-.075 

-

.066 \ 
- .116 
.088 
- .05 

-

.116 \ 
- .116 
.088 
- .05 

-

.066 \ 
- .069 
.111 

- .037 
-

- .049 \ 
- .378 
- .298 
-.613 

-

Note that the alternatives corresponding to the rows 
and columns of the above dominance matrices are A1, 
A3, A4, A6 and A7, since A2 and A5 were removed 
from the analysis. 

The dominance measuring method described in 
the previous section is then applied to compute global 
dominance intensities (GDIs) for each DM on the ba­
sis of which to derive the corresponding ranking of 
the considered alternatives. 

Table 5 shows the GDIs associated with each alter­
native, whereas Table 6 shows the resulting rankings 
of alternatives for the DMs under consideration. 



Table 5: Global dominance intensities. 4 CONCLUSIONS 

A1 
A3 

A-4 
A6 

A7 

DM1 
5.4 
2.2 
4.3 
4.9 
3.1 

DM2 
5.4 
2.3 
4.4 
5.0 
2.9 

DM3 
5.1 
2.8 
5.7 
3.6 
2.7 

DM4 
4.1 
3.0 
5.4 
5.1 
2.4 

DM5 
5.5 
2.7 
4.4 
2.4 
5.0 

Table 6: Alternative rankings for DMs. 

1st 

2nd 

3rd 

4th 

5th 

DM1 
A1 
A-6 
A4 
A7 
A3 

DM2 
A1 
A-6 
A4 
A7 

A3 

DM3 
A4 
A-1 
A-6 
A3 

A7 

DM4 
A4 
A-6 
A-1 
A3 

A7 

DM5 
A1 
A7 
A4 
A3 

A6 

Finally, Lin and Din’s method (OEA) is used to 
aggregate the rankings in Table 6 also taking into ac­
count the relative importance of such rankings (rel­
ative importance of DM), wDM1 = 0.35 ≥ wDM2 = 
0.25 ≥ wDM3 = 0.2 ≥ wDM4 = 0.1 = wDM5 = 0.1, to 
derive the consensus ranking shown in Table 7. 

Table 7: Consensus ranking. 

1st 

2nd 

3rd 

4th 

5th 

Alternative 
A-1 
A6 

A4 
A7 
A3 

Note that alternative A1 is best ranked in the con­
sensus ranking, followed by A6 and A4. Alternative 
A1 was best ranked by the two most important DMs 
(DM1 and DM2) and by DM5, whereas it was placed 
second by DM3. Although alternative A4 was first 
ranked by DM3 and DM4, the relative importance of 
both DMs in the consensus is only 0.3, and A4 is 
placed third by the other three DMs. 

Note also that the ranking for DM1 matches the 
consensus ranking. A sensitivity analysis was carried 
out to identify the weight of DM1 for which the con­
sensus ranking differed. To do this, wDM1 is progres­
sively decreased, the remaining weights proportion­
ally updated and the consensus ranking recomputed. 
The value for wDM1 that makes the consensus rank­
ing different than the DM1’s ranking is 0.2166, and 
the corresponding consensus ranking is A1, A4, A6, 
A7 and A3. We found that A1 is the best-ranked alter­
native no matter what the value of wDM1 is. 

In this paper we have extended the additive multi-
attribute utility model to incorporate the concept of 
veto as an approximation to real situations to repre­
sent the limits of the DM preferences. 

Although all DMs are allowed to provide veto val­
ues, the corresponding vetoes are effective for only 
the most important DMs. They are used to define 
veto ranges. Veto values corresponding to the other 
less important DMs are partially taken into account, 
leading to the construction of adjust ranges. A veto 
and an adjust function are then incorporated into the 
additive model. 

A dominance measuring method is used to ac­
count for imprecise information (ordinal information 
about weights) in the decision-making scenario and to 
derive the ranking of alternatives, whose performance 
has been analyzed in the literature using Monte Carlo 
simulation techniques. 

Finally, Kemeny’s method was selected to aggre­
gate the alternative rankings from the DMs since it is 
the method that best fits the decision-making infor­
mation, i.e. both complete rankings (and the respec­
tive global dominance intensities) and their relative 
importance are available. 

As computing the Kemeny optimal aggregate is 
NP-hard, a stochastic search method, the order ex­
plicit algorithm proposed by Lin and Din, was used 
to solve this combinatorial problem. 

We propose the possibility of using trapezoidal 
fuzzy numbers to aggregate group preferences regard­
ing the attribute weights as a future research line. 
Then, a fuzzy dominance matrix would be computed 
and a dominance-measuring method accounting for it 
would be used to derive a fuzzy ranking of alterna­
tives for each DM. Finally, a fuzzy ranking aggrega­
tion process would be performed to derive a consen­
sus ranking. 

Another research line is the study of parameter r, 
i.e. the number of DMs whose vetoes are effective on 
the basis of a threshold on their relative importance. 
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