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ABSTRACT 

Histograms of Oriented Gradients (HoGs) provide 
excellent results in object detection and verification. 
However, their demanding processing requirements bound 
their applicability in some critical real-time scenarios, such 
as for video-based on-board vehicle detection systems. In 
this work, an efficient HOG configuration for pose-based 
on-board vehicle verification is proposed, which alleviates 
both the processing requirements and required feature vector 
length without reducing classification performance. The 
impact on classification of some critical configuration and 
processing parameters is in depth analyzed to propose a 
baseline efficient descriptor. Based on the analysis of its 
cells contribution to classification, new view-dependent 
cell-configuration patterns are proposed, resulting in 
reduced descriptors which provide an excellent balance 
between performance and computational requirements, 
rendering higher verification rates than other works in the 
literature. 

Index Terms— HOGs, vehicle verification, efficient 
descriptor configuration, view-dependent classification. 

1. INTRODUCTION 

Vision-based object detection from a moving platform 
becomes particularly challenging in the field of advanced 
driver assistance systems (ADAS). On-board vision systems 
are an excellent source of information where real-time 
detection of vehicles becomes a critical task, facing 
challenges derived from the variability of vehicles 
appearance, illumination, shadows, and vehicle speed. 
The most used methodology for vehicles detection consists 
of two stages. First, the whole image is fast analyzed using 
knowledge-based [1][2], motion [3][4] or stereovision [5] 
methods to identify regions potentially containing vehicles. 
Second, these candidates are verified using features related 
to their appearance through model-based approaches or, 
more recently, learning-based methods [6] in which the 
vehicles characteristics are learned from a training set, and 
new candidates are classified according to learned patterns. 
Learning-based hypothesis verification is approached as a 

two-class classification problem: a feature vector is 
extracted from the image, and the sample is classified as 
vehicle or non-vehicle. Among the most commonly used 
descriptors, such as those based on PCA [7] or Gabor filters 
[8], HOGs stands out for their excellent performance in 
object detection. However, their performance is bounded by 
a tradeoff between complexity of descriptor configuration 
and real-time operation. 
In this work, an efficient HOG configuration for pose-based 
on-board vehicle verification is proposed, which alleviates 
both the processing requirements and required feature vector 
length without reducing classification performance. The 
impact on classification of some critical configuration and 
processing parameters is in depth analyzed to propose a 
baseline efficient descriptor. Furthermore, subsets of cells 
corresponding to view-dependent patterns are investigated, 
resulting in reduced descriptors where only the most 
significant cells are considered for classification. The 
hypothesis that there are areas in the images which do not 
contain useful information or even gather misleading 
information for classification is verified. The classification 
accuracy is demonstrated on a large public database, 
outperforming other approaches recently proposed. 

2. PREVIOUS WORK 

Although originally proposed for people detection [9], 
HOGs were rapidly expanded to other fields such as face 
recognition [10]. In recent studies, HOGs have been adopted 
for video-based vehicle detection and verification, although 
with a limited exploration of the descriptor configuration as 
typically that for people and other objects detection are 
directly applied. This so-called standard HOG is present in 
works suchas [11] for vehicle detection in aerial views, [12] 
for preceding vehicle detection, [13] for rear collision 
avoidance, or [14] for view-dependent vehicle verification. 
Although works either provide only qualitative results [12], 
or use limited non-public sequences and databases [13] [11], 
in [14] a large public database of vehicle hypothesis 
obtained from an on-board forward looking camera is 
considered. Computational efficiency is addressed 
differently in the literature: from standard HOG ad-hoc 



hardware implementations [15], to descriptor simplifications 
[12] [14] [16] reducing the orientation range considered, 
modifying the weighted contributions to adjacent bins, or 
proposing alternative cell and blocks configurations to 
alleviate the cost of classification. The use of different block 
sizes is explored in [17], with fairly low accuracy results, 
while in [18] the use of masks adapted to the vehicle shape 
is proposed to speed up classification with good results in 
the classification between different types of vehicles. In 
[14], different reduced configurations are evaluated and the 
V-HOG, that uses only vertical cells, is proposed: it 
provides better verification accuracy than other approaches 
with a reduction of the computational cost that allows real­
time operation. Combination with other features, such as 
Haar-like [11] [16], is also proposed to speed up detection. 

3. FEATURE EXTRACTION AND CLASIFICATION 
BASED ON HOG 

3.1. Feature extraction phase 

The main idea of using HOG is that objects appearance can 
be characterized by the local distribution of its edges 
orientation. The HOG descriptor results from the 
computation of local histograms of orientation of the image 
gradients in a grid. A scheme summarizing the feature 
extraction system using HOG is shown in Figure 1. 
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Figure 1. HOG descriptor generation 

The gradients extraction phase computes, for each image 
pixel, the edge magnitude and orientation. The image is 
divided into cells, and for each cell a histogram of its pixels 
orientation is obtained. The last step is the normalization of 
the histograms to account for uneven illumination and 
shadows. As proposed in [9], cells are grouped into larger 
structures called blocks. For each block the non-normalized 
vector holding the histograms of its cells is normalized 
using any standard norm. The overlap of blocks is also 
suggested to make this step more robust. The final HOG 
descriptor is the resulting vector of the concatenation of the 
normalized blocks. Among the cell configurations proposed, 
the rectangular (R-HOG) geometry is assumed in this work, 
as it naturally adapts to the dominant vehicle geometry. 

3.2. Classification phase 

For HOG based classification of the input samples into 
vehicles and non-vehicles, Support Vector Machines 
(SVMs) have been extensively proposed: they render 
excellent results, and provide better generalization involving 
lower number of parameters than other discriminative 
approaches such as Neural Networks [20]. A linear SVM is 
adopted in this work. 

Figure 2. GTI Database images. For frontal (CF), left (L), right (R), and far 
(F) views: two vehicle (left) and two non-vehicle (right) samples. 

Evaluation is carried out in the only extensive public 
database for vehicle verification proposed in the literature 
[18]. The GTI vehicle database is a complete data set with 
4000 vehicles and 4000 non-vehicles images of size 64x64 
pixels. Images were obtained from videos taken with an on­
board forward looking camera, considering a large 
variability of situations typical from on-line hypothesis 
generation systems. Furthermore, to explore classification 
taking into account the vehicles pose, images are also 
organized into four classes according to their relative 
position and distance to the camera: frontal (CF), left (L) 
and right (R) views in the middle-close distance, and far 
distance (F). Examples of vehicle and non-vehicle images 
are shown in Figure 2. Experiments are carried out based on 
5-fold 50% cross-validation methodology, and the 
classification accuracy, average percentage of correctly 
classified samples, is evaluated. 

3.3. Experiments on HOG 

The configuration of the parameters of HOG descriptor is 
important to perform a good classification. Table I shows 
the best results obtained with the standard HOG (S-HOG) 
training individual classifiers for each view. Different values 
of the number of cells (r|xr|=4, 16, 64, 256) and the number 
of orientation bins ((3=8, 12, 16, 32) are evaluated. The L2-
norm is used to normalize blocks of 2x2 cells. 

View Ace (%) JL _P_ 
CF 
L 
R 
F 

99.48 
97.64 
96.22 
97.76 

4 
4 
4 
4 

16 

Table I: Best accuracy results for standard HOG 

Best results are obtained for n=4 (16 cells), the lowest 
spatial resolution considered, which serve as a starting point 
to reduce the processing requirements in this work. As 
expected, highest scores correspond to the frontal view: 
hypothesis generated for vehicles located in front of the own 
vehicle show well defined and quite stable geometrical 
patterns that adapt perfectly to the HOG topology. 
Regarding orientation resolution, low values (the lowest 
ones for three of the four views) are enough for a good 
rating. Larger granularity does not imply a better outcome. 
In the following sections, first alternative configurations of 
the HOG descriptor parameters to reduce computation 
without loosing performance are proposed. Then, based on 
the hypothesis that there are cells in the descriptor not 
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Table II: Accuracy rates for efficient configuration of parameters 
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Figure 3: Classification accuracy evolution removing less significant cells from the descriptor: NC indicates the number of cells composing the descriptor, DC 
the deleted cells identification number, and A(%) the accuracy deviation with respect to the performance of the entire descriptor. 

relevant for classification, we analyze their influence and 
new view-dependent cell configurations are proposed. 

4. FEATURE EXTRACTION AND CLASIFICATION 
BASED ON HOG 

The impact on the performance of alternative processing and 
configuration parameters of the descriptor is studied. 

A. Gradients extraction 

Although orientation sign is typically disregarded for 
efficiency purposes [13][14][16], Table II demonstrates its 
high impact (columns [-%, %]) particularly on non-frontal 
vehicle views. Compared with S-HOG (no sign considered), 
better results are obtained for the same granularity, being 
more significant for (3=16 in all views. It seems more 
important to exploit the whole range of gradient orientations 
than have smaller orientation bins to describe the structure 
of the vehicles. Improved results are achieved keeping the 
same computational cost. 

B. Histograms Calculation 

The next improvement focuses on reducing computational 
requirements of the histograms in S-HOG. According to the 
edge orientation, weighted contributions are provided to the 
corresponding bin and the closest one. This results on a 
costly interpolation process whose impact on the 
verification is evaluated. Column NCCG in Table II shows 
the results achieved when interpolation is removed: each 
gradient contributes only to the bin that corresponds to its 
orientation. Results are stable, improving for most 
configurations while slightly underperforming for the 
others. The non-interpolation causes better accuracy values 

for higher values of (3, 
computational saving. 

C. Normalization 

having significant impact on 

As proposed in [9], the use of overlapped 2x2 blocks is 
typically assumed [14], resulting on a new histogram 
generation and longer feature vectors. To reduce the vector 
size, 2x1 and lxl blocks are explored. Table II shows that 
for lxl blocks, performance of the descriptor is still 
maintained, not requiring the computation of a second 
histogram, with significantly better accuracy than S-HOG. 
Therefore, the descriptor with the proposed modifications 
improves the performance with respect to S-HOG while 
significantly reducing the computational requirements. In 
average (i.e. computing the average accuracy of the four 
classifiers for each (3), there is a 0.57% and 1.3% gain for 
(3=8 and 16 respectively. As a conclusion, the values of n 
and (3 chosen to provide a good balance between 
performance and computational cost are n=4 and (3=16. 

5. INFLUENCE OF HOG CELLS 

In this section we carried out a study to analyze the impact 
of the different cells of the HOG descriptor in the 
classification. The goal is to eliminate cells that provide less 
or misleading information for classification, thus reducing 
both, the length of the descriptor - faster classification - and 
the cost of feature extraction. 
Figure 3 shows, for each view, the verification accuracy 
evolution when cells are sequentially removed from the 
descriptor (A(%) in left tables), and the corresponding 
topology of removed cells (right images, grey colored). 
The first conclusion is that for all views, removing the less 
significant cells do improve verification. Deviations are 



positive, with a gain in classification which is less 
significant for the frontal view (as expected) than for the 
more complex lateral and far views. Therefore, with a much 
smaller histogram, a good discrimination is still reached, 
improving of performance through the elimination of cells. 
Another relevant conclusion is that the topology of the cells 
having negative impact in verification is related to the 
vehicle view particularities. Most important cells for the 
frontal view (Figure 3(a)) are the outer ones, as they 
typically hold main edges of vehicle rear when frontally 
observed, and thus provide more discriminating information. 
For the left view (Figure 3 (b)), most of the relevant 
information is within and below the right to left diagonal 
cells, which agrees with the image areas likely holding 
vehicle information when observed from its right. Similar 
conclusions can be obtained from the cells distribution for 
the right view, but considering the left to right diagonal. 
Finally, for the far view images (Figure 3 (d)), which show 
smoothed edges due to interpolation (images are scaled to 
64x64 pixels), the lower cells are more discriminative as 
they hold more stable and contrasted edge information. 
In conclusion, the study of the cells' influence in the HOG 
descriptor helps to understand which image parts are more 
decisive for the classification. In addition, we can assure 
that the use of full HOG descriptors, which conveys a high 
computational cost, is unnecessary. Using a part of the HOG 
descriptor is sufficient for the correct classification. 

6. DISCUSSION 

Firstly in this work changes in processing and parameters of 
the S-HOG descriptor are proposed: modifying the gradient 
extraction phase improves performance while maintaining 
the computational cost, and simplifying the histogram 
generation and normalization steps manage to reduce the 
computational cost while marginally affecting verification. 
However, motivated from the conclusions of the previous 
section, view-dependent cell configurations are here 
proposed (Figure 4) which result in faster to compute and 
shorter HOG descriptors. 

(a) (b) (c) (d) 
Figure 4. HOG cells - in white - considered for (a) frontal view; (b) left 

view, (c) right view, (d) far view. 

As already mentioned, in the middle close frontal view the 
most significant cells are those corresponding to the sides of 
the vehicle, so it was decided to use these cells only for 
classification. Regarding the left and right views the same 
analysis was made, and the cells in and below each view 
diagonal are kept, removing also those that typically hold 
shadows cast by the vehicles. For the far view only the 
lower-half cells are considered: edges corresponding to 

vehicle wheels, lights or underneath shadows are here more 
important. 
Table III compares the performance of S-HOG, our view 
dependent HOG descriptors and V-HOG [14]. Our method 
outperforms S-HOG while removing costly processing 
steps: no interpolation and no multi-cell normalization are 
applied, halving the number of cells to compute. As a result, 
in our non-optimized implementation, average feature 
extraction computational time savings -60% are achieved. 

CF 
L 
R 
F 

S-HOG 
99.48 
97.64 
96.22 
97.76 

Our method 
CF 
L 
R 
F 

99.40 
98.96 
98.14 
98.24 

V-HOG[14] 
CF 97.68 
L 97.02 
R 95.54 
F 95.60 

Table III: Comparison of accuracy (%) between different methods 

Furthermore, in terms of descriptor length, the average 360 
components required for S-HOG go down to 128 with our 
proposal. In [14], an efficient HOG descriptor using only 
vertical cells, V-HOG, is proposed to carry out view 
dependent vehicle verification. Compared with the best 
results achieved with V-HOG, our proposal also largely 
outperforms for all views with a similar cost. Figure 5 
shows some false positives examples that illustrate the 
dependency of classification with the quality of the 
generated hypothesis. In terms of average verification rate, 
i.e. averaging the accuracy for all views, our proposal 
reaches 98.69%, an excellent score that largely outperforms 
the results reported in [13] (92.9%), and [16] (94%), that 
proposes a cascade of boosted classifiers combining Haar-
like and HOG features. 

(a) (b) (c) 
Figure 5. (a) Partial view, (b) low contrast, and (c) distorted hypothesis. 

7. CONCLUSIONS 

The adaptation of the HOG descriptor for fast vehicle 
verification is proposed. An adequate configuration of the 
descriptor and the simplification or elimination of some 
processing steps lower the complexity bounding the loss in 
verification accuracy. A study of the influence of cells in 
classification is carried out, showing that a significant 
number of the cells do not contribute positively to 
verification, and that their spatial configuration relates to the 
view of the vehicles to be verified. This information has 
been used to propose new view-dependent HOG cells 
configurations which provide a suitable balance between 
performance and processing steps simplification, rendering 
higher verification rates than other works in the literature. 
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