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ABSTRACT 

An automatic machine learning strategy for computing the 3D 
structure of monocular images from a single image query us­
ing Local Binary Patterns is presented. The 3D structure is 
inferred through a training set composed by a repository of 
color and depth images, assuming that images with similar 
structure present similar depth maps. Local Binary Patterns 
are used to characterize the structure of the color images. The 
depth maps of those color images with a similar structure to 
the query image are adaptively combined and filtered to esti­
mate the final depth map. Using public databases, promising 
results have been obtained outperforming other state-of-the-
art algorithms and with a computational cost similar to the 
most efficient 2D-to-3D algorithms. 

Index Terms— 2D-to-3D Conversion, Depth maps, Ma­
chine Learning, Local Binary Patterns, Bilateral Filtering 

1. INTRODUCTION 

The amount of devices, such as TVs, smart phones, DVD/Blu-
Ray players, cinemas or video game consoles with 3D play 
ability has significantly grown in the last years. However, 
it has not been followed by a similar increment of the 3D 
content such as 3D movies or even 3D broadcasting, creating 
a gap between 3D displays and 3D contents. To alleviate 
this situation, different algorithms that automatically or semi-
automatically convert 2D content into 3D one have appeared. 

The 2D-to-3D conversion process usually consists of two 
main stages. The first one is the depth extraction from a single 
2D image, and the second one is the rendering of a new image 
from the extracted depth map and the original image to form 
a stereo-pair. Since there are many algorithms that generate a 
good quality stereo-pair, this paper is only focused on the first 
step, which is more challenging. 

In the last years, new learning-based methods have ap­
peared as an interesting alternative for the automatic 2D to 
3D conversion task. The key idea behind them is that images 
with high photometrical similarity will likely have a similar 
3D-structure (depth). Saxena et al. [1][2] implemented a 
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Fig. 1. Block diagram of the 2D-to-3D conversion method. 

supervised learning strategy for estimating the scene depth 
from a monocular image using an image parsing approach 
and Markov Random Fields to infer 3D locations and orien­
tations. In [3] [4], better scene depth results are achieved by 
incorporating semantic labels and more sophisticated mod­
els. Konrad et al. [5] used a similar approach, but transferring 
depth data instead of labels, and using a SIFT-based matching 
and alignment stage to increase the accuracy of the computed 
depth map. Karsch et al. [6] extended the previous approach 
to work also with videos. Konrad et al. [7] also proposed a 
more computationally efficient approach that only performed 
a matching process based on HOG features to find the images 
with similar structure, discarding the SIFT-based alignment. 
The depth map was finally enhanced using a Joint Bilateral 
Filtering. An even less computationally demanding proce­
dure was proposed in [8], which estimated the depth for each 
pixel independently using the spatial, color and motion infor­
mation. However, the obtained results are significantly less 
accurate than the other alternatives. 

In this paper, an automatic 2D-to-3D conversion method 
based on learning approach is proposed. The new algo­
rithm selects an adaptive number of images from a database, 
evaluating the similarity between them and the query image 
through Local Binary Pattern, and combines them to estimate 
the 3D structure. 



2. ALGORITHM DESCRIPTION 

Given a color-based query image Q and a database DB com­
posed by pairs of color I and depth D images, the aim of the 
proposed algorithm is to estimate the depth map of Q. The 
algorithm can be divided in three stages. The first stage con­
sists on searching in the database DB the color images that 
are photometrically closest to Q. This similarity is measured 
computing the correlation between the Local Binary Patterns 
of the images. In the second stage, the depth images asso­
ciated to the found color images are combined using a cor­
relation based weighting to obtain a preliminary depth map 
estimation Dc. Lastly, a Joint Bilateral Filtering is applied 
to remove spurious variations and enforce the consistency be­
tween the edges of Dc and Q. As result, a refined depth map 
Dest is obtained. 

This method is an evolution of the work of Konrad et 
al.[7] incorporating the following three novel key contribu­
tions. The first one is to use LBP-based features to represent 
the structure of the color images. The second one is the adap­
tive selection in DB of the k most similar images to Q, reduc­
ing or even removing the outliers that can drift the posterior 
combination of depth maps. The last contribution is to use in 
the combination of depth maps a weighting scheme based on 
the correlation between the features of each selected color im­
age and Q, which reduces even more the influence of poten­
tial outliers (i.e. depth maps that have a structure significantly 
different to Q) in the depth estimation of Q. 

2.1. Search for similar images 

Color images in the database DB with similar structure to 
the query image Q will be used in the depth estimation pro­
cess. To find out which images are similar to a query image, 
the images are first characterized by a feature descriptor that 
represents the structure of the image. This image feature de­
scriptor is based on LBP [9], which achieves a compact and 
efficient representation of the image structure. The image fea­
ture descriptor is computed by dividing the image into 4 x 4 
blocks, and obtaining a LBP descriptor per block. Then, the 
descriptors of every block are stacked in a single vector FI, 
which characterizes the whole image. 

The structure similarity between Q and a candidate color 
image in DB is computed by means of the correlation be­
tween the corresponding image feature descriptor 

c(n) =corr (F I (Q ) ,F I ( I n ) ) , (1) 

where corr() is the correlation measure, FI(X) is the LBP-
based image feature descriptor of an image X, and In is the 
nth color image in DB. 

The number of similar images in DB to a query image Q 
depends on the own database DB, the query image Q, and 
the similarity metrics. Some authors use a constant number k 
of similar images to build the estimated depth map. Karsch 

Fig. 2. From left to right: query image and the three most 
similar images sorted by similarity value (descendent order). 

et al. [6] uses k = 7 and Konrad et al. [8] fix the value to 
k = 45. However, this approach does not guarantee that all 
the k images are really similar, existing very dissimilar im­
ages in the selected subset of images (outliers). To alleviate 
this problem, an adaptive method is used to select a variable 
number of k images for each query image Q. First, the images 
in DB are sorted using the previous correlation values c(n), 
and those images with an associated correlation value greater 
than a predefined threshold p are selected. This strategy al­
lows to select those images that really have a structure similar 
to Q, avoiding/reducing outliers in the selection. Therefore, 
the threshold p determines the number of images that will be 
used in the conversion process. In Section 3, the optimal value 
for this parameter will be discussed. Finally, the depth images 
associated to the selected color images are the ones that will 
be used in the depth estimation process. 

Fig. 2 shows two examples of query images and the three 
most similar images to these ones in DB. As can be observed, 
the similar images capture the structure of the query images. 

2.2. Depth map combination 

The selected depth images obtained in the previous stage are 
combined to obtain the depth map of Q, capturing the best 
as possible its real 3D structure. Some authors [8] perform 
this combination by applying the median operator. Although 
this is a good option to remove outliers, the accuracy of the 
estimated depth map can be low. Under the assumption that 
images structurally more similar will likely have a more sim­
ilar depth map, the following approach is proposed: the more 
similar images are, the higher the contribution of the corre­
sponding depth maps is in the final depth estimation. This 
approach is consistent since, on the one hand, outliers have 
been removed or at least reduced by using only images with 
high similarity, and not a fixed number of them. On the other 



hand, images are weighted according to their similarity, so the 
effect of potential outliers are also reduced. Specifically, each 
depth map is weighted by the correlation value computed in 
the previous stage as 

Dc = J2<k)Dk, (2) 

where Dc is the result of the combination of the depth maps, 
c(k) is the correlation value of one image Ik, Dk is the depth 
map associated to Ik, and k is the number of selected images 
in the previous stage. As result, Dc is obtained, which is a 
preliminary depth estimation of Q. 

2.3. Filtering 

After the depth map combination, a globally consistent depth 
estimation is obtained. However, the result presents local in­
consistencies around the edges due to the smoothing gener­
ated by the weighted average filtering of the k most simi­
lar images. In order to maintain the global result, enhance 
the edges, and align them respect to the original edges of the 
query image Q, a Joint Bilateral Filtering is applied. 

Joint Bilateral Filtering is a variant of bilateral filtering 
(an edge preserving smoothing filtering) where the Gaussian 
function is controlled by an external intensity image. In this 
case, the query image Q is used to control the smoothing. 
Moreover, Joint Bilateral Filtering reduces the noise in ho­
mogeneous areas, and enhance and align the edges of the es­
timated depth map regarding to the query image. Formally, it 
can be expressed as: 

W[x) = J2 hd(x - y)hQ{Y{x) - Y{y)) 

Dest = TTTp J2 Dc(y)hd(x - y)hQ(Y(x) - Y(y)), 
(3) 

where Dest is the final estimated depth map, hd(x) and hQ(x) 
are Gaussian functions, and Y (x) is the intensity value of 
pixel x in image Y . The Gaussian function over the posi­
tion hd(x) is calculated over the depth map image, while the 
Gaussian function over the intensity hQ(x) is computed over 
the query image Q. As a result of this process, the depth map 
is generally smoothed, but preserving the edges of the query 
image. 

3. EXPERIMENTAL RESULTS 

The proposed approach has been tested using the Make3D 
dataset #1 [2]. It consists in 534 pairs of images and their as­
sociated depth maps, divided in one set of 400 training images 
and a set of 134 test images. 

The resolution of the color images is 2272 x 1704 and the 
resolution of the depth maps is 55 x 305. Nevertheless, color 
and depth images have been resized to a 460 x 345 resolution 

Fig. 3. From left to right: original depth map (ground truth), 
query image Q, and estimated depth map Dest 

for computational efficiency and for a straightforward com­
parison with the results presented in Karsch work [6]. 

The proposed algorithm have been trained over the train­
ing set of 400 images and then the depth estimation has been 
computed for the 134 images of the test subset. The metrics 
used by Karsch et al. [6] have been used to evaluate the per­
formance, taking the root mean square error (RMSE) and the 
peak signal to noise ratio (PSNR), as final scores: 

RMSE ^{D^-D^f/N, 

max(D) 
PSNR = 20log10 , 

RMSE 

(4) 

where D is the ground truth depth map, Dest is the esti­
mated depth map, i refers to each pixel of the image, N is the 
amount of pixels in image, and max is a function that return 
the maximum value. 

The value of p (see Sec. 2.1), responsible of the amount 
of depth images used in the 2D-to-3D conversion, has been 
fixed to 94.5%. This value has been chosen by evaluating 
the whole 2D-to-3D conversion process with different values 
of p, ranging from 60% up to 99% in increments of 0.5%, 
and taking the value which achieves the best depth estimation 
(minimum RMSE). A specific value of p determines the num­
ber k of images used in the conversion process. Fig. 4 shows 
the relation between the value of p and K. For the selected 
value of p = 94.5%, an average value of k = 25.11 is ob­
tained. This value is higher than the one used by Karsch et al. 
[6], but lower than the value employed by Konrad et al. [8]. 
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Fig. 4. Variation of the depth map error and evolution of the 
number of images k as a function of the parameter p. 

In this case, the use of less images to compute the estimation 
of the depth map results in the possibility of a light increment 
in the efficiency of the method. 

The proposed approach has been compared with the 
Depth MRF method of Saxena et al. [1], the Feedback 
Cascades algorithm presented by Li et al. [10], the Depth 
Transfer approach from Karsch et al. [6], and the HOG-based 
Depth Learning solution of Konrad et al. [8]. The results are 
shown in Table 1, where, as can be observed, the proposed 
approach outperforms the result of the other state-of-the-art 
methods, while keeping a similar computational cost. The 
error measures are averaged for all images in the database. 
This improvement of the results is attributed to the use of 
the LBP features, the adaptive number of images used in the 
combination process, and the weighted combination of depth 
maps. 

Algorithm 

Depth MRF [1] ... 2005 
Feedback Cascades [10] ... 2012 
Depth Transfer [6] ... 2012 
HOG Based Depth Learning [7] ... 2012 
A-LBP Based Depth Learning (ours) 

RMSE 

16.7 
15.2 
15.1 
14.9 
14.0 

PSNR 

N/A 
N/A 
34.4 
34.8 
35.7 

Table 1. Evaluation of state-of-the-art algorithms using the 
RMSE and PSNR metrics in the Make3D database. The re­
sults are the average along the 134 test images. 

4. CONCLUSIONS 

An automatic method for estimating the 3D structure from a 
single 2D query image have been presented. A machine learn­
ing based approach have been adopted that infers the depth of 
the scene using a database composed by pairs of color and 
depth images. Our method uses LBP-based features to esti-

mate those images in the database that are more similar to a 
given query image. Then their depth maps are combined us­
ing a weighting scheme that achieves a higher accuracy in the 
depth estimation than other methods in the state of the art, 
while keeping the computational cost equal or below than the 
most efficient algorithm of this family. 
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