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Abstract: In this paper we focus on the selection of safeguards in a fuzzy risk analysis and management methodology 
for information systems (IS). Assets are connected by dependency relationships, and a failure of one asset may 
affect other assets. After computing impact and risk indicators associated with previously identified threats, 
we identify and apply safeguards to reduce risks in the IS by minimizing the transmission probabilities of 
failures throughout the asset network. However, as safeguards have associated costs, the aim is to select the 
safeguards that minimize costs while keeping the risk within acceptable levels. To do this, we propose a 
dynamic programming-based method that incorporates simulated annealing to tackle optimizations problems. 

1 INTRODUCTION 

There are several risk analysis and management 
methodologies for information systems (IS) that con­
form to International Organization for Standardiza­
tion (ISO) standars, specifically the ISO 27000 fam­
ily of standars. Some examples of these method­
ologies are MAGERIT, by the Spanish Ministry of 
Public Administrations (Lo´pez Crespo et al., 2006); 
CRAMM (CCTA, 2003), by the Central Computing 
and Telecommunications Agency (UK); or NIST SP 
800-30 (Stoneburner and Gougen, 2002), by the Na­
tional Institute of Standard and Technology (USA). 

These methodologies do not, however, consider 
uncertain valuations, but use precise values on differ­
ent, usually percentage, scales. Boolean values are 
sometimes even used to indicate whether or not assets 
are dependent on each other regardless of the degree 
of such dependency. In no case is vague or impre­
cise information about the input parameters allowed. 
In our opinion, this is an important drawback of these 
methodologies. 

In (Vicente et al 2013a) we proposed an exten­
sion of the MAGERIT methodology based on clas­
sical fuzzy computational models. This methodology 
includes the following milestones: 

1. Identification and Valuation of Assets 
An asset is anything that is of value to the or­
ganization and therefore requires protection. A 

few data, information or business process assets 
often account for the total value of an organiza­
tion’s assets. These assets are called terminal as­
sets. Other assets (support assets such as hard­
ware, software, personnel, facilities, ...) are valu­
able insofar as they are beneficial to the terminal 
assets, and they inherit the terminal asset value, 
according to the resulting benefit. Thus, support 
assets have no intrinsic value; they take their value 
from terminal assets. 
The identified assets of the organization are then 
valued. Some assets may have a monetary value 
(how much money the organization would lose if 
this asset stopped working), whereas others re­
quire a qualitative assessment (if an asset stops 
working the losses would be very high, low, 
medium...). 
As mentioned above, the support assets inherit 
their values from terminal assets depending on 
how they influence each other. So, we have to de­
termine the dependency relationships of the termi­
nal assets with respect to support assets, and also 
dependency relationships between support assets. 

2. Threat Identification 
A threat is an event that can trigger an incident 
in the organization, causing damage or intangible 
material loss to assets. Threats may be of natural 
or human, accidental or deliberate origin. Some 
threats can affect more than one asset. In such 



cases, threats can cause different impacts depend­
ing on what assets are affected. A detailed list of 
threats is available in Annex C of ISO IEC 27005. 
MAGERIT suggests two threat assessment mea­
sures: degradation, the damage that the threat can 
cause to the asset, and frequency, how often the 
threat materializes. 

3. Identification and Valuation of impact and Risk 
Indicators 
It is then necessary to qualitatively identify the 
consequences and establish impact and risk indi­
cators for the valued assets and threats. The im­
pact of a threat on an asset is the product of the 
asset value multiplied by the respective degrada­
tion. Risk is the product of the impact of the threat 
multiplied by the respective frequency. 

4. Selection of Safeguards 
Safeguards are measures for addressing threats. 
They can be procedures, personnel policies, tech­
nical solutions or physical security measures at 
the facilities. These safeguards can be preven­
tive, if they reduce the frequency of threats; or 
palliative, if they reduce the degradation of assets 
caused by threats (Lo´pez-Crespo et al., 2006). 
As described below, experts use a linguistic term 

scale (see Figure 1 and Table 1) to represent asset 
values, their dependencies and the frequency and as­
set degradation associated with possible threats. Risk 
analysis computations are then based on the trape­
zoidal fuzzy numbers associated with linguistic terms. 

However, direct assignment based on a rigid lin­
guistic term scale is not always advisable since the 
expert has no say in the number of linguistic terms 
that the scale is to include and about the appearance of 
their associate trapezoidal fuzzy numbers. In that case 
we propose the use of the betting and lottery-based 
method for fuzzy probability elicitation described in 
(Vicente et al 2013c). Betting and lottery-based meth­
ods commonly used to assign probabilities can also 
be used to assign fuzzy probabilities (Savage, 1954; 
Finetti, 1964). In this section we briefly describe 
these methods and show how a fuzzy number rep­
resenting the probability judgment can be extracted 
from experts. 

Betting Method. For two selected monetary values 
x > y, the expert is given the option between either of 
the two following gambles: 
• b1: If event A happens, then you win x$. Other­

wise, you lose y$. 

• b2: If event A does not happen, then you win y$. 
Otherwise, you lose x$. 
If the expert has no preference for either bet, the 

respective expected utilities of both bets are equal, 

and it follows that p(A) = x/(x + y). I f the expert 
chooses one of the two gambles, then the expected 
utility of the selected gamble should be higher than 
for the rejected gamble. Then, the analyst has to up­
date monetary values and offer the expert two new 
gambles. Thus, an interactive process is enacted un­
ti l two alternative gambles are reached to which the 
expert is indifferent. 

Lottery-based methods. For a given probability 
and monetary values x$ and y$, the expert is given 
the choice between the following lotteries: 

• l1: I f event A happens, then you win x$. Other­
wise, you losey$. 

• l2: You win x$ with probability p, or y$ with 
probability 1 —p. 

If the expert has no preference for either of the lot­
teries, then the respective expected utilities are equal, 
and it follows that p(A) = p. Otherwise, the expert 
must readjust the value p, keeping the same mone­
tary values. This again generates an interactive pro­
cess, enacted until a couple of lotteries are reached to 
which the expert is indifferent. 

The betting and lottery-based methods assume 
that the expert is able to provide a specific value for 
the probability of an event. However, a more realis­
tic scenario is where experts have an imprecise and 
vague idea of that value. Consequently, experts wi l l 
have an interval rather than a precise value in mind at 
the point when they are indifferent to either bet or lot­
tery, that is, for the lottery-based method there wil l be 
an interval [a, c] such that if p = [a, c], then the expert 
has no preference for either lottery l1 or l2. Similarly, 
the betting method can result in an interval of indif­
ference [b,d\. 

Current protocols for probability elicitation like 
the above recommend the use of several methods to 
test the consistency of the expert and the existence 
of bias. In this regard, the development of betting 
and lottery-based methods meets this recommenda­
tion and establishes the following: 

• I f [a, c] n [b, d] = 0 , then the expert’s probabilistic 
judgment was inconsistent. 

• I f any of the intervals is contained in the other 
[a,c] C [b,d] (or [b,d] C [a,c]), then we as­
sume that the trapezoidal fuzzy number (b, a, c, d) 
(or (a,b,d,c)) designates the expert probabilistic 
judgment. 

• I f [a, c] n [b, d] y^ 0 , is uncountable, and none of 
the intervals is contained in the other, then, as­
suming that a < b < c < d, (a,b,c,d) designates 
the expert probabilistic judgment. 

Thus, we consider the set of trapezoidal fuzzy 
numbers with support in [0,1], TF[0,1], i.e., 



Table 1: Linguistic term scale. 

Term 
Very Low (VL) 

Low (L) 
Medium-Low (ML) 

Medium (M) 
Medium-High (MH) 

High (H) 
Very High (VH) 

Trapezoidal fuzzy number 
(0, 0, 0, 0.05) 

(0, 0.075, 0.125, 0.275) 
(0.125,0.275, 0.325, 0.475) 
(0.325, 0.475, 0.525, 0.675) 
(0.525, 0.675, 0.725, 0.875) 

(0.725, 0.875, 0.925, 1) 
(0.925, 1, 1, 1) 

Figure 1: Linguistic term scale. 

A = (a,b,c,d) with 0 < a < b < c < d < 1 
and with a trapezoidal function in the vertices 
(a,0),(b,1),(c,1),(d,0) (Chen, 1996; Chen and 
Chen, 2003; Chen and Chen, 2009; Vicente et al., 
2013b). Note that R is a subset of TF[0,1] i f we 
consider the injection (Vicente et al 2013a) (|): R ^-> 
TF [0,1]; a « <\>(a) = (a, a, a, a) = a. 

Consequently, the following operators proposed in 
(Xu et al 2010) accounting for trapezoidal fuzzy num­
bers wil l be used to make computations: 

Given A1 = (a1,b1,c1,d1), A 2 = (fl2,^2,C2,<i2) € 
TF[0,1], then: 

• A 1 © A2 = (a1 + «2 — a1a2,b1 + £>2 — b1b2,c1 + 
C2 — c1C2,d1 -\-d2—d1d2) a n d 

• A 1 (g>A2 = ( f l 1 f l 2 j ^1^2 j C1C2,d1d.2). 

© and eg) are two internal composition laws in 
TF[0,1] that verify the commutative and associative 
properties and both have a neutral element. 

The assets of an IS are elements of value to the 
organization and therefore require protection (servers, 
files, personnel, facilities, hardware, software,...). 

As cited before, these assets are interrelated 
(Lopez Crespo et al, 2006), forming an acyclic graph, 
where just a few data, information items or business 
process assets often account for the total value of an 
organization’s assets. These assets are called termi­
nal assets. Other assets (support assets, such as hard­
ware, software, personnel, facilities,...) are valuable 
insofar as they are beneficial to the terminal assets. 
In other words, the support assets inherit their values 
from terminal assets depending on how they influence 

each other, i.e., depending on the probability of that 
any failure in an asset being transferred to the termi­
nal assets. 

In general, we say asset Aj directly depends on 
asset A,-, denoted by A; —> Aj, i f a failure in asset A; 
causes a failure in the asset Aj with any given prob­
ability. This probability is usually referred to as the 
degree of direct dependency of Aj with respect to A,-. 
Note that in this fuzzy adaptation the degrees of di­
rect dependency between assets wil l be represented 
by linguistic terms, which have associated trapezoidal 
fuzzy numbers. We denote these degrees of direct de­
pendency by d(Ai,Aj). 

These dependencies form a directed acyclic graph 
(to terminal assets), so that there may be intermediate 
assets between any asset A; and a terminal asset Ak 

which can propagate a fault generated in A,- through to 
the terminal A*. Our aim then is to compute the trans­
mission probability between A; and A*. This proba­
bility is called degree of indirect dependency between 

A; and A*, which is denoted by D(Ai,A]c) and can be 
computed as follows (Vicente et al 2013a). 

We denote by P={P1,..., Ps} the set of paths in the 
network connecting A; with A*. These paths are a se­
quence of arcs connecting a sequence of vertices, such 
that the start vertex and the last vertex are A; and A*, 
respectively. Then, 

A) I f all assets, excluding A,- and A*, in the paths in P 
are influenced by only one asset, then 

LJ ( A i A h ) 

where D (A ,•, A k | Pj) 

© D(AhAk\Pj) (1) 

" (A j jA j1 ®d{Ah,A2) (g) ...®d(Ajn,Ak) and 

J : v ' 71 J ->• -+Ajn^Ak). 

B) Otherwise, we assume that the first r paths in P 
are formed by assets (excluding A,- and A*) influ­
enced by only one asset, and the remaining s — r 
paths include at least one asset simultaneously in­
fluenced by two or more assets. Then, for the r 
first paths, we proceed as in A), and we denote by 
S the set including the s — r remaining paths. We 
proceed with S as follows: 

(i) Consider the set of non-terminal assets in S in­
fluenced by two or more assets, denoted by 7, 
and the subset of I including assets uninflu­
enced by any other asset in I, denoted by NI. 

(ii) We consider an asset Ar in NI. Then, we sim­
plify the paths in S that include asset Ar making 

A; —> Ar —>... —> Afc, with d(Ai,Ar) = £)(A,-,Ar) 
(computed as in A). 



( i i i ) Remove repeated paths f rom S and keep only 

one instance. 

(iv) Bu i ld / and NI again f rom S. 

(v) I f NI is not empty, go to ( i i ) . Otherwise, the 
algorithm finishes. 

Let us denote the resulting set of paths by S= 

{P[, •••iP'm\ w i th m < s — r. Then, the degree of 

dependency of A^ regarding A; is 

D(Ai,Ak) = © D(Ai,Ak\Pj) © D(Ai,Ak\Pi). (2) 
7=1 l=1 

Once we have computed the degree of indirect 

dependency between al l assets regarding the termi­

nal assets, we can compute the accumulated values 

for non-terminal assets v~i. These values usually have 

three components (ISO/IEC serie 27000): 

1. Availability. How much damage would i t cause i f 

the asset is not available or cannot be used? This 

is a typical services inspection. 

2. Confidentiality. How much damage would i t 

cause i f the asset is disclosed to someone i t should 

not be? This is a typical data inspection. 

3. Integrity How much damage would i t cause i f the 

asset is damaged or corrupt? This a typical data 

inspection. Data can be manipulated, be whol ly 

or partially false, or even missing. 

Therefore, 

7 ( \ D \ A { Afc) Cg) V£ 
k=1 

il) 
(3) 

where / denotes the /th component. 

Once assets have been valueted, the next step in 

the risk analysis methodology is to identify possible 

threats and compute the corresponding impact and 

risk indicators for the IS. 

Threats are characterized by how often the threat 

materializes (frequency) f and by the degradation 

D = (d1,d.2,d3) that the threat can cause to the three 

asset components. Note again that the frequency and 

degradation levels w i l l be selected by the expert f rom 

the linguistic term scale and, consequently, a trape­

zoidal fuzzy number w i l l be associated wi th each of 

them. 

Then, the impact of a threat on an asset Aj is 

// — a^j (So v\ 
(i) *• (i 

and the risk to the asset is 

R, (0 
/;,„ Cg) / . 

(4) 

(5) 

The results of these operations will be fuzzy num­
bers belonging to TF[0,1], which, generally, do not 

match up with the fuzzy numbers associated with the 
linguistic terms of the scale. Thus, a similarity func­
tion must be used to identify the most similar trape­
zoidal fuzzy number in the linguistic term scale to the 
fuzzy number output from computations. 

Different similarity functions have been proposed 
by several authors (Chen and Chen 2003, Chen and 
Chen 2009, Gomathi and Sivaraman 2012, Xu et al 
2010, Zhu and Xu 2012). In (Vicente et al 2013b) a 
new similarity function was proposed on the basis of 
the geometric distance between both fuzzy numbers, 
the distance between their centroids and/or the ratio 
between the common area and the joint area under the 
membership functions. 

Following the risk analysis and management 
methodologies for IS, Section 2 deals with the selec­
tion of safeguards that can be enforced to reduce the 
transmission probability of a failure throughout the 
IS. The aim is to minimize costs while keeping the 
risk at acceptable levels. To do this, we propose a 
mixed technique based on dynamic programming and 
metaheuristics, specifically, simulated annealing. 

2 SELECTION OF PREVENTIVE 
SAFEGUARDS 

From equations (3), (4) and (5) and the algorithm for 

computing degrees of indirect dependency, we can de­

rive the risk for the IS in each component / given a 

threat wi th frequency / and degradation D = < di > 

in the support asset A; as 
^ n ^ ^ ^ 

'(i) = iLDD{AiAk)eg)VK„ ®f®di, 
k=1 

V]c(l) being the value (constant) assigned to the termi­

nal asset Ak in the component /. 

Safeguards are measures for addressing threats. 

They can be procedures, such as incident manage­

ment and documentation; personnel policies, such as 

training and awareness of employees operating on 

the IS; technical solutions, such as identification and 

authentication mechanisms based on biometrics; or 

physical security measures of the facilities, such as 

temperature control systems. 

These safeguards can be preventive, i f they reduce 

the frequency of threats; or palliative, i f they reduce 

the degradation caused by threats on assets (Lopez 

Crespo 2006). As the degree of dependence between 

two assets is the transmission probabil i ty of failures, 

a special type of preventive safeguard is that which 

reduces dependencies between support and terminal 

assets. 



In this section we propose a method for reducing 
the degrees of dependency from all support assets to 
terminal assets minimizing the costs for the company. 

As mentioned above, the probability of transmis­
sion of failure D(Ai,Ak) is the result of fuzzy opera­
tions with the probabilities of transmission of failure 
through intermediate assets linking the attacked sup­
port asset with other asset. 

In each of these intermediate assets, safeguards 
can be enforced to reduce the probability of transmis­
sion of a failure. The effect induced for a safeguard 
in the probability of transmission of failures between 
two assets Au and Av can also be defined as a lin­
guistic term, which is represented by a fuzzy number 
e"'v G TF[0,1], so that if the degree of direct depen­
dency between the assets Au and Av is d(Au,Av), then, 
when we implement a safeguard with effect e"v, the 
degree of direct dependency is reduced to 

d(A^A v )®(1e^v), 

where 0 denotes the usual subtraction op­
eration between trapezoidal fuzzy num­
bers, i.e., (a1,0.2,0.3,0.4) © {b1,b2,b3,b4) = 
(fl1 — &4,fl2 -^3,^3 — ^2,^4 — b1). 

Note that 0 is not an internal composition law in 
TF[0,1], however, 

• A,B G TF[0,1] => A(gi (1 ©5) G TF[0,1], 

• A 0 (1 ©5) < A with the partial order of the trape­
zoidal fuzzy numbers (i.e., A <B •$$• a1 <b1,02 < 
b2, «3 < b3, «4 < b4 ) and 

• A 0 ( 10 B) decreases with B. 

We consider the set of safeguards that hinder the 
direct transmission of failure between Au and Av, Su,v. 
Each safeguard Su

p
,v G Su'v has a monetary cost cp'

v 

over d(Au,Av), which is reduced to 

d(Au,Av) 0 (1 Qep' ) . 
The problem of keeping an acceptable level (low 

or very low) for the failure transmission probabilities 
among support and terminal assets with minimal costs 
can be represented as follows: 

mm LLCp xp 

u,v p 

S.t. 

D{A~Ak) <UikVi,k ' 
xu

p'
v G {0, 1}VK,V,/? 

where i and k in the first set of constraints refer to 
non-terminal and terminal assets, respectively, [/& is a 
residual value accepted by the experts, xu

p'
v are the de-

cision variables (xp = 1 means that safeguard Sp is 

selected), and D(A{,Ak) is reassessed replacing values 

d(Au,Av) by the affected values regarding the selected 
safeguards: 

<f(Au,Av)0 0(1©2^'V) 
p 

and an effect ep 

where Au and/lv are two consecutive assets connected 
by an arc in some path between A; and A*. 

Note that the fact that the usual order in TF [0,1] is 
a partial order constitutes a very restrictive constraint 
in our optimization problem, so we wi l l use the con­
cept of similarity function to relax this constraint. 

If we define a threshold a G [0,1] and a similar­

ity function S, the constraint D(A,-, A*) < [/;* Vi, k can 

be replaced by S(D(Ai,Ajc),Unc) > oc. Thus, the re-
strictiveness of the constraint increases proportionally 
to the threshold value and the feasible solution set 
wi l l be composed of solutions that verify these soft­
ened/relaxed constraints. 

Remember that indirect dependencies are recur­
sively computed following the algorithm described in 
Section 1. Thus, the degree of dependency of the 
support assets further away from the terminals can 
be computed from the degree of dependency of the 
closest assets. Therefore, the problem can be solved 
in stages, and the principle of optimality in dynamic 
programming is verified: Given an optimal sequence 
of decisions, every subsequence is, in turn, optimal. 
Then we proceed as follows: 

• Let L0 be the set of terminal assets. 

• Consider L1 including support assets whose chil­
dren belong to L0 only (L1 is not empty because 
the graph is acyclic). Identify safeguards that min­
imize costs keeping the degrees of dependency 
over their children at an acceptable level. 

• Consider L2 including support assets whose chil­
dren belong to L0 U L1 only. Identify safeguards 
that minimize costs keeping the degrees of depen­
dency over L0 under an acceptable level. Note that 
the degrees of indirect dependency from the chil­
dren of L2 to terminal assets have already been 
computed in the previous stage, so we just need 
to identify the direct degree of dependency over 
assets in L0 U L1. 

• Consider L; including support assets whose chil­
dren belong to L0 U L1 U ... U L,-_1 only. Iden­
tify safeguards that minimize costs keeping the 
degrees of dependency over L0 under an accept­
able level. Note that again we just need to iden­
tify the direct degree of dependency on assets of 
L 0 U L 1 U... ULj_1. 



Simulated annealing (Kirkpartick et al 1983, Cerny 
1985) is applied in each step of the algorithm to de­
rive the optimal selection of safeguards. It is a trajec-
torial metaheuristic which is named for and inspired 
by annealing in metallurgy. 

An initial feasible solution is randomly generated. 
In each iteration a new solution y is randomly gen­
erated from the neighborhood of the current solution, 
y G N(XJ). I f the new solution is better than the cur­
rent one, then the algorithm moves to that solution 
(x,-+1 = y), otherwise the movement to the worst solu­
tion is performed with certain probability. 

Note that accepting worse solutions allows for a 
more extensive search for the optimal solution and 
avoids trapping in local optima in early iterations. 

The probability of accepting a worse movement 
is a function of both the temperature factor and the 
change in the cost function. 

The initial value of temperature (T) is high, which 
leads to a diversified search, since practically all 
movements are allowed. As the temperature de­
creases, the probability of accepting a worse move­
ment falls. I f the temperature is zero, then only better 
movements wil l be accepted, which makes simulated 
annealing work like hil l climbing. 

The pseudocode of simulated annealing for a min­
imization problem is as follows: 

• Generate an initial feasible solution X0. D o X* = 
X0, f* = f(x0), i = 0. 
Select the initial temperature t0 = T (?,- tempera­
ture in the step i) 

• Repeat until stopping criterion is satisfied: 

- Randomly generate y G N(xi) 

* If f{y) — f(xi) < 0, then 

• xi+1 = y 
• I f f(x*) > f{y), then x* =y,f* = f(y) 

* Else 
• p ~ £/(0,1) 
• I f p < e - ( /M - /W)A ' , thenx;+1 =y 
• Elsex;+1 =xi 

– i = i-\-1 

- Update temperature 

3 AN ILLUSTRATIVE EXAMPLE 

Let us consider the IS shown in Figure 2 with the di­
rect degrees of dependency assessed by the experts 
considering the linguistic terms of Table 1, which has 
only one terminal asset, A6. 

Figure 2: Direct dependencies in the IS. 

The set of paths in the analysis of the influence of 

A1 over A6 is P = { 

• P1 : (A1 —> A2 —> A6), 

• P2 : (A1 —> A2 —> A3 —> A6), 

• P3 : (A1 —> A2 —> A3 —> A4 —> A6), 

• P4 : (A1 —?>A3 —> A6), 

• P5 : (A1 —> A3 —> A4 —> A6), 

• P6 : (A1 —> A4 —> A6), 

• P7 : (A1 —> A5 —> A6)}. 
Asset A3 is influenced by A1 and A2, and A4 is 

influenced by A1 and A3. Therefore, we proceed as in 
B) of the algorithm described in Section 2, with r = 2 
and S= {P2,P3,P4,P5,P6}, as follows: 

(i) I = {A3,A4} andNI = {A3}. 

(ii) Select A3, then simplify paths P2, P3, A and P5 to 

- P2 : (A1 —> A3 —> A6), 

- P3 : (A1 —> A3 —> A4 —> A6), 

- P4 : (A1 —> A3 —> A6) and 

- P5 : (A1 —> A3 —> A4 —> A6), 

respectively, with <f(A1,A3) = D(A1,A3) = 

(d(A1,A2)®d(A2,A3)) ®d(A1A3). 

(iii) S= {P2,P3,P6 } since P'2 = P4 and P3 = P5. 

(iv) / = {A4} and NI = {A4}. 

(v) Go to (ii). 

(ii) Select A4, then simplify paths P'3 and P6 to 

- P3 : (A1 —> A4 —> A6), and 

- P6 : (A1 —> A4 —> A6), 

respectively, with d(A1,A4) = D(A1,A4) = 

(d(A1A3)®d(A3,A4)) ®d(A1,A4). 

(iii) S= {P^P3} sinceP^ = P6. 

(iv) I = 0 y NI = 0. 

(v) The algorithm finishes since NI = 0. 



Finally, S= {P^P3 and the degree of dependency 

of A6 regarding A1 is D(A1,A6) = D(A1,A6\P1) © 

DiMMP7) ®jHA^\P^)j^D(A^\Pf) = 

(d(A1,A2) <g>d(A2,A6)) © (d(A1,A5) <g>d(A5,A6)) © 

(rf(A1,A3)(8)rf(A3,A6))e(rf(A1,A4)(8)rf(A4,A6)) 
The degree of dependency of A6 regarding A1 is 

D(A1,A6) = (0.980,0.999,0.999,1) if we consider 
the linguistic terms of Table 1 show in Figure 3. 

Let us consider a threat on asset A1 with frequency 
f = M and degradation d = (H,H,H), then the risk 
to asset A1 is R1(l) = (0.23,0.415,0.485,0.675), / = 
1,2,3. 

We consider the asset network and the fuzzy direct 
dependencies shown in Figure 2 corresponding to an 
IS. Besides, the set of available safeguards of failure 
transmission between support assets are shown in Ta­
bles 2-5. 

We also consider the fuzzy threshold U = 
(0,0,0.1,0.2) below which the degree of dependency 
between all assets and terminal assets wil l be accept­
able, and let a = 0.95. In other words, the similar­
ity of the degree of dependency after applying the se­
lected safeguards for the given U must be at least 0.95. 

The set of solutions in each stage is represented 
by binary matrices, in which each row represents the 
safeguards of S"v, which prevents the failure transmis­
sion from asset u to v considered in that stage. 

We use the similarity function proposed by (Chen 
1996): Given two trapezoidal fuzzy numbers A = 
(a1 , f l 2 j f l 3 j f l 4 ) a n d B = (b1,b2,b3,b4), 

Table 2: Safeguards for A1. 

4 

S(A,B) = 1 
I CLi — bi | 

4 

Although other similarity functions have been pro­
posed in the literature (Chen and Chen 2003, 2009, 
Sridevi and Nadarajan 2009, Xu et al 2010, Hejazi et 
al 2011, Gomathi and Sivaraman 2012, Zhu and Xu 
2012, Vicente et al 2013b), we have decided to use 
the geometric distance between both fuzzy numbers 
due to its low computational cost. 

Dynamic programming is then executed as fol­
lows: 

First, note that L0 = {A6}, since the only terminal 
asset in the IS in Figure 2 is A6. 

• Stage 1: L1 = {A4,A5}. We adjust the degrees of 
dependency 

D(A4,A6) d(A4,A6) 0 

VH 0 0 ( 1 0 ep' Xp ) 
LP 

d(A5,A6) 0 

0 ( 1 Qep xp ) 
p 

and D(A5,A6) 

0 (1 © e,p Xp ) 
_p 

Tag 
r1,2 
13 1 
r1,2 
^2 

1,2 
S3 
r1,2 
J 4 

01,2 
5 
1,2 
6 
1,2 
7 

r1,2 
^8 
r1,2 
J 9 

14 

s14 
1,4 

S3 

1,4 
4 

01,4 
5 
1,4 
6 
14 
1,4 
8 
1,4 

J 9 

1l,4 

1,4 
11 
1l,4 

S 2 

Tag 
r,2,3 

131 
r,2,3 

^ 2 
2,3 

S3 

2 4 

S 2 5 ' 
c2,3 

6 
r,2,3 

c2,3 
8 

r,2,3 
J 9 

Effect 

L 

M 

MH 

M 

M L 

L 

VL 

MH 

VH 

M 

M 

MH 

VH 

M 

M 

M 

M 

H 

H 

L 

M 

Table 

Effect 

M 

L 

M L 

M 

M L 

M 

M 

M 

L 

Cost 

100 

300 

550 

430 

125 

240 

100 

324 

570 

209 

267 

342 

789 

234 

356 

276 

200 

467 

342 

127 

207 

Tag 
r1,3 
13 1 
r1,3 
,32 

1,3 
S3 
r1,3 
J 4 

1 ,3 
5 
1 ,3 
6 

e ,3 
1 7 

1 ,5 
131 
r1,5 
,32 

1,5 
S3 
1.5 
4 
1 ,5 
5 
1 ,5 
6 

r1,5 
,37 

1 ,5 
8 

r1,5 
J 9 

Effect 

MH 

H 

L 

M L 

VL 

MH 

M 

M 

M 

L 

M 

MH 

H 

MH 

M 

M 

3: Safeguards for A2. 

Cost 

356 

87 

267 

320 

156 

320 

256 

300 

200 

Tag 
r,2,6 
13 1 
r,2,6 
,32 

2,6 
S3 
02,6 

4 
02,6 

5 
c2,6 

6 
r,2,6 
,37 
c2,6 

8 
r,2,6 
J 9 

1 2,6 

r,2,6 

1 2,6 

02,6 
5 13 

Effect 

M 

L 

M L 

M L 

M L 

M 

M L 

M 

L 

M L 

M 

L 

M L 

Cost 

356 

324 

110 

345 

87 

345 

200 

230 

345 

187 

321 

345 

543 

356 

206 

342 

Cost 

348 
187 
254 

367 

567 
390 

256 
307 

235 
124 

400 

278 
260 

H 0 0(1 0£p' ^p' ) 

such that S(D(A 4 ,A 6 ),U) > 0.95 and s (D(A 5 ,A 6 ),U) > 

0.95,2J being the effect induced for the safeguard 
-5,6 

1,... , 10, ep the effect induced for the 
4,6 

5,6 
safeguard S5

p
,6, p = 1 

4,6 

1 5 4,6 
JCn — 

1 or x4
p
,6 = 0 if 

the safeguard S4
p
,6, p = 1,...,10, is selected or not, 



Table 4: Safeguards for A3. 

Tag 
(,3,4 
^ 1 
c3,4 
^ 2 

3,4 
S3 
c-3,4 
J 4 

c.3,4 
^ 5 
c-3,4 
^ 6 
c.3,4 
^ 7 
c.3,4 
^ 8 
c.3,4 
•59 

Effect 

M 

H 

M 

M 

M 

H 

L 

L 

M 

Cost 

345 

650 

200 

367 

388 

453 

189 

256 

345 

Tag 
c-3,6 
^ 1 
c,3,6 
^ 2 

3,6 
S3 
c,3,6 
J 4 

c-3,6 
^ 5 
(,3,6 
^ 6 
c-3,6 
^ 7 

Effect 

M 

M 

M 

M 

M 

M 

M H 

Cost 

267 

356 

378 

324 

345 

231 

453 

Table 5: Safeguards for A4 and A5. 

Tag 

4 1 ' 
c.4,6 
^ 2 

4,6 
S3 
c.4,6 
J 4 

e4,6 
^5 
c.4,6 

6 
c.4,6 
J 7 

c4,6 
8 

c.4,6 
J 9 

1 4 ,6 
5 o 

Effect 

M 

M 

ML 
M 

M 
M 

M 
M 

M 
MH 

Cost 

260 

245 

170 
256 

367 

289 
278 
345 

240 
435 

Tag 

5 1 ' 
5,6 

^2 
5,6 

S3 
5,6 

J 4 

„5,6 
^5 

5 ,6 
6 

c.5,6 
J 7 

e5,6 
8 

c.5,6 
J 9 

e5,6 
10 

c.5,6 
^11 
c.5,6 
J 1 2 
c.5,6 
J 1 3 
c.5,6 
J 1 4 
c.5,6 
5 15 

effect 

M 

M 

L 
ML 

M 
MH 

MH 
M 

ML 
L 

M 

M 
M 

L 
MH 

Cost 

200 

210 

120 
234 

267 
367 

366 
254 

145 
206 

306 

345 
280 

178 
377 

respectively, and x5
p
,6 = 1 or x5

p
,6 = 0 depending 

on whether or not the safeguard S5
p
,6, p = 1,...,15, 

minimizing the cost. 
As L1 contains two elements, two optimization 
problems must be solved in this stage, associated 
with A4 and A5, respectively. 

Regarding asset A4, solutions are represented by 

the vector x4,6 = (x4
1

,6,x4
2

,6,...,x4
1

 ,
0

6), see Table 5, 

where x4
p
,6 = 1 if the safeguard S4

p
,6 is selected. 

The respective optimization problem to be solved 
using simulated annealing is: 

4,6 4,6 4,6 4,6 

min c x + ... + c x 1 1 10 10 
S.f. 

S D(A 4 ,A 6 ),U > 0.95 

Xp € {0 ,1} ,p = 1,.. . , 10 

(6) 

Cost 
o 
o 
o 
CM 

o 
o 
o 

"i i i i r 
200 400 600 800 Time 

Figure 3: Objective function evolution in the optimum set­
ting of D(A5,A6). 

shown in the second row of Table 6, correspond­
ing to vector x4'6 = (0,1,1,1,0,0,0,0,1,0). 
Regarding asset A5, solutions are now represented 

5,6 5,6 5,6 by the vector x5,6 = (x5
1 

5. The optimization problem to be solved is: 
x5

1
 ,
5

6), see Table 

5,6 5,6 
min c1 %1 

5,6 5,6 
• + c15x15 

S.t. 

S D(A 5 ,A 6 ),U > 0.95 

Xp € {0,1},/? = 1,... , 15 

(7) 

The optimal solution and the associated costs are 

The evolution of the objective function over time 
for the best solution found is shown in Figure 3. 
The optimal solution and the associated costs are 
shown in the first row of Table 6, corresponding to 
vector x5'6 = (1,0,0,0,0,0,1,0,1,0,0,0,0,0,0). 

The new degrees of dependency after the applica­
tion of the selected safeguards and the respective 
similarity to the fixed threshold, U, are shown in 
the first two rows of Table 7. 

The purpose of this paper is to describe how a 
mixture of dynamic programming techniques and 
metaheuristics can efficiently solve the problem 
and not to detail or compare the applied meta-
heuristic (simulated annealing) with others. How­
ever, we do think it is worthwhile to describe some 
parameters used in the implementation and to re­
port a sensitivity analysis analyzing the effects 
caused by the changes to these parameters. 

- We randomly generate a sequence with binary 
values and check i f the similarity constraint is 
verified to derive the initial solution. The length 
of the binary sequence depends on the problem 
(15 when dealing with x5'6, 10 when dealing 
withx4 '6...). 

- The neighborhood of a solution is composed of 
any solutions that can be derived by changing 
the value of one of the binary elements of the 
solution, selected at random. I f the resulting 



solution is not feasible (does not verify the sim­
ilarity constraint), then it is discarded and an­
other solution is generated in the neighborhood 
until a feasible solution is found. 
The initial temperature assures acceptance 
probabilities of worse solutions close to 0.9 in 
the initial iterations of the algorithm. The ini­
tial temperature is computed to obtain a high 
probability of acceptance (> 0.9) of any neigh­
bor of the initial solution, i.e., given the initial 
solution x0, the minimum value T is computed 
such that 

e-(f(y)-fW)/T > 0.9, \/y e N(x0) and feasible, 

Table 6: Optimal solutions and costs for each asset. 

with: 
f{y) — f(x0) > 0. 

In other words, 

T = max 
yeN(x0) 
feasible 

(f(y) — f(x0)) 

ln(0.9) 

because i f we have T > -(/(y)-/(*0)) Vy e ln(0.9) 

JV(X0) and feasible, wi th / f j ) — f(x0) > 0, 
then /«(0.9) < ~u W-/W; ; y-y g 
N(x0) and feasible, with f(y) — f(x0) > 
0, and since e* is an increasing 

function, 0.9 < e T vy £ 
N(x0) and feasible, with f(y) — f(x0) > 0. 
The pseudocode, starting from x0 = 
(x0[1], ...,x0[«]), as follows: 

* y = x0, T = 0, i = 1. 
*• While i < n. Do y[i] = 1 —y[(\. 

• If y is a feasible solution then, if 
~i(0 9) > T, we have 

T = 
(f(y) —/(x0)) 

/«(0.9) 

• y = x0, i = i+ 1. 
The solution x0 has at most n feasible neigh­
boring solutions. We have evaluated all neigh­
boring solutions that are worse than the initial 
solution in those n steps. 
In the unfortunate event that the initial solu­
tion is the worst of its neighborhood, the initial 
value of the resulting T is null. Therefore we 
must start from another initial solution. This 
does not degrade the algorithm, because it can 
return to the neighborhood of the discarded so­
lution at any time. 
Thus the initial temperature that leads to the op­
timal solution over A 5 (for optimization prob­
lem (7)) is 3578.191. 

Asset 

^ 5 

A4 

A3 

A-2 
A1 

Solution 
r5 ,6 r5 ,6 r5 ,6 

4,6 4,6 4,6 4,6 
S2 , S3 , S4 ,S9 
r r3,6 r r3,6 r r3,6 r r3,6 

r*2,3 n2,6 n2,6 n2,6 r*3,6 

(1,2 (1,3 (.1,4 

Total cost 

Cost 

711 
911 
1275 
1551 
1236 
5684 

The temperature is maintained constant for L = 
20 iterations and then it decreases after multi­
plying by 0.95, so that, after h * L iterations, the 
temperature is th*L = 0-95h

0. 
- The algorithm stops if / has not improved in 

the last 100 iterations. 

Table 7 shows the best solutions reached after run­
ning the algorithm with different values for a to 

minimize D(A5, A6). Note that i f the constraint is 
more restrictive, allowing only minor differences 
with the threshold U, the set of safeguards for im­
plementation wil l be larger. The same effect oc­
curs when we use a more accurate (with a smaller 
support) threshold U. Therefore, experts must 
choose lower or higher levels of acceptable ac­
curacy regarding the dependency between assets, 
i.e., the accepted risk considering this fact. 

• Stage 2: L2 = {A3}. The degrees of dependency 

d{A3 A6) and d{A3 A4) are adjusted by minimiz­
ing costs and incorporating the soft constraint 

© 

SD(A.3 ,A 6 ),U > 0.95, where 

D(A3,A6) = 

Lf(A3A4)g> 

d(A3,A6)(g> g> (1Qep' Xp ) 
v>=1 

g> (1ef/x3/) ) <g>D(A4,A6) 
P=1 

Note that D(A4,A6) was 

in Stage 1, D(A4,A6) 

computed 

VH g> 

(1©«2 > ®{1Qt43
6)®{1Qt44

6) g> (10e 9 ' ) 

(0.016,0.072,0.104,0.269). The optimization 
problem to be solved in this stage is 

3,6 3,6 
mm C1 X 1 

3,4 3,4 
c 1 1 

3,6 3,6 . . + C7 X7 + 
3,4 3,4 

• 1 Co -^Q 

SD(A 3 ,A 6 ),U > 0.95 

Xp'6G{0, 1},p= 1,...,7 
Xq € {0,1} ,q= 1, ...,9 

The optimal solution and the associated cost is 



Table 7: D(A^,A(,) and associated costs for different a levels. 

oc 

0.8 

0.9 

0.95 

0.98 

D(A5,A6) 

(0.05,0.23,0.27,0.46) 

(0.02,0.09,0.12,0.30) 

(0.01,0.07,0.11,0.28) 

(0.00,0.03,0.06, 0.20) 

Similarity 

0.81 

0.93 

0.95 

0.98 

Cost 

554 

653 

711 
1021 

shown in the third row of Table 6, correspond­
ing to vectors x3 '6 = (1 ,0 ,0 ,1 ,0 ,1 ,1) and x3 '4 = 
(0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) . The new degree of depen­
dency after the application of the selected safe­
guards and the corresponding similarity to the 
fixed threshold, U, are shown in the third row of 
Table 7. 

• Stage 3: L3 = {A2}. The degrees of depen­

dency d(A2,A3) and d(A2,A(,) are adjusted min i ­

mizing costs and incorporating the soft constraint 

s (D(A 2 ,A 6 ),U) > 0.95 , where 

D(A2,A6) = 

<f(A2 ,A3)© 

d(A2,A6)®> 
i3 /T „~2,6 2,6 N 
© [lQep xp ) © 

2,3 2,3 
© ( l e e ? Xp'3) ®D(A3,A6) 

P=\ 

Note that D(A3,A(,) was computed in Stage 
3,6 

2, D(A3,A$) = [d(A3,A(,) © (1 0 e{ ) ® (1 0 
3,6 3,6 3,6 

£4' ) © (1 © e6' ) © (1 © e7' )] © [d(A3 A4)) © 

D(A4,A6)} = (0.008,0.059,0.096,0.301). 

The optimal solution and the associated cost are 

shown in the fourth row of Table 6, correspond­

ing to vectors x2 '3 = (0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ) and 

x2 '6 = ( 1 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 ) . The new 

degree of dependency and similarity to U, are 

shown in the fourth row of Table 8. 

• Finally, L\ = {A\}. The degrees of dependency 

d(A\,A2), d(A\,A3), d(A\,A^) and d(Ai,A$) are 
adjusted minimiz ing the cost and considering the 

soft constraint S [D(Ai,A(,),u\ > 0.95, where 

D\ A1 Afi,) 

1,2 1,2 d(AhA2)(g>l ®(lQep' xp' )\®D(A2,A6) 

d(A\ A 3 ) © ( © (ieep'3xp'3) ) ©£) (A 3 ,A 6 ) 

d(Ai,Ai)® I © (lQep' Xp ) I ©£>(A4,Ag) 

rf(Ai,A5)© ( © (T©4'54'5)) ©D(A5,A6) 

Note that D(A2,A6), D(A3,A6), D(A4,A6) and 

Table 8: New degrees of dependency after applying safe­
guards. 

Asset 

A5 

A4 

A3 

A2 

A i 

D(Aj,A6) 

(0.015,0.077,0.114,0.280) 

(0.016,0.072,0.104,0.269) 

(0.008,0.059,0.096,0.301) 

(0.008,0.057,0.094,0.316) 

(0.005,0.045,0.082,0.327) 

Similarity U 

0.953 

0.959 

0.956 

0.953 

0.951 

Figure 4: Risk in each component of A 1 before and after 
implementation of optimal safeguards 

D(A$,A(,) were computed in previous stages, 

D(A2,A(,) = [d(A2,A(,) © ((1 © g j ' ) © 
2,6 2,6 

1 
2,6 (1 © £5' ) © (1 © ej ) © (1 © e^Q))] © 

\d(A2A3) © ((ioe-j ) ) © D(A3,A(,)] = 

(0.008,0.057,0.094,0.316), 

D(A3,A6) = (0.008,0.059,0.096,0.301), 

D(An,A(,) = (0.016,0.072,0.104,0.269) and 

D(A$,A(,) = (0.01,0.07,0.11,0.28). 

The optimal solution in this stage is shown in the 
last row of Tables 6 and 7. 

After implementing the best safeguards, the 
risk caused by the previously considered 
threat over asset A\ in each component is 

tfi (0 
= (0.001,0.018,0.039,0.22), / = 1,2,3. 

The risks associated with this threat before and af­
ter implementation of safeguards are illustrated along 
with the risk threshold in Figure 4. 

4 CONCLUSIONS 

We propose a model for selecting safeguards to re­
duce risks in information systems based on the reduc­
tion of the degree of dependency between support as­
sets and terminal assets. As safeguards have associ­
ated costs, our aim is to select safeguards that mini­
mize costs while keeping the risk with acceptable lev­
els. 



Although a metaheuristic could be used to solve 
this optimization problem, dynamic programming 
combined with simulated annealing was used because 
of the special structure of the constraint set. This leads 
to a more computationally efficient solution to the 
safeguard selection problem. Also the fuzzy environ­
ment allows experts to provide imprecise and vague 
failure propagation probabilities. 

Another way to reduce system risk is to act on the 
probability of threats to each asset materializing or re­
ducing the degradation of assets caused by threat ma­
terialization. This is a multiobjective problem (degra­
dation has three components), which will be consid­
ered in future research. 
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