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A B S T R A C T 

This paper addresses the determination of the realized thermal niche and the effects of climate change on the range distribution of 
two brown trout populations inhabiting two streams in the Duero River basin (Iberian Peninsula) at the edge of the natural 
distribution area of this species. For reaching these goals, new methodological developments were applied to improve reliability 
of forecasts. Water temperature data were collected using 11 thermographs located along the altitudinal gradient, and they were 
used to model the relationship between stream temperature and air temperature along the river continuum. Trout abundance was 
studied using electroñshing at 37 sites to determine the current distribution. The Representative Concentration Pathways RCP4-5 
and RCP8 5 change scenarios adopted by the International Panel of Climate Change for its Fifth Assessment Report were used 
for simulations and local downscaling in this study. W e found more reliable results using the daily mean stream temperature than 
maximum daily temperature and their respective 7 days moving average to determine the distribution thresholds. Thereby, the 
observed limits of the summer distribution of brown trout were linked to thresholds between 18 1 and 18-7 °C. These 
temperatures characterize a realized thermal niche narrower than the physiological thermal range. In the most unfavourable 
climate change scenario, the thermal habitat loss of brown trout increased to 3 8 % (Cega stream) and 11% (Pirón stream) in the 
upstream direction at the end of the century; however, at the Cega stream, the range reduction could reach 5 6 % due to the effect 
of a 'warm-window' opening in the piedmont reach. 

I N T R O D U C T I O N 

Temperature has a large influence on the biological success 

of ñsh and other aquatic organisms (Nukazawa ef af. 2011), 

acting as a fundamental driver affecting the energy budget, 

growth (Elliott ef of. 1995; Elliott and Hurley 1999, 2001; 

Forserh ef aZ. 2009; Elliott and Allonby 2013) and other 

physiological functions of ñsh (Jeffries ef aZ. 2012; Warren 

ef aZ. 2012; Lahnsteiner and Leitner 2013; Vornanen ef aZ. 

2014), such as ecological relationships (Hein ef aZ. 2013; 

Fey and Herrén 2014) and even 'personality' (Frost ef aZ. 

2013). Temperature is a component of the ecological niche, 

and it is named 'thermal niche' (consolidated term in 

bibliography: e.g. Magnuson and Destasio 1996; Wehrly 

ef of. 2003; Angilletta 2009; Finsfad ef of. 2011). 

Sporila ef aZ. (1989) defined physiological niche as the 

set of environmental conditions under which a species can 

persist (cf. Hutchinson 1957; Leibold 1995). 'Persist' 

means thai dN/df>0 (May and McLean 2007). The 

temperature range at which the brown trout has a positive 

somatic growth was established by several works 

(3 6-19 5 °C in Elliott ef of. 1995; ̂ proximately 5-23 °C 

in Forserh ef aZ. 2009). This range of thermal efficiency is 

closely linked to the fundamental physiological niche for 

thermal conditions (fundamental thermal niche) (Angilletta 

2009) for brown trout. This range must be at most equal to 

the tolerance range of temperatures as defined by the 

temperatures of incipient lethality [0-25 °C, approximately 

(Elliott and Elliott 2010)]. The general approach for 

thermal niche as defined by Magnuson and Destasio 

(1996) (the preferred temperature ±5 °C, accepting that ñsh 

spend all their time within this interval) seems to approach 

to the realized niche better than to the wider fundamental 

thermal niche. Nonetheless, the optimal growth tempera­

ture is inñuenced by ñsh uptake and ñsh size. Forserh and 

Jonsson (1994) reported rhar rhe optimal growth temper­

ature for ñsh eating brown trout was 16 °C, which is higher 

rhan rhar found for trout fed with pellets (average: 13 5 °C, 

Forserh ef af. 2009) or invertebrates (average: 13-1 °C 



Elliott ef aZ. 1995). O n the other hand, the optimal 

temperature changes with fish size (Handeland ef aZ. 2008, 

Morita ef aZ. 2010). Thus, it is not straightforward to give one 

ñgure for optimal temperature for growth in a species. 

Stream temperature is strongly correlated with air 

temperature (Edinger ef aZ. 1968; Mohseni e( aZ. 1998; 

Bogan ef aZ. 2003; Caissie 2006), and an increase in 

temperature due to global warming can dramatically 

disturb aquatic ecosystems (Wade, 2006; Woodward 

ef aZ. 2010). Climate change has the potential to increase 

or decrease habitat availability (Hughes 2000, Parmesan 

2006). By this reason, the distribution of cold-water species 

such as brown trout and other salmonids is likely to suffer a 

displacement in the lower limits of their range to higher 

altitudes and latitudes (i.e. Crozier ef aZ. 2008, Beer and 

Anderson 2013, Ruesch ef aZ. 2012, Eby ef aZ. 2014). The 

simulation of climate scenarios can help us assess the 

magnitude of the loss of suitable habitat ranges, not only in 

terms of the distribution range but also in terms of the 

physiological efficiency (i.e. Hari ef aZ. 2006; Jonsson and 

Jonsson 2009; Wenger ef aZ. 2011; Ayllón ef aZ. 2013). 

According to Haldane's second hypothesis (Haldane 1956), 

these losses are more likely to be noticed at the limits of the 

thermal axis of the species' ecological niche. This is the 

case for several Iberian populations of brown trout, which 

inhabit the southern edge of the native distribution of this 

species. 

The variation of the thermal regime, similar to other 

physical variables, is a continuum within a given stream 

network that tracks the geographical and physiographical 

changes along the network (Vannote ef aZ. 1980). To 

represent this continuum, modelling can be a useful tool. 

Many deterministic, regressive and stochastic models have 

been developed to relate both air temperature and stream 

temperature. Deterministic models use an energetic budget 

to forecast stream temperature (Theurer ef aZ. 1984; Evans 

ef aZ. 1998), whereas regressive and stochastic models 

mainly use the relationship with air temperature to predict 

stream temperature (Caissie ef aZ. 1998, St-Hilaire ef aZ. 

2011). Although deterministic models have a high 

explanatory strength, regressive and stochastic models 

may also exhibit high predictive power. Moreover, the type 

of data needed by the deterministic models is much harder 

to collect than the data needed by the regressive and 

stochastic models. Meteorological services have a large 

amount of spatial and temporal information on air 

temperature, which makes this variable very attractive for 

forecasting future stream thermal behaviour from climatic 

models. 

The aim of this study is to quantitatively describe the 

influence of temperature on trout distribution along streams 

and determine how it is affected by climate change. For this 

purpose, w e empirically determined the threshold temper­

ature that characterizes the distribution limits of trout in the 

study area. W e selected the best predictor among different 

expressions of temperature, namely the daily mean 

temperature for 7 consecutive days (studied as a series, 

not averaged), the weekly moving average of daily mean 

temperatures, the daily maximum temperature for 7 

consecutive days and the weekly moving average of daily 

m a x i m u m temperatures. Next, w e adopted the best 

indicator to create projections based on the latest climate 

change scenarios (Taylor ef aZ. 2009, adopted by IPCC 

2013). In this study, global climate models (which have 

coarse resolution) were transformed to a local scale using a 

statistical downscaling method to obtain the local out­

comes. W e continuously modelled the stream temperature 

throughout the length of the streams at a daily resolution 

and then simulated the change of the thermal habitat. Our 

methodology aims to decrease the necessary steps to reach 

this goal by reducing the statistical uncertainty. 

MATERIALS A N D METHODS 

Awdy fife 

Fieldwork was conducted in two tributaries of the Duero 

River [Cega and Pirón streams (40°59'N; 3°50'W), central 

Spain]. The Cega and Pirón streams are 135 and 92km 

long, respectively. The Pirón stream is the main tributary of 

the Cega stream. There is only one major dam in Pirón 

(Torrecaballeros dam; capacity: 0-324 hm^; maximum 

depth: 26 m; altitude: 1390 m a.s.l.), and there are no dams 

in Cega that are able to significantly alter the now regime. 

Granitic meta-detritic geology dominates the headwater 

basins. A karst belt occurs in the piedmont zone, giving 

way to large sand ñatlands of detritic-tertiary origin with 

detritic-quatemary alluvial deposits. 

Gauging stations 2016 and 2714 (official network codes; 

at 938 and 838 m a.s.l., respectively) in the Cega stream and 

2057 (869 m a.s.l.) in the Pirón stream were used to 

characterize the hydrological regime of both streams. 

Snowmelt and winter-spring rainfall are important in these 

basins. Thus, an 'extreme winter' becomes an extended 

'moderate winter' (Haines ef aZ. 1988). Dry summers and 

permeability in ñatlands cause the appearance of dry reaches 

in channels of the Cega and Pirón streams. The annual runoff 

averages of the last 20 years (to 2011) were 88 6 and 

34-3 hm^ at stations 2016 and 2057, respectively. Gauging 

station 2714 began to operate in 2004, and the annual runoff 

average in 2011 was 52hnf ( M A G R A M A 2014). 

Dafa coZZecfioM a»¿Z fejfZMg 

Observed maximum and minimum air temperatures were 

obtained from A E M E T (Spanish Meteorological Agency) 

station number 2516 in Ataquines. This meteorological 

station was selected because it is the closest to the stream 



temperature sites (average 69 k m ) and has the best data 

series to ñt the models and simulate climate change 

scenarios. W h e n properly chosen, a relatively large distance 

(up to 244 k m in Mohseni ef oí. 1998) from the river to the 

meteorological stations does not negatively affect the 

strength of the water-air relationship (Pilgrim ef af. 1998). 

Before selecting the data, air temperature data were tested to 

assess their reliability by applying a homogeneity test. This 

test is based on a two-sample Kolmogorov-Smimov test, 

and it marks years as possibly inhomogeneous data. In a 

second phase, the marked years are matched against the 

distribution of the entire series to determine if they have true 

inhomogeneities, searching for possible dissimilarities 

between the empirical distribution functions. Consequently, 

only data before 1955 were discarded. 

Water temperature was registered every 2 h using Hobo® 

Water Temperature Pro v2 (Onset®) thermographs located at 

11 sites along the altitudinal gradient of the trout range in both 

streams [six sites in the Cega stream (Ctl to Ct6) and five sites 

in Pirón stream (Ptl to Pt5) (Figure 1, Table I)] between April 

2011 and October 2012. The reaches where the Ct4 and Pt5 

thermographs were placed were temporarily dry in 2011. 

Electroñshing was conducted at 37 sites [CI to C25 sites 

from 1610 to 730 m a.s.l. in the Cega stream and PI to P12 

sites from 1620 to 786 m a.s.l. in the Pirón stream (Figure 1, 

Table I)] in August for two consecutive years (1997 and 1998) 

to characterize trout populations. Average distance between 

consecutive sites was 445 k m (range: 0 55-12 06 km) at 

Cega stream and 6 36km (range: 246-1230km) ai Pirón 

stream. Density was obtained for trout and the rest of present 

ñsh species by means of the maximum weighted likelihood 

method (Carle and Strub 1978). A severe drought occurred in 

1998, and as a result, sites C7, Cll, C14, C22, C23, P3 and 

those downstream of P10 were dry during the second 

electroñshing sampling event. 

Table I. Altitude of electroñshing sites at Cega stream (Cn) and 
Pirón stream (Pn). 

Cega stream 

Site 

CI 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 
C10 
Cll 
C12 
C13 
C14 
C15 
C16 
C17 
C18 
C19 
C20 
C21 
C22 
C23 
C24 
C25 

Altitude 

1610 
1320 
1258 
1150 
1106 
1044 
995 
966 
961 
944 
934 
921 
910 
898 
885 
866 
845 
805 
798 
788 
780 
778 
762 
748 
730 

Pirón stream 

Site 

PI 
P2 
P3 
P4 
P5 
P6 
P7 
P8 
P9 
P10 
Pll 
P12 

Altitude 

1620 
1337 
969 
908 
879 
858 
856 
835 
822 
810 
804 
786 

« is the site number. Unit: m a.s.l. 

Water temperature at the electroñshing time was rebuilt 

by modelling as explained later. The drought that occurred 

in 1998 did not negatively affect to study reliability, quite 

the contrary: drought is a singularity that introduces useful 

variability to the analysis. 

Figure 1. Location map of thermographs and electroñshing sites. Distance between contour lines (altitude above sea level): 100 m. Thermographs are 
numbered in text from headwaters to downwaters, Ctl to Ct6 (Cega stream) and Ptl to Pt5 (Pirón stream). Electroñshing sites are numbered from 

headwaters to downwaters, CI to C25 (Cega stream) and PI to P12 (Pirón stream). 



CKfMafe c/zoMge 7MO¿eZZÍMg a»¿ Jow/wcaZzMg 

W e used data from nine global climate models associated with 

the 5th Coupled Model Intercomparison Project (Table II). 

For these models, w e used a 'twentieth century' simulation as 

the control run (the Historical simulation) and two future 

climate projections corresponding to the Representative 

Concentration Pathways R C P 4 5 (stable scenario) and 

RCP8-5 (more increasing scenario) (Taylor ef aZ. 2009). 

For downscaling, w e used a two-step analogue statistical 

method developed by Ribalaygua ef aZ. (2013). The first 

step is an analogue approach (Zorita and von S torch 1999) 

in which the most similar number (») of days to the day to 

be downscaled is selected. The similarity between the two 

days was measured using the pseudo-Euclidean distance 

between four large-scale fields as predictors: 1 the speed 

and 2 direction of the geostrophic wind at 1000 hPa and (3) 

the speed and (4) direction of the geostrophic wind at 

500 hPa. In the second step, the temperature determination 

was obtained using a multiple linear regression analysis 

using the selected M of most analogous days. This was 

performed for each station and for each problem day, as 

well as for maximum and minimum temperatures. The 

linear regression uses forward and backward stepwise 

selections of the predictors to select only the predictive 

variables for that particular case. 

As a measure of the goodness of the downscaling 

methodology, Figure 2 shows the monthly average of the 

maximum and minimum daily air temperatures for the 

observed data series (1958-2002) and for the simulated 

m a x i m u m and minimum values by downscaling the 

European Centre for Medium-Range Weather Forecasts 

ERA-40 re-analysis of daily data (Uppala ef of. 2005). Bias 

and mean absolute error ( M A E ) were used as goodness 

indicators, and the means of their monthly averages of 

maximum values were — 0 0 3 and 1-77°C, respectively. 

The means of the monthly averages of minimum values 

were — 0 0 5 and 1-88°C, respectively. These values 

represent very good values, particularly for M A E , if w e 

consider that the attributable error to the meteorological 

stations is approximately 1 °C. 

A systematic error is obtained when comparing the 

simulated data from climate models with the observed data 

from reference time series due to the inherent downscaling 

methodology error and to the inner global climate model 

error (which usually introduce a bias over the data). To 

correct this systematic error, the future climate projections 

were corrected according to a parametric quantile-quantile 

method (Monjo ef aZ. 2014). This was performed by 

comparing the observed and projected empirical cumula­

tive distribution functions (ECDFs), linking them by the 

E C D F of the downscaled ERA-40. 

As a consequence, daily m a x i m u m and minimum 

temperatures for the Ataquines meteorological station were 

obtained for each climate change scenario. From these 

temperatures, daily mean temperatures were obtained and 

used as an input to simulate climate change scenario effects 

on the Cega and Pirón streams. Figure 3 shows the 

quarterly increasing trends of simulated daily mean air 

temperature ( D M A T ) . 

Modelling was necessary to rebuild the stream thermal data 
because stream temperature measurements and fishing 
samplings did not overlap in time. Water temperature 
follows air temperature with a small time lag. Therefore, 
weekly moving average stream temperature is often used 
for this purpose because it usually exhibits a better 
correlation than the daily average (Stefan & Preud'homme 
1993). O n the other hand, the established time for 
determining thermal tolerance is usually 7 consecutive 

Table II. The nine CMIP5 climate models used in this study. 

Model Institution Country Resolution (lonxlat) 

BCC-CSM1-1 
CanESM2 
CNRM-CM5 

GFDL-ESM2 M 
HADGEM2-CC 
MIROC-ESM-CHEM 

MPI-ESM-MR 
MRI-CGCM3 
NorESMl-M 

Beijing Climate Center (BCC), China Meteorological Administration 
Canadian Centre for Climate Modelling and Analysis (CC-CMA) 
Centre National de Recherches Meteorologiques/Centre Européen 
de Recherche et Formation Avancées en Calcul Scientifique 
(CNRM-CERFACS) 

Geophysical Fluid Dynamics Laboratory (GFDL) 
Met Ofñce Hadley Centre (MOHC) 
Japan Agency for Marine-Earth Science and Technology 

(JAMSTEC), Atmosphere and Ocean Research Institute 
(AORI), and National Institute for Environmental 
Studies (NIES) 

Max Planck Institute for Meteorology (MPI-M) 
Meteorological Research Institute (MRI) 
Norwegian Climate Centre (NCC) 

China 
Canada 
France 

United States 
U K 
Japan 

Germany 
Japan 
Norway 

2 8x2 8° 
2 8x2 8° 
1-4x1-4° 

2x2-5° 
1-87x1-25° 
2-8x2-8° 

1-8x1-8° 
1-2x1-2° 
2-5x1-9° 

More details can be found in http://cmip-pcmdi.llnl.gov/cmip5/ 

http://cmip-pcmdi.llnl.gov/cmip5/
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Figure 2. Monthly average of (a) maximum and (b) minimum daily air temperatures for the observed data series (1958-2002) and for the simulated 
maximum and minimum values by downscaling of the ERA-40 re-analysis. 

1980 2000 2020 2040 2060 2080 1980 2000 2020 2040 2060 2080 2100 
_ l I I I I I I I I I I I ,_! I I I I I I I I I I I L , 

H — i — r n — i — i — i — i — i — i — i — i n — i — r n — i — i — i — i — i — i — i — i — r 
1980 2000 2020 2040 2060 2080 1980 2000 2020 2040 2060 2080 2100 

YGar 

Figure 3. Expected relative seasonal increases in daily mean temperature throughout the 21st century (as 30-year moving averages) for the two studied 
RCPs (RCP4-5 and R C P 8 5) against the 1971-2000 average (used as a reference). The vertical dotted line indicates the end of the historical experiment 
(black) and the start of the (November) RCPs. Thick lines show the median of the values for all models; the shaded area indicates ranges from the 10th to 
90th percentiles. Seasons are indicated by their months: (a) winter (December, January, February); (b) spring (March, April, May); (c) summer (June, 

July, August); (d) autumn (September, October). 



days (Elliott and Elliott 2010). However, using the weekly 

moving average could introduce errors such as the 

overestimation of the importance of a threshold because a 

determined weekly moving average does not indicate that 

every considered daily average was equal to or higher than 

the weekly moving average. Consequently, daily mean 

temperature was used in this study because it better reflects 

the average conditions that trout must experience for an 

extended period. In addition, studying events of 7 

consecutive days above a daily mean threshold was 

preferred over using the 7-day moving average because it 

better reflects when a threshold is exceeded. W e therefore 

needed to improve the correlation between air and water 

daily temperatures and used a modification of the Mohseni 

ef aZ. (1998) model to accomplish this. This modified 

model includes a trajectory of temperature by adding the 

product of the daily increase in daily mean temperature and 

a parameter reflecting the resistance of water temperature to 

change. 

The original Mohseni ef aZ. 1998 model is as follows: 

where 7, is daily mean stream temperature (DMST), 7„ is 

D M A T , /¿ is the estimated minimum stream temperature, a 

is the estimated maximum stream temperature, /) represents 

the air temperature at which the rate of change of the 

stream temperature with respect to the air temperature is at 

a maximum and y is the value of the rate of change at /). 

The introduced trajectory component modifies the model to 

where 1 is a coefficient representing the resistance of D M S T 

to change with respect to D M A T variation in one day (A7J. 

Nonlinear regression was used to estimate the parameters of 

the models, and bootstrap techniques were used to consider the 

autocorrelation effect on the parametric signification (Freedman 

and Peters 1984). Calculations were performed using R software 

(R Core Team 2013). A 9 5 % confidence interval was calculated 

for each parameter. Bayesian information criterion (BIC), 

Akaike information criterion (AIC) and root mean square 

error (RMSE) were used to test the modified model. 

High correlation was detected between the annual average 

of D M S T and altitude in both streams (jf=0-986 and 

0985). Thus, altitudinal interpolation of the model param­

eters was performed to determine the values of the estimated 

parameters at each electrofishing site; altitudinal extrapola­

tion was performed for the C23, C24 and C25 sites in the 

Cega stream and for the Pll and P12 sites in the Pirón 

stream. A digital elevation model [DEM at a 5-m resolution, 

obtained from LIDAR, IGN (National Geographic Institute 

of the Spanish Government)] was used for modelling stream 

temperature as a continuum. Thus, the obtained models were 

used to study the electrofishing sites with the different 

sampling dates and climate change scenarios. Thereby, it 

was possible to reflect thermal heterogeneity, and the 

proportion of thermal habitat loss was determined contin­

uously all along the stream with high spatial resolution. 

ArcGis® 10 1 (by ESRI®) was used to manage the D E M . 

TTzgrmaZ (Ares/zoZa" aefeyrMfwafZoM 

The number of days that exceeded different thresholds of 

daily mean temperature at electrofishing sites between 1997 

and 1998 was quantified. The number of times that the 

thresholds were exceeded for 7 consecutive days and the 

maximum consecutive days above those thresholds were 

also quantified to determine the exclusion temperature. 

Thresholds were analysed with 0-1 °C of resolution. The 

ability of these thresholds to forecast the presence/absence 

of trout was tested by means of Hanssen-Kuiper criterion 

(HK) (McBride and Ebert 2000). Ideally, H K requires the 

same positive and negative true scores, such that any 

deviation will influence the final value. Thus, we selected the 

highest relative value of H K to identify the best forecaster of 

the trout distribution boundary. W e also calculated the BIAS 

(McBride and Ebert 2000), hit ratio (h.r.) and standard 

deviation (s.d.) to assess the selection. 

Analysis of D M S T , daily maximum stream temperature 

and their 7-day moving average supported the choice of 

threshold criteria (Appendix A). 

Of&er Mzc/zg fraZff 

In addition to temperature, other constraints define the 

brown trout realized niche (e.g. Armstrong ef aZ., 2003). 

The predictive capacity of chemical, physical, hydrological 

and biological traits was analysed by means of three 

methods: (-test, generalized linear models (GLM, signifi­

cance level: 0 1) and receiver operating characteristic curve 

(ROC). Then, these traits were compared against temper­

ature variables (times above the threshold during 7 days or 

more, values of the model parameters for each fishing site) 

to rank their relative importance as predictors of the 

presence/absence of trout. The analysed variables were as 

follows: chemical components (oxygen, phosphorus, 

nitrogen, conductivity, pH), B M W P ' quality index (Alba-

Tercedor and Sánchez-Ortega 1988), substrate composition 

(classes' frequency), mean discharge of the previous month 

(hnf), channel slope and width, and density of each one of 

the species of the fish community. 

RESULTS 

T/owf presence 

Brown trout were not detected downstream from C24 in the 

Cega stream or from P8 in the Pirón stream. Trout were 



also absent in intermediate C14 and P3 sites in the first year, 

whereas in C15, only one trout was captured each year. In C24, 

one trout was caught in the ñrst sampling, and six trout were 

caught in the second sampling. The catches at sampling sites 

downstream of C18 were not homogeneous between 1997 and 

1998 because catches occurred in only one of the two sampling 

events in these sites, with the exception of C20. Although the 

Pirón stream is a tributary of the Cega stream, the trout 

populations of both streams are not connected to each other. 

The altitudinal lower limits of the brown trout range were 

located at approximately 730 m a.s.l. in the Cega stream and 

at 820 m a.s.l. in the Pirón stream at the time of sampling. 

The thermographs recorded 544 days of data (with the 

exception of Ct4: 407 days, Ct6: 501 days, Pt2: 483 days 

and Pt5: 424days) (Supporting Information SI). All the 

estimated parameters of the stream temperature models 

were significant (p < 0-025), and the proposed modified 

model showed better values for AIC, R M S E and BIC than 

the Mohseni ef af. (1998) model when D M S T is used 

(Table III). The R M S E average for thermal samples ranged 

from 108 to 193 °C. Only the Pt2 (1335 m a.s.1.) and Pt3 

(905 m a.s.l.) sites showed anomalous thermal behaviour, 

but the values were within the R M S E range. The 

Torrecaballeros dam is altering the natural thermal regime 

upstream of the Pt2 site (Santiago ef af. 2013), which 

causes difficulty in modelling. Drainage by spillways of the 

heated water by solar radiation at the beginning of spring is 

postulated as responsible for fast increase in temperature of 

the water under the dam at that time. Snow-melting 

homogenized again the water temperature, after which the 

increasing temperature trend returns. W h e n in the transition 

from spring to summer the water level descends, drainage 

is done by the bottom drainage and the outlet temperature 

decreases. Torrecaballeros reservoir is relatively small, and 

when water level drops at summer, hypolimnetic and 

epilimnetic water mixed and heated quickly. Then, water 

drainages by the bottom are very much warmer than if there 

was no reservoir. In addition, a spring and a catchment for 

drinking water produced an anomalous performance of 

thermal models near the Pt3 site by smoothing the expected 

temperature oscillations and altering the thermal ñux in 

dependence on the quantity of abstracted water. 

77z€77MaZ (ArefAoW ¿efefTMmafzoM 

The brown trout thermal boundaries (1997-1998) were 
determined by the absence of trout and the occurrence of 
events of 7 or more consecutive days (henceforth c.d.) 
above 18-7°C D M S T in Cega (HK=0-524, BIAS = 0-881, 
hr.=0.844,s.d.=0131)and above 181 °C in Piral (HK=0-857, 
B I A S = 1-071, h.r. = 0-952, s.d. = 0045) at the time of 
sampling. The results of Pirón show a threshold band between 
17-2 and 18 -1 °C, but the latter was chosen because the stream 
temperature change ratio is insignificant above 17 2 °C at the 
border of the observed trout range; otherwise, the threshold 
could be underestimated. These observed thresholds are 
lower than the critical feeding temperature for this species 
(between 19-4 and 2 6 8 °C, in Elliott and Elliott 2010). 

The number of days per year above the different 
thresholds (DAT), the number of times per year above the 
7 or more c.d. threshold (TAT>7) and the maximum c.d. 
per year above the thresholds ( M C D A T ) are shown in 
Table IV. 

OfAgr MZcAg frazff 

G E M analyses showed that 73-88% of the deviation of 

trout density (global and stratified by age classes) was 

explained by linear models using hydrological, substrate 

and temperature-related variables as predictors. 

Table III. Akaike information criterion (AIC), root mean square error (RMSE) and Bayesian information criterion (BIC) values for 
daily mean stream temperature models with four and five parameters (Mohseni ef oZ. 1998 model and modified model in this study, 

respectively). 

AIC RMSE BIC 

Thermograph Four parameters Five parameters Four parameters Five parameters Four parameters Five parameters 

Ctl 18665 17948 1914 1292 18879 18205 
Ct2 19359 18486 2217 1359 19573 18743 
Ct3 21385 20843 3508 1695 22049 21099 
Ct4 14363 13379 2179 1296 14562 13618 
Ct5 17436 16057 1544 1082 17650 16314 
Ct6 19209 18255 2936 1544 19419 18507 
Ptl 17710 17014 1611 1 184 17924 1727 1 
Pt2 19882 19654 3929 1920 20090 19904 
Pt3 16250 16064 1221 1083 16464 16321 
Pt4 1768 1 16501 1593 1 128 17895 16758 
Pt5 15813 10920 2428 1267 16016 11148 



Table IV. Number of days per year above the different thresholds 
(DAT), number of times per year above the thresholds during 7 or 
more consecutive days (TAT>7) and the maximum number of 
consecutive days per year above the thresholds (MCDAT) in each 

location for the sampling years. 

DAT TAT>7 MCDAT 

Location 1997 1998 1997 1998 1997 1998 

18-7 °C 
CI 
C2 
C3 
C4 1 10 1 6 
C5 12 14 1 1 7 7 
C6 20 25 2 1 10 8 
C7 16 20 1 1 9 8 
C8 10 14 3 6 
C9 8 12 3 6 
CIO 1 11 1 6 
Cll 1 8 1 5 
C12 4 4 
C13 
C14 
C15 
C16 
C17 
C18 4 4 
C19 7 5 
C20 1 9 1 6 
C21 1 11 1 6 
C22 1 11 1 6 
C23 5 12 3 6 
C24 9 15 3 6 
C25 16 16 1 1 9 7 

18-1 °C 
PI 
P2 
P3 
P4 
P5 
P6 
P7 
P8 
P9 9 7 1 1 1 5 
P10 13 22 3 1 10 7 
Pll 13 23 3 1 11 13 
P12 13 23 3 1 13 22 

Thiesholds: 187 °C in Cega and 181 °C in Pilón. 

Specifically, G L M model including community structure 

explained 1 7 % of deviance (AIC 43798) of the total 

density. Models using average now of July, temperature 

variables and substrate explained 6 9 % (AIC 379-09), 7 8 % 

(AIC 36734) and 8 1 % (AIC 36160), respectively. A G L M 

model containing all these potential predictors showed 

lower AIC scores (341-51, explained deviance: 86%) than 

models including only one type of variables. Similarly, 

4 4 % of deviance of 3++ trout density was explained by 

community structure (AIC 398-68) and 3 7 % by tempera-
ture (AIC 40707). G L M of age class 3++ with ah types of 
variables yields 6 8 % of explained deviance (AIC 382-80). 

Age class 3++ is the most abundant in the lower part of the 
trout distribution in these streams (Junta de Castilla y León, 
1997) and was considered the best age class to be used for 
the threshold determinations. 

Results of the R O C analysis showed that the only 
reliable predictor was T A T > 7 . This predictor exhibited an 
area under the curve of 0-84; when density influence was 
studied instead of presence/absence, area under the curve 
was 10 (the best result). The density of other species was 
not as reliable. 

Finally, the results of (-test (Bonferroni correction) are 
consistent with the results showing T A T > 7 as the only 
reliable predictor (p= 1 3e-5). 

CKfMafe c/zaMge 

The observed thresholds (18-7 °C in Cega and 18-1 °C in 
Pirón) were studied for the climate change scenarios. The 
frequency of higher D M S T than the observed thresholds 
increased with time in both scenarios. As expected, this 
frequency was significantly higher in RCP8 5 than in 
R C P 4 5 (Figure 4). The frequency of longer intervals (7 or 
more days, Figure 5) of high temperatures increased in the 
same way, which reached a maximum of 56 c.d. in the C6, 
C 7 and C25 sites at 187 °C in RCP85. In the PI 1 and P12 
sites, the maximum was 59 c.d. at 181 °C in the same 
scenario (Figure 6). 

The decadal average (period 2090-2099) of the D A T , 
T A T > 7 and M C D A T was modelled in each sampling site 
for each climate change scenario (Table V). The results at 
the Cega stream demonstrate that the D A T increased 4 0 
times (average value) in RCP4-5 and 13-9 times in RCP8 5. 
The T A T > 7 increased 2 4 times in RCP4-5 and 2 9 times in 
RCP85. The M C D A T increased 3-0 times in R C P 4 5 and 9 2 
times in RCP85. At the Pirón stream, the average values were 
as follows: D A T , 5 6 times in RCP4 5 and 85 times in 
RCP85; T A T > 7 , 18 times in R C P 4 5 and 2-0 times 
in RCP8-5; M C D A T , 4 5 times in R C P 4 5 and 7 3 times in 
RCP85. 

The R C P 4 5 scenario forecasts that 7 c.d. above the 
thresholds will occur at 785 m a.s.l. (Cega stream) and 
830m a.s.1. (Pirón stream); in the R C P 8 5 scenario, these 
altitudes will be at 830 m a.s.l. and 831m a.s.l., averaged 
over forecasts for the 2090-2099 period. A warm window 
in the intermediate reach characterized by the Ct3 site 
(1043 m a.s.l.) in Cega would also open as a consequence 
of climate change. In this sense, warmer waters could 
extend to 941m a.s.1. (RCP45) or 9 1 3 m a.s.1. (RCP85) 
downstream. The upstream boundary of this window was 
associated with a water inhltration area beginning at 
approximately 1050 m a.s.l. and continuing downstream. 



Scenario RCP4.5 Scenario RCP8.5 

2020 2040 2060 2080 2020 2040 2060 2080 

Year 

Figure 4. Forecast of the number of days above thermal thresholds up to the year 2099 along the fluvial continuum in the Cega and Pirón streams. 
Threshold: 187 and 18 1 °C in the Cega and Pirón streams, respectively. Scenarios for R C P 4 5 and 8 5 are shown. Graphic resolution: 1 km. 

Scenario RCP4.5 Scenario RCP8.5 

2020 2040 2060 2080 2020 2040 2060 2080 

Year 

Figure 5. Forecast of the times that the thresholds exceeded 7 or more consecutive days (c.d.) up to the year 2099 along the fluvial continuum in the Cega and 
Pirón streams. Threshold: 18 7 and 18 1 °C in the Cega and Pirón streams, respectively. Scenarios R C P 4 5 and 8 5 are shown. Graphic resolution: 1 k m 

DISCUSSION Pirón streams. Differences between 1997 and 1998 now 
regimes introduced a useful variability for the analysis. 

Daily mean temperature models were accurate enough to O n the other hand, the high spatial density of data of ñsh 
be used in rebuilding and forecasting water temperatures populations and physical habitat variables allowed 
from air temperatures. Thus, high reliability was possible inferences to be reliable in spite of the relatively short 
for determining the thermal performance of Cega and time series data. 



Scenario RCP4.5 Scenario RCP8.5 

Year 

Figure 6. Forecast of the maximum number of consecutive days above thresholds up to the year 2099 along the fluvial continuum in the Cega and Pirón 
streams. Threshold: 187 and 18-1 °C in the Cega and Pirón streams, respectively. Scenarios R C P 4 5 and 8 5 are shown. Graphic resolution: 1km. 

The temperature threshold of presence/absence can be 

influenced by the community composition, reducing the 

thermal realized niche of trout in these streams. It is known 

that brown trout and Arctic char (&zZW¿MWj oZpmwj) share 

spatial and trophic niches coexisting or excluding each 

other in function of other environmental characteristics 

(system productivity, temperature - Finstad ef oZ. 2011). 

The combination of temperature and competition to 

determine distribution is also known in other ectothermic 

groups, as lizards (Buckley and Roughgarden, 2006). The 

River Cega basin populations are living in the southern 

edge of the brown trout distribution, and they share the 

space with cyprinids (Iberian barbel Íwcm¿%zr6wj ¿wcagez, 

Northern Iberian chub AywaZzwa caroZZferfZZ) that may 

compete with it for space and trophic resources in the 

lower reaches, where cyprinids are more efficient than 

trout. Sánchez-Hernández and Cobo (2011) found impor­

tant diet overlap values in sympatry between these species. 

These authors suggest that 'differences in macrohabitat use, 

drift behaviour of prey and prey size are important adaptive 

features that may reduce the inter-specific competition in 

the fish community and permit the food partitioning that 

allows coexistence'. Nonetheless, community structure 

is long known as a determinant of the species abundance 

(e.g. Tokeshi, 1993). Other environmental variables 

(hydraulics, temperature) also influence the density of fish 

populations (Aylion ef aZ. 2013). 

The study of habitat variables showed that temperature 

(TAT > 7 days) was the most reliable predictor for trout 

presence/absence. In agreement with this, the observed 

limits of the summer distribution of brown trout were 

linked to D M S T thresholds between 18 1 and 18-7 °C. 

These limits were lower than the critical feeding temper­

ature for brown trout as given by Elliott ef aZ. (1995) 

(19 4 °C) and Forseth ef of. (2009) (at least 23 °C), as well 

as the upper critical temperature range (20-30 °C, ultimate 

lethal température: 29 7 °C/10min, in Elliott 2000) and the 

incipient lethal temperature (24-7 °C up to 7 days, Elliott 

1981). The upper thermal limit found by Hari ef of. (2006) 

using sinusoidal regression was 20-0 °C. Competitive 

interactions are known to influence the realized niche 

thresholds (Finstad ef aZ. 2011; Fey and Herrén, 2014). 

Thus, relatively high temperatures may be related to long 

periods of physiological inefficiency, which make trout less 

competitive for space and may favour its exclusion from 

warmer sites. However, the observed limits may be 

influenced by other constraints such as low summer now, 

which could reduce the suitable habitat (Wenger ef aZ. 

2011). In this sense, w e observed very low n o w 

downstream of the P5 site (879 m a.s.l.) in the Pirón 

stream in summer. Water quality was discarded as a 

significant driver of the distribution as there are no 

significant differences in either physical-chemical param­

eters or the index value B M W P ' (Alba-Tercedor and 

Sánchez-Ortega 1988) between sampling sites with and 

without trout (Junta de Castilla y León, 1997). 

Moreover, w e estimated high summer temperatures (up 

to 20 °C but less than 7 c.d.) in the piedmont zone, 

coinciding with karst geology, which supports a healthy 

trout population. Subsurface infiltration occurs in the karst 



Table V. Decadal average (2090-2099) of the number of days per 
year above the different thresholds (DAT), number of times per 
year above the thresholds during 7 or more consecutive days 
(TAT > 7) and the maximum number of consecutive days per year 
above the thresholds (MCDAT) modelled in each survey location. 

DAT TAT>7 MCDAT 

Location RCP45 RCP85 RCP45 RCP85 RCP45 RCP85 

18-7 °C 
CI 
C2 01 01 
C3 0 3 334 14 03 106 
C4 300 87-8 16 29 144 405 
C5 490 978 26 3 21-8 44-8 
C6 693 1080 26 3-3 308 497 
C7 601 1034 2-5 3-2 288 457 
C8 460 962 2-3 3 1 18-2 43 7 
C9 417 936 2 3 1 171 41-3 
CIO 25-6 841 1 3 10 341 
Cll 15-2 750 06 2-5 5-2 298 
C12 5-3 580 2-2 19 17-6 
C13 0 8 307 02 5-5 
C14 01 59 01 14 
C15 01 01 
C16 
C17 01 01 
C18 8-3 671 01 26 3-2 25-6 
C19 12-2 734 04 27 44 297 
C20 209 817 09 26 8-2 337 
C21 27-9 864 1-2 3-2 11-2 36-5 
C22 296 870 1-5 3 119 38 
C23 404 940 21 3-2 169 41-8 
C24 47-3 970 2-3 3 204 44-5 
C25 52-9 99 1 27 3 1 23 44-8 

18-1 °C 
PI 
P2 
P3 
P4 
P5 
P6 
P7 
P8 01 5-5 
P9 589 1014 2-5 3 23-3 43-5 
P10 858 123-6 3-2 3-2 37-9 56 
Pll 89 3 128-2 3-2 3-2 39-2 567 
P12 902 1298 3 1 3-2 407 574 

Thresholds: 18-7 °C in Cega and 18-1 °C in Pilón. Climak change 
scenarios: RCP4-5 and RCP8-5 (Taylor ef of. 2009). 

reach, and the now loss favours further warming of the 

Cega stream. Moreover, infiltration and water discharge 

occur at different locations to and from the underlying 

aquifer, particularly downstream of the Ct3 and Ct4 sites. 

The groundwater discharge provides resistance to thermal 

change forced by the atmosphere-water energy balance 

(O'Driscoll and DeWalle 2006), but the discharge 

temperature can also be affected by global warming 

(Kurylyk ef af. 2013). At the headwaters of these streams, 

trout can tolerate very low temperatures under the lower 

growth threshold (Borgstr0m and Museth, 2005, Elliott and 

Elliott 2010), possibly because competition with other 

species and hypoxic stress do not exist. 

O n the basis of climate change forecasts, the thermal 

habitat is expected to induce the mentioned retractions of 

the brown trout range by the year 2100. In the Cega stream, 

this reduction would affect 2 4 % and 3 8 % of the stream 

length occupied by brown trout, as estimated from 1997 

and 1998 sampling events for the R C P 4 5 and R C P 8 5 

scenarios, respectively. Differences among communities at 

lower and middle Cega reaches may induce differences in 

the threshold behaviour, and thus, the thermal window 

detected in the piedmont zone could cause additional losses 

of 1 1 % and 1 8 % in habitat length for the R C P 4 5 and 

R C P 8 5 scenarios. The Pirón stream reduction would affect 

8 % and 1 1 % of the habitat length for the R C P 4 5 and 

R C P 8 5 scenarios, respectively; thus, relevant differences 

between scenarios do not exist. This may be because the 

stream thermal regime upstream of the P8 site is influenced 

by groundwater discharges, and thus, the effects of extreme 

summer temperatures are lessened. Moreover, other stressors 

such as low now could contribute to the lower observed 

temperature threshold at the Pirón stream than at the Cega 

stream, thereby lessening the apparent effects of warming in 

the Pirón stream compared with the Cega stream. 

Predicted thermal habitat losses are important but not as 

dramatic as the forecasts of other studies at higher latitudes 

in the Iberian Peninsula (almost the entire stream length in 

Almodovar ef af. 2011; 5 7 % of reaches in Filipe ef af. 

2013). W e forecast a thermal habitat loss of up to 3 8 % 

(56% with warm window), despite using a more 

unfavourable scenario for C O 2 emissions (RCP8-5) in our 

study (Rogelj ef aZ. 2012). The differences in our study 

compared with those of other authors may be because w e 

worked at a finer scale (more spatially intensive data) and 

used more recent climate models and more direct methods 

for downscaling and modelling stream temperature. 

Moreover, most of the reviewed papers used the weekly 

mean of the maximum temperature (i.e. W e b b and Walsh 

2004; Almodovar ef af. 2011; Roberts ef af. 2013); w e 

found that the use of the weekly mean added inaccuracy to 

the threshold study. In addition, w e used daily mean 

temperature instead of the maximum temperature because 

the mean is more representative of the average conditions. 

The expected high summer temperatures might discon­

nect the population at the middle reaches of the Cega 

stream by the occurrence of the warm window. This 

fragmentation would exacerbate the predicted decrease in 

the trout population of this stream. The cumulative effects 

of climate change and other human impacts can aggravate 

the negative effects on salmonids (Walters ef aZ. 2013). 

Combined now reduction and temperature increase can 

exacerbate the reduction of cold-water habitat (Arismendi 



ef ai, 2012). Water abstractions and extractions (water 

wells) for irrigation are particularly important in the Cega 

and Pirón basins. If the current use of water remains stable 

or increases and if forecasted precipitation reductions 

(IPCC 2013 and our unpublished analysis) are fulfilled, the 

habitat reduction of brown trout may become critical. A 

large number of species may have their distribution range 

altered; fish are particularly sensitive because connectivity 

between suitable areas is difficult (Abell ef af. 2008). The 

biogeographical implications of global warming could be 

particularly dramatic in the Mediterranean area due to the 

synergistic effects of warming and n o w reduction. 

Additional research on the effects of climate change on 

freshwater fishes must be performed; however, care must be 

taken not to confuse the fundamental and realized niches 

(Pearson and Dawson 2003). Physiology can dictate the 

limits of fish tolerance, but these limits can be more 

constrained by additional biotic and abiotic restrictions, such 

as competition (biotic) or hydromorphology (abiotic). Trout 

show relative thermal plasticity at early stages of develop­

ment, and this may promote adaptation if the changes are 

not sudden in the adaptive sense (Jensen ef af. 2008); 

however, this plasticity is limited. Warmer events could 

possibly be tolerated; however, the trout realized niche 

appears to be narrower than the physiological limitations. 

Our methodological approach is also an outcome of this 

study. The methodology used in this study allowed a 

noticeable increase in the reliability and the spatial-

temporal accuracy of the forecasts, as well as a reduction 

in uncertainty. Downscaling is sometimes referred to as the 

direct interpolation of original coarse grids from climate 

models to points of interest. In other cases, downscaling 

uses grids constructed from observed data and not local 

observations. Both of these downscaling techniques 

depend too heavily on the characteristics of the interpola­

tion technique and the density of meteorological stations, 

which do not take into account the local climate. W e 

therefore preferred the complete downscaling of several 

climate models at our selected meteorological station. The 

downscaling method and the systematic error correction 

provide low-error results, and these methods are readily 

applicable to similar studies that need absolute values of 

the expected future changes. Likewise, the use of the latest 

scenarios established for climate change studies represents 

an update of previous forecasts. 
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APPENDIX A: DETERMINATION OF THE SUITABLE 

TIME SCALE AND UNITS FOR STUDYING 
THRESHOLDS 

OA/ecfivef 

The suitability of using daily mean stream temperature 

(DM), 7-day moving average of D M , daily maximum 

stream temperature (DMax) and 7-day moving average of 

D M a x to model thermal behaviour of streams and to 

determine the brown trout presence/absence thresholds for 

brown trout was contrasted. 

The studied models were as follows: 

* The logistic model proposed in this paper was used with 

daily data (mean and maximum values). 

' Mohseni ef af (1998) logistic model was used with 

7-day moving average data (mean and maximum values). 

* A linear model was used with 7-day moving average of 

daily maximum summer temperatures (June to September). 

Root mean square error (RMSE) was used as an 

indicator of the reliability of models (mean, maximum 

and minimum values). 

Thermal thresholds were calculated from the aforemen­

tioned models. Daily mean and maximum values were 

studied in events of 7 consecutive days. The rationale of 

these choices was described in the Materials and Methods 

section in the body (Stream Temperature Modelling and 

Thermal Threshold Determination sections). 

The results are shown in Tables AI and All. 

The models constructed with D M stream temperature 

(both the events of 7 consecutive days and the 7-day 

moving average) were more robust because they have 

lower R M S E , as with maximum and minimum values. 

With respect to the calculation of thresholds, the more robust 

indicator with the Cega stream data was D M stream 

temperature in events of 7 consecutive days. With the Pirón 

stream data, H K , BIAS, h.r. and s.d. showed identical values, 

although the defined thresholds were not one value but a band 

of values. The narrowest band was obtained from D M stream 

temperature (again both the events of 7 consecutive days and 

the 7-day moving average). At the same time, these results were 

more similar to each other than those obtained from DMax. 

http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_


Table AI. Average, maximum and minimum root mean square error for each model. 

Root mean square error (°C) 

Daily mean 
(modified logistic 

model) 

Daily mean 
7-day moving 
average (logistic 

model) 

Daily maximum 
(modified logistic 

model) 

Daily maximum 
7-day moving 
average (logistic 

model) 

Daily maximum 
7-day moving 
average (linear 

model) 

Average 
Maximum 
Minimum 

135 
192 
108 

116 
182 
088 

176 
227 
132 

150 
192 
105 

138 
469 
024 

Table All. Estimated thresholds and their values for Hanssen-Kuiper (HK), BIAS, hit ratio (A.r.) and its standard deviation (&¿) 
(McBride and Ebert, 2000). 

Threshold determination 

Daily mean Daily mean Daily m a x i m u m Daily m a x i m u m Daily maximum 
(7 consecutive 7-day moving (7 consecutive 7-day moving 7-day moving 

days) average days) average (logistic 
model) 

average (linear 
model) 

Cega stream 
Threshold 18 7 °C 19 5 C 19 7 C 210C 19 2°C 
HK 055 032 0-44 034 022 
BIAS 090 037 0-44 034 022 
&.r. 0 86 036 048 039 027 
&¿ 012 023 025 024 020 

Pirón stream 
Threshold 17-2-18-1 °C 17-5-18-3 °C 18-1-19-5 °C 19 0-20 6 °C 18 6-19 9 °C 
HK 0 86 086 086 086 086 
BIAS 107 107 107 107 107 
&.r. 095 095 095 095 095 
&¿ 005 005 005 005 005 

Bold letters indicate the chosen thresholds for each model. 

The upper values of the bands were chosen as thresholds 
because the stream temperature change ratio is insignificant 
above the lower value of the threshold ranges at the border 
of the observed trout distribution; otherwise, the threshold 
could be underestimated. 

A thermal anomaly (a 'warm window' associated with 
a water infiltration area in which the gravels and 
boulders of the streambed are especially heated in 
summer by solar radiation) in an intermediate reach of 
the Cega stream prevented values for H K , B I A S and h.r. 

from being as good as those obtained from the Pirón 

stream data. 

For the objectives of this paper, D M was the best solution to 

model thermal behaviour of the streams, and the study of events 

of 7 consecutive days above the threshold was better than 7-day 

moving average. Thus, the arguments given in the methodo­

logical description of the main body of this paper are reinforced. 


