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A B S T R A C T 

In the recent years, the computer vision community has shown great interest on depth-based applica­
tions thanks to the performance and flexibility of the new generation of RGB-D imagery. In this paper, 
we present an efficient background subtraction algorithm based on the fusion of multiple region-based 
classifiers that processes depth and color data provided by RGB-D cameras. Foreground objects are 
detected by combining a region-based foreground prediction (based on depth data) with different back­
ground models (based on a Mixture of Gaussian algorithm) providing color and depth descriptions of the 
scene at pixel and region level. The information given by these modules is fused in a mixture of experts 
fashion to improve the foreground detection accuracy. The main contributions of the paper are the 
region-based models of both background and foreground, built from the depth and color data. The 
obtained results using different database sequences demonstrate that the proposed approach leads to 
a higher detection accuracy with respect to existing state-of-the-art techniques. 

1. Introduction 

Recently, depth data processing and analysis have achieved a 
great importance in many computer vision applications. In partic­
ular, thanks to the presence of low-cost depth cameras in the mar­
ket, such as the Microsoft Kinect that provides both color and 
depth information at high frame rates, several applications have 
emerged from the computer vision research community that make 
use of this rich information. One of the most important research 
areas in which the depth data has been successfully employed is 
the human motion analysis, as presented by Chen et al. (2013): 
the depth data is used to identify and segment human users in 
the scene in order to accurately track their body parts. These data 
are then processed and used in controller-free human-computer 
interaction systems; particular attention has been paid to gesture 
recognition systems such as the one presented by Mahbub et al. 
(2013). The use of RGB-D imagery has been also positively applied 
in different computer vision tasks and applications for indoor envi­
ronments, such as the robot-based application presented by Doisy 
et al. (2012), the video surveillance system proposed by Clapés 
et al. (2013), the smart environment for ambient assisted living 
presented by Stone and Skubic (2011), and the human detection 
algorithm proposed by Spinello and Arras (2011). 

In applications such as indoor video surveillance or human 
computer interaction, the information provided by the depth data 
helps to separate the moving objects from the static scene for fur­
ther analysis and processing. Hence, robust background subtrac­
tion algorithms, based on the fusion of color and depth data, are 
required to improve the performance of depth-based applications. 

Background subtraction is a key processing step of many com­
puter vision applications. It aims at separating the moving objects 
in the scene (that constitute the foreground) from a robust model 
of the static environment (the background). As described by 
Cristani et al. (2010), the performance of color-based algorithms 
highly depend on the background model initialization, background 
multimodality, and it deteriorates with the presence of color cam­
ouflage, illumination variations, and cast shadows. Robustness 
against the latter issues can be achieved incorporating depth data 
provided by low-cost depth cameras to the model. However, depth 
data presents several problems that negatively affect depth-based 
background modeling algorithms. In particular, object silhouettes 
are heavily affected by the high level of noise at object boundaries, 
as shown by Camplani et al. (2012). Furthermore, depth data can­
not be estimated for all the image pixels due to occlusions, reflec­
tions, or out-of-range points, as presented by Camplani et al. 
(2013) (we will call these data as non measured pixels (nmd)). 
Moreover, depth measurements provided by structured light sen­
sors, such as the Microsoft Kinect, are affected by noise process 
that follows a quadratic relationship with the measured depth va­
lue, as presented by Khoshelham and Elberink (2012). 



Although different background subtraction techniques have 
been presented in the literature, there are very few approaches 
that propose a fusion of both color and depth data to improve 
the algorithm performance. For more details, see the reviews pre­
sented by Cristani et al. (2010) and by Bouwmans (2011) about 
background subtraction, and the very recent overview about ad­
vances in RGB-D based applications proposed by Han et al. (2013). 

Gordon et al. (1999) presented one of the first works based on 
the fusion of color and depth data obtained from a stereo device. 
This work is based on the Mixture of Gaussians (MoG) algorithm 
proposed by Stauffer and Crimson (1999). A per-pixel background 
model is built using a four dimensional mixture of Gaussian distri­
bution: one component is the depth, and the other three are color 
features (YUV color space is employed). Depth and color features 
are assumed independent. 

The MoG algorithm has been also used by Stormer et al. (2010) 
to combine depth and infrared data. Two independent per-pixel 
background models are built, and pixels are classified as fore­
ground when both models agree, otherwise the pixels are classified 
as background. However, the performance of this approach is se­
verely affected by the misclassification errors from each model. 

Leens et al. (2009) propose combining a color camera with a 
Time-of-Flight (ToF) camera for video segmentation. As in previ­
ously mentioned approaches, color and depth data are assumed 
to be independent, and the Vibe algorithm (presented by Barnich 
and Van Droogenbroeck (2011)) is applied to obtain the foreground 
masks, which are combined with logical operations, and filtered 
with morphological operators. 

Recently, in the Microsoft Kinect based surveillance system pro­
posed by Gapes et al. (2013), a per pixel background subtraction 
technique is presented. The authors propose a background model 
based on a four dimensional Gaussian distribution (using color 
and depth features). This approach is quite limited since it cannot 
manage multimodal backgrounds, and does not address the depth-
data noise issues associated to the Kinect. 

In the gesture recognition system presented by Mahbub et al. 
(2013), the foreground silhouette objects are extracted by applying 
a threshold approach proposed by Otsu (1979) to the depth data. 
The results reported show good performance in very controlled 
environments characterized by a constant background, and with 
the additional restriction that there can be only a single user in 
the scene who must be well separated (in depth) from the 
background. 

Camplani and Salgado (2013) propose a per-pixel background 
modeling approach that fuses different statistical classifiers based 
on depth and color data by means of a weighted average combiner 
that takes into account the characteristics of depth and color data. 
A mixture of Gaussian distribution is used to model the back­
ground pixels, and a uniform distribution is used for the modeling 
of the foreground. 

In this paper, we propose an innovative background subtraction 
algorithm for processing multi-sensor data provided by RGB-D 
cameras in indoor environments. The proposed approach fuses 
multiple region-based classifiers in a mixture of experts fashion 
to improve the final foreground detection performance. It is based 
on multiple background models that provide a description at re­
gion and pixel level by considering the color and depth features. 
These models are based on the Mixture of Gaussian algorithm. 
Background regions are identified by independently applying 
Mean Shift, proposed by Comaniciu and Meer (2002), on depth 
and color data. Moreover, we provide a region-based foreground 
prediction that relies on depth data. In particular, a depth-histo­
gram appearance model of the foreground is combined with two 
spatial and depth-based dynamic models to predict the expected 
depth and position of the foreground regions. Data from the back­
ground models and the foreground prediction are then fused in a 

mixture of experts system that efficiently combines the contribu­
tion of the color and depth features to render the foreground seg­
mentation. The main contributions of the proposed approach are: 
the combination of the pixel-based and region-based background 
models that fuse color and depth data; the foreground prediction 
scheme; and the region-based foreground model. Results using dif­
ferent publicly available datasets demonstrate that the proposed 
technique efficiently tackles strong illumination variations, inter­
ferences due to the existence of multiple active RGB-D cameras, 
depth data noise, non-measured depth data, and the presence of 
sudden crowds. 

The rest of the paper is structured as follows: in Section 2, the 
proposed strategy is presented; results are shown in Section 3. 
Lastly, conclusions are drawn in Section 4. 

2. Multi-sensor background subtraction algorithm 

The scheme of the proposed multi-sensor background algo­
rithm is presented in Fig. 1. Mean shift (MShift block) is applied 
to the depth and color data, Dt and Ct, to obtain the corresponding 
segmented maps, MS - Dt and MS - Ct. Segmentation maps and ac­
tual depth and color information are used by the background mod­
eling block (BgMOD in Fig. 1) to build four independent background 
models by considering the temporal evolution of the depth and 
color data at both pixel and region level. In parallel, the RegPRED 
block computes a prediction of the foreground and background 
probability maps for the current time instant {pfg and pbg in 
Fig. 1) using the previous depth data and the segmented fore­
ground regions (Fgt_^ in Fig. 1) and the available depth-based back­
ground model (Bgt in Fig. 1). These probability maps play the role 
of prior foreground/background probabilities for each image pixel, 
whereas the four background models are used to obtain the fore­
ground/background likelihood maps (L in Fig. 1). Prior probabilities 
and likelihoods are combined to estimate the posterior probability 
of each class using a Bayesian perspective. Finally, the different 
posterior probabilities are fused together in a mixture of experts 
fashion by the MoE block to obtain a more reliable estimation of 
the foreground regions. In particular, a weighted average scheme 
that takes into account depth discontinuities and the non-mea­
sured depth (nmd) pixels distribution is used in the combination 
of the posterior probabilities. In the following sections, further de­
tails on the blocks that constitute the proposed algorithm are 
given. 

2.1. Pixel-based and region-based background modeling 

Four models are computed for the scene background that de­
scribe the static scene at pixel and region level by considering 
independently depth and color features. 

Two independent per pixel models, depth-based and color-
based, are iteratively built and updated using the Mixture of 
Gaussian algorithm (MoG) presented by Stauffer and Crimson 
(1999). This popular algorithm uses a parametric model based on 
a mixture of Gaussians to represent the statistical distribution of 
each image pixel. The main advantages of this approach are its 
capability to handle multimodal backgrounds and gradual changes 
of the scene. Distribution parameters are iteratively updated with 
an online version of the Expectation Maximization algorithm. 

The MoG is a two-step algorithm: in the first step, it is tested 
whether or not every incoming pixel value belongs to the back­
ground model, and in the second step, the model parameters are 
recursively updated. As reported by Zivkovic and van der Heijden 
(2006), the mixture of Gaussian distribution models at the same 
time the probability that one pixel belongs to the background 
and to the foreground. In particular, the most probable Gaussians, 



Fig. 1. Scheme of the proposed multi-sensor background subtraction approach. Dt and Ct are respectively the depth and the color data. Previous foreground detection and the 
depth-based background model are indicated with Fgt_t and Bgt. The likelihood probabilities estimated by BgMOD are indicated with L, and probabilities of the foreground 
and background regions predicted by RegPRED are indicated with p/g and pbg. 

characterized by a high weight and a low variance, are considered 
as the background ones. The Gaussians are ranked after each iter­
ation by considering the factor r = co/cr, where m is the weight of a 
Gaussian and a its variance. To estimate if a pixel value belongs to 
one distribution, the Mahalanobis distance is used. If no proper 
match is found, the least probable Gaussian is substituted by a 
new one characterized by a high variance and a mean value equal 
to the pixel value. The parameters for the matched distribution are 
iteratively updated as follows: 

(Oi,t+\ = c%(l - a) + a * T 
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where ¡J.¡ is the mean of the ith Gaussian distribution, and a is the 
learning rate, a parameter that determines the adaptation to 
changes in the scene and the speed of incorporation of foreground 
objects to the background model. For the unmatched Gaussians, 
all the parameters remain unchanged, except their weight that is 
updated with r = 0 in (1). A complete review about the MoG algo­
rithm performance and its several modifications can be found in the 
survey presented by Bouwmans and Baf (2008). 

In this work, we propose several modifications to the original 
MoG algorithm to improve the detection performance. Instead of 
using a fixed learning rate value to update the distribution param­
eters, we propose using a variable learning rate, as proposed by 
KaewTraKulPong and Bowden (2001). Its value is decreased at each 
iteration until a minimum fixed value of a is reached, thus limiting 
the absorption of moving objects to the background model at the 
beginning of the sequence. 

As far as the per-pixel color-based MoG model and the corre­
sponding classifier (hereafter MoGc) is concerned, it is necessary 
to reduce the effect of sudden changes of illumination that can lead 
to wrong pixel classification. In this case, we propose to use the 

frame-level control strategy proposed by Toyama et al. (1999), 
where the fraction of the pixels detected as foreground is com­
puted and compared with a predefined threshold. If the computed 
fraction exceeds this threshold, the MoGc Gaussian parameters and 
the corresponding learning rate are re-initialized. This frame-level 
control is important if it is not possible to control the acquisition 
settings of the RGB-D camera (as it is the case of the Microsoft Ki-
nect used in our experiments), resulting in sudden changes of the 
luminance component of the images. 

Regarding the per-pixel depth-based model and the corre­
sponding classifier (hereafter MoGD), we modify the original MoG 
algorithm to reduce the effect of the distance-dependent noise, 
as proposed by Camplani and Salgado (2013). As already men­
tioned in Section 1, there is a quadratic dependency between the 
measured depth value, d, and the standard deviation of the noise, 
which affects the measurement, anoise{d). Thus, the larger the sen­
sor-object distance, the higher the noise level affecting the object 
depth measurements. This can bias the ranking of the Gaussian dis­
tributions, and as a consequence to increase the depth-based pixel 
misclassification rate. To mitigate the impact of the distance-
dependent noise on the classification process, the ranking param­
eters is normalized with the factor (7noise{fi¡) that is selected accord­
ing to the quadratic distance-noise relationship presented by 
Khoshelham and Elberink (2012). 

At region level we propose other two independent models (also 
based on the MoG), which take into account the spatial character­
istics of the background. One model classifies pixels by considering 
the depth data, and the other one by considering the color data. We 
define as MoGRD and MoGRC the classifiers based respectively on the 
region depth-based and region color-based models. 

Jodoin et al. (2007) demonstrated that the distribution of neigh­
bor pixel values (spatial information) can be successfully used to 
build a robust background model of the analyzed scene, which 
has similar characteristics to the one obtained by considering the 
per-pixel temporal evolution. The authors demonstrate the validity 
of this assumption by incorporating the spatial information in 



popular background subtraction algorithms based on both non-
parametric and parametric approaches. In their paper Jodoin 
et al. (2007), propose to use a square neighborhood for each pixel 
and fit on this area either a Gaussian distribution or a mixture of 
Gaussians distribution. Moreover, the model parameters are up­
dated in the spatial version of the parametric algorithm, as origi­
nally proposed by Stauffer and Crimson (1999), but including the 
contribution of all the neighbor pixels. 

Following these ideas, in our proposed region based approach, 
the two classifiers MoGRD and MoGRC are built taking into account 
the spatial distribution of the depth and color, respectively. How­
ever, we modify the neighborhood definition with respect to the 
original paper of Jodoin et al. (2007) to take into account the spatial 
coherency. Instead of a fixed size neighborhood, we propose using 
the regions resulting from the mean-shift segmentation, regions 
whose pixels share similar properties in depth or color. In particu­
lar, for each pixel we built two MoG-like classifiers (MoGRD and 
MoGRC). The principal mode of the corresponding image region/ 
cluster (identified by the mean-shift technique in depth and color, 
respectively) is used to compute the mean and variance values of 
the Gaussian distribution. MoGRD and MoGRC parameters are up­
dated as in (1), and similarly to the pixel-level models, the frame 
level control and the ranking parameters normalization are 
applied. 

Therefore, we built four different classifiers based on the MoG 
algorithm for each pixel: two per-pixel classifiers obtained by pro­
cessing the temporal evolution of the pixel color and depth values 
(based on C and D), and two region-based classifiers (based on 
MS - C and MS - D) obtained by processing the temporal evolution 
of the regions that have been identified by the mean shift 
algorithm. 

2.2. Foreground prediction based on depth histograms 

A depth-based appearance model is combined with two spatial 
and depth-based dynamic models to predict the expected depth 
and position of the foreground objects along the time. The appear­
ance model uses a set of depth histograms to encode the fore­
ground depth information. The depth-based dynamic model 
predicts the expected depth of the foreground regions between 
consecutive images. The spatial dynamic model estimates the spa­
tio-temporal evolution of the foreground regions. All these models 
are used to compute a foreground probability density function 
(pdf), pfg, which complements the information given by the back­
ground model block (BgMOD in Fig. 1) to improve the fore­
ground/background segmentation. 

The estimation of pfg can be split into 5 stages: (1) semi-dense 
computation of foreground depth histograms, (2) clustering of 
foreground depth histograms, (3) depth evolution of foreground 
regions, (4) spatial evolution of foreground regions, and (5) final 
estimation of the foreground pdf. 

During the first stage, a semi-dense computation of foreground 
depth histograms takes place, starts by uniformly sampling the 
foreground regions indicated by Fgt_^ (the foreground regions ob­
tained at the previous time step). As a result, 
Sfg = {x, e Z2\i = 1,. . . ,NS} is obtained, which is a subset of spatial 
coordinates of the foreground regions, where Ns is the number of 
spatial coordinates in the set S/g.Then, a depth histogram is com­
puted for each element of S/g by considering the data inside a 
square region defined by {x¡, /}, where x, is the center and / is the 
half-side of the square. 

Along the second stage, the clustering of foreground depth his­
tograms is performed. It reduces the number of foreground depth 
histograms to speed up the computation of the algorithm: depth 
histograms computed from overlapped or just close image regions 
are usually very similar (high redundancy). The k-means clustering 

strategy (see the clustering section of Kuncheva (2004)) can be ap­
plied to obtain a set of k representative depth histograms for the 
foreground. The obtained k cluster centroids are normalized to 
one to ensure that they are rigorously histograms. This set of k his­
tograms, indicated with Sh, represents a depth-based appearance 
model of the foreground for the time step t - 1. 

In the third stage, a depth-based dynamic model predicts the 
depth evolution of the foreground regions between time steps. 
The depth of the foreground regions changes because of the own 
motion of the objects that form the foreground. This means that 
the depth histograms of the foreground regions will be different 
between consecutive frames. A constant velocity model is used 
to predict the new depth values of the foreground. This dynamic 
model is directly applied over the set of depth histograms Sh for 
efficiency purposes, instead of being applied over the raw depth 
values, since a shift in the depth values of a determined region is 
equivalent to a shift in the corresponding depth histogram. In addi­
tion, a linear interpolation technique is used to compute the final 
set of predicted depth histograms S/h, since the predicted displace­
ment in depth is not in general a multiple of the bin width of the 
histograms. 

The fourth stage, spatial evolution of foreground regions, uses a 
spatial dynamic model to predict the location of the foreground re­
gions between consecutive time steps. Likewise the previous stage, 
a constant velocity model is used for the spatial prediction of the 
foreground. This set of coordinates that determine the predicted 
spatial locations are called S',. 

As a result of the third and fourth stages, a set of foreground 
spatial locations S', and other of foreground depth histograms S'h 

are obtained for the current time step. 
The last stage, final estimation of the foreground pdf (pjg), eval­

uates the probability that one image pixel is foreground. For this 
purpose, the predicted set of candidate foreground locations S¡, 
the predicted foreground depth histograms S'h, and the depth histo­
grams obtained from the current depth image Dt are used. The 
Bhattacharyya distance is used in the computation of pfg to evalu­
ate the similarity between one predicted depth histogram tí e S'h 

and one candidate depth histogram h, computed from a region of 
Dt defined by {x-, /}, where x¡ e S'¡ is one of the potential foreground 
spatial locations in the current time step. The mathematical 
expression of the Bhattacharyya distance is 

bd(tí,tí) = ^\-bc(tí,tí), (2) 

where bc is the Bhattacharyya coefficient given by 

i i c(h ' ,h)=x;^h'( i)h(i) , (3) 

where i is the index to iterate on the histogram bins. 
The foreground pdf pSg for one pixel whose spatial coordinates x\ 

belong to the set S'¡ is estimated as 

p& = max(N(bd(h', h); 0, aj) ) , (4) 

where aj is the variance that models the expected uncertainty in 
the prediction of the foreground depth histograms. Therefore, the 
foreground pdf depends on the maximum similarity value between 
one candidate histogram and the set of the predicted depth histo­
grams, S¡,. The advantage of encoding the foreground appearance 
with this multiple depth histogram model is that it provides good 
results for deformable moving objects such as humans. 

2.2.1. Background pdf based on depth histograms 
The background pdf pbg could be just computed as pbg = 1 - pfg. 

However, this simple approach is prone to errors in real situations. 
The reason is that the segmented foreground Fgt_^ used to predict 



pfg has (almost) always false positives (pixels that actually belong 
to the background). This implies that some background regions 
could have a high pfg, since one (or more) of the predicted depth 
histograms in S'h has been computed with the false positive pixels 
corresponding to the background. Even more, this situation degen­
erates along time because of the feedback, continuously increasing 
the number of errors, and thus making useless the computed pfg 

and pbg. To solve this problem, the background pdf pbg is explicit 
and independently computed, counteracting the effect of the false 
positives in the segmented foreground regions. The idea is as fol­
lows. Let us consider first the case that both probabilities are inde­
pendently computed. If some background regions have been 
erroneously classified as foreground in the previous time step, both 
probabilities pfg and pbg could be high for some background region 
in the current image, since both appearance models, background 
and foreground, include image regions from the actual background. 
However, both probabilities would have approximately the same 
value after their normalization (their sum must be one). As a con­
sequence, the information given by the foreground prediction 
module is not decisive, and the final classification as foreground 
or background will fall on the information given by the other mod­
ules (the pixel-based background models). On the other hand, con­
sider the case that only pfg is explicitly computed, and then 
pbg = 1 —Pjg. In this case, if pfg is erroneously high for some back­
ground region, the corresponding pbg will be low. As a conse­
quence, that region will tend to be misclassified as foreground, in 
spite of the information given by the other modules. 

The computation of pbg is similar to the computation of pfg ex­
plained in the previous section. The key difference is that the back­
ground regions are assumed to be static, and therefore the depth 
histogram used to model the background appearance of a region 
is computed from the depth background model, Bgt, provided by 
the BgMOD block (see Section 2.1). Thus, the background pdf pbg 

for the spatial coordinate x\ e S¡ (where S¡ is the same set as in 
the previous section) is estimated as 

pbg=N(bd(h",h);0,C2
b), (5) 

where h" is the depth histogram computed from the depth back­
ground model, Bgt, in the square region defined by {x¡, /}. And a\ 
is the variance that models the expected uncertainty in the predic­
tion of the depth histogram for the background. 

2.3. Mixture of experts 

As proposed by Aach and Kaup (1995), the challenging problem 
of background and foreground segmentation can be viewed as a 
classification problem where for each pixel a class label has to be 
assigned. In the previous sections, we have introduced four differ­
ent classifiers based on the analysis of different features: spatial 
and temporal evolution of depth and color data. Our objective is 
to combine these classifiers and the predictions provided by the 
RegPRED block to improve the final classification performance of 
our system. 

The combination of classifiers, also referenced as mixture of ex­
perts, is a popular and efficient strategy employed to solve pattern 
recognition tasks. It is based on the idea that a set of different sim­
ple classifiers can guarantee more robust performance than a sin­
gle complex classifier. In particular, in our case the mixture of 
experts is useful to efficiently solve a data fusion problem, as 
underlined by Polikar (2006), where the data provided by different 
sources has to be combined to obtain the final classification. In 
these cases, poor performance are generally obtained if a single 
classifier is used to learn the information contained in all the data. 
A complete review and analysis about mixture of experts can be 

found in the book presented by Kuncheva (2004) and the work pro­
posed by Polikar (2006). 

As mentioned in Section 2.1, the MoG based classifiers allow to 
calculate the likelihood (indicated generally as L in the Fig. 1) that a 
pixel belongs to the background class mbg or to the foreground 
class (Ofg. In the proposed approach, we combine the estimated 
likelihood (one for each model), with the prediction provided by 
the RegPRED block. In particular, we consider the predicted proba­
bilities {pfg and pbg) as the class prior probabilities, and then we 
compute the posterior probability that the measured data belong 
to one of the two classes by applying the Bayes' rule. The obtained 
posterior probabilities are then fused by the MoE to obtain the final 
classification. The estimation of posterior probabilities does not de­
pend on the sequence, and they are estimated in an online fashion 
for each processed frame following the evolution of the adaptive 
likelihood models and the predicted prior values that consider 
the depth evolution of the foreground regions. In the following 
paragraphs, we describe the main features of the MoE module. 

As proposed by Kuncheva (2004), we calculate for each pixel the 
decision profile DP containing the support of each classifier to the 
hypothesis that the measured data belongs to one of the two clas­
ses. Considering the pixel s at position (x,y), and the corresponding 
measured data xs, the decision profile is: 

DP(xs) = 
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where each row represents the estimated posterior probabilities 
obtained by combining the likelihoods estimated by BgMOD and 
the prior probabilities estimated by RegPRED. Each column of the 
decision profile represents the overall support JVT(xs) of the set of 
classifiers to one of the classes. The information contained in DP 
can be used to estimate the overall support for all the classes, and 
also to assign class labels to image pixels depending on the class 
that has the greatest value in M(xs). 

Two main techniques for the combination of the data contained 
in DP(xs) have been presented in the literature: class conscious ap­
proaches, in which the overall support of the classes are not fused 
together; and class indifferent approaches, where the combination 
of the values of M represents new features that are processed in 
a successive step by other classifiers in order to obtain the final 
classification. In our approach, we select a class conscious approach 
because it guarantees low computational requirements and does 
not provide additional parameters to the system, since the overall 
supports are obtained with arithmetic operations. 

Typical combination rules used in class conscious approaches 
are: average, median, maximum, etc. (see the review presented 
by Kuncheva (2004, Ch. 5) for more details). An example of these 
approaches in the field of background subtraction can be found 
in the work proposed by Klare and Sarkar (2009) where a simple 
average is used: the authors propose a mixture of experts system 
based on 13 classifiers, that process 13 different visual cues. The 
simple average approach gives to all the classifiers the same influ­
ence to the final classification. In our approach we propose a 
weighted average as it is able to extract different information from 
the different features (regions, color, depth) and to efficiently adapt 
the contribution of each classifier to the final classification. For the 
jth class the overall support M,(xs) is estimated as: 

Mj(xs) = YWfaWj (7) 

In our case we have selected the weight for each classifier (W¡) as a 
function of the input xs in order to increase the support of the most 



reliable classifier according to the characteristics of specific image 
regions. It has to be noticed that, once the weights are estimated, 
they are normalized to sum one as suggested by Kuncheva (2004). 
In the following we refer, without loss of generality, to Wc and 
WD as the weights assigned to the color based and depth based clas­
sifiers for both based on region or pixel features. It is worth noting 
that for each processed frame, the parameters of the DP and the 
weights presented in Eq. (7) are re-estimated. In particular, the esti­
mated posterior probabilities used in the decision profile are calcu­
lated using the adaptive background and foreground models 
presented in the previous sections. Their values do not depend to 
any particular sequence and the initial values of the likelihoods 
can be estimated with just one frame as proposed by Jodoin et al. 
(2007). The adaptive weights selection strategy is detailed in the 
following sections. 

When the depth measurement (non measured depth nmd pix­
els) or the depth-based background model is not available, only 
the color based classifiers can be used for the final pixel classifica­
tion. For this reason, in these cases the weight (WD) are set to zero, 
on the contrary the color-based classifier weight (Wc) is set to one. 

For the pixels that do not belong to the nmd set, we assign the 
weights as a function of the depth-image edges as proposed by 
Camplani and Salgado (2013). This is due to the fact that depth 
data guarantee generally compact detection of moving object re­
gions except for the very noisy depth values at object boundaries. 
To reduce this effect, we increase the influence of the color based 
classifiers in these regions. 

We estimate an edge-closeness probability P^ for each pixel, 
calculated as a function of the distance between the pixel and 
the closest edge weighted with a Gaussian function. By analyzing 
the depth and the color data the two edge-closeness probability 
(Po) and (P£) are obtained; with these values the global edge-close­
ness probability is calculated such that PG =PC * Pjj. The value of 
PG is high for those regions for which the color edges correspond 
to depth edges; in these regions it is necessary to assign a higher 
value to Wc. The weights are assigned as Wc(xs) = PG{xs) and 
WD(xs) = 1 - Wc(xs). The weights values are bounded to a mini­
mum and a maximum value (Wmin and Wmax, respectively 0.1 
and 0.9 in our implementation), in this way it is guaranteed that 
both classifiers contribute to the final classification. 

Moreover, for those pixels for which the corresponding back­
ground model is characterized frequently by the presence of nmd 
pixels we propose to modify the weight WD for the depth based 
classifier. Let us consider a region that contains several nmd 
pixels for which the depth based model is not available. If a 
moving object passes throughout this region, the depth-based 
model is initialized with these depth values that do not corre­
spond to the real background object, thus leading to errors in 
further pixels classification. For this reason, the value of WD 

needs to be scaled by the temporal consistency score to in order 
to reduce the influence of the depth based classifiers in the final 
classification of the pixels in these regions. This parameter is 
estimated as: 

where #Hit is a counter that is incremented (or decremented) when 
a valid (invalid) depth measurement is obtained. Hitmax is the value 
for the counter #Hit for which the to value is equal to one, in this 
case, the depth based background model is completely reliable. 
The value of the parameter /? is selected according to the chosen va­
lue of #Hit. Thanks to the use of to, it is possible to give a different 
weight to the depth based classifiers relative to those regions neg­
atively characterized by the presence of nmd pixels. 

3. Results 

Results using the proposed strategy and other state-of-the-art 
algorithms are presented in this section. Two different databases 
with indoor sequences are employed to test the performance of 
the algorithms. The first one proposed by Spinello and Arras 
(2011) is composed by different indoor sequences acquired by an 
array of three Kinect devices with partially overlapped views. 
These sequences are characterized by changes in illumination, mu­
tual interference of the Kinect devices (they are active sensors that 
emit structured light), large regions containing nmd pixels (due to 
reflections and out-of-range data), and the existence of crowded 
scenes. The ground truth of the database has been manually la­
beled for this paper, since the original database lacks of region-
based ground truth. The ground truth has been generated for every 
five frames. 

From the dataset proposed by Camplani and Salgado (2013), we 
select the GenSeq sequence that represents an indoor environment 
where only one person is moving in the scene. 

Well-known metrics have been used to assess the performance 
of the algorithms: False Positive rate (FP) (fraction of the back­
ground pixels that are marked as foreground), False Negative rate 
(FN) (fraction of foreground pixels that are marked as background), 
Total Error (TE) (total number of misclassified pixels normalized 
with respect to the image size), and a similarity measure (S) de­
fined by Li et al. (2004): this metric fuses together the concepts 
of FP and FN, in such a way that its value is close to 1 if the fore­
ground regions detected are similar to the ground truth ones, 
and close to 0 if they are very different. 

The previous metrics have been used to evaluate state of the art 
algorithms. Specifically, the selected algorithms are: (1) the binary 
combination of foreground masks obtained by two MoG based 
modules (M0GBin) proposed by Stormer et al. (2010), (2) the binary 
combination proposed by Leens et al. (2009) (VibeBin), (3) a RGB-D 
Mixture of Gaussian algorithm presented by Gordon et al. (1999) 
(M0GRCB-D) and 4) the pixel-wise combination of classifiers (CLW) 
presented by Camplani and Salgado (2013). In addition, we also re­
port the results obtained using only the four mixture of Gaussian 
modules employed in our system, i.e., discarding the rest of mod­
ules that are the main novelties of the paper. 

In Fig. 2, details of the data provided by the RGB-D camera and 
the results of the background subtraction algorithms for the first 
sequence (Lobbyl) of the database proposed by Spinello and Arras 
(2011) are reported. As it can be noticed, large area containing nmd 
pixels (marked in black) are present in the depth map (see 
Fig. 2(b)). The proposed approach guarantees an accurate fore­
ground object detection for people moving in the first plane, but 
also for people moving in the stairs on the back (see Fig. 2(d)). As 
far as the individual classifiers are concerned, it can be noticed that 
the color based classifiers (see Fig. 2(e) and (f)) allow to accurately 
detect the moving objects in the stairs, but due to color camou­
flage, lead to a fragmented foreground region corresponding to 
the human moving on the front. On the contrary, the depth based 
classifiers (reported in Fig. 2(g) and (h)) allow to obtain a more 
compact silhouette but fail to properly detect the moving objects 
in regions located out of the device range. It is worth noting that 
the proposed approach allows to combine efficiently these models 
and the foreground prediction leading to an improvement of the fi­
nal foreground segmentation. The algorithm CLW allows to effi­
ciently detect the moving object in the back stairs, but the 
foreground object segmented results more fragmented (Fig. 2(i)). 
The algorithm MOGRGB-D is characterized by a higher number of 
false positive detections (Fig. 2(1)). 

The algorithms detection accuracy is reported in Table 1; it is 
worth noting that the results obtained with the proposed approach 



Fig. 2. Lobbyl sequence frame 340: (a) color data, (b) depth data (nmd pixels in black), (c) ground truth, (d) proposed MoC - RegPRE, (e) MoCc, (f) MoCRC, (g) MoCD, (h) MoCm, 
(i) CLW proposed by Camplani and Salgado (2013), (1) MOCRCB-D proposed by Gordon et al. (1999). 

(in this and other tables) have been highlighted with bold font. As 
it can be noticed, the proposed strategy allows to obtain the best 
results in terms of the similarity measure S and leads to a very 
low value for TE. It allows to obtain a good tradeoff between the 
results of the independent classifiers: the value of FN is dramati­
cally reduced with respect to the color based classifiers and at 
the same time it guarantees a low value for FN. It is worth noting 
that the other state of the arts techniques that are used during 
these tests, do not allow to obtain comparable results except for 
CLW. In fact, this approach guarantees a similar value for S, however 
it is affected by a higher fraction of FP, this is due to the fact that 
this algorithm does not consider the region-based information of 

Table 1 
Detection accuracy obtained by analyzing the Lobbyl sequence. 

MoC-
MoCc 
MoCD 

MoGRC 

MOCRD 

MoGBm 
MoCRGB 

ViBeu„ 
CLw 

RegPRE 

-D 

TE 

5.51 
11.43 

5.42 
12.26 

7.93 
12.00 
25.26 
14.99 

7.72 

FN 

20.49 
55.91 
31.41 
56.97 
31.40 
66.73 
10.61 
45.87 
15.45 

FP 

3.36 
5.04 
1.69 
5.83 
4.55 
4.13 

27.36 
10.55 

6.61 

S 

0.50 
0.28 
0.41 
0.25 
0.33 
0.18 
0.26 
0.23 
0.45 

the foreground and background objects, thus leading to less com­
pact detections. 

Fig. 3 shows a detail of depth and color data ((a) and (b)) of the 
second sequence (Lobby2) of the database proposed by Spinello 
and Arras (2011) and the foreground detection obtained with the 
different algorithms. Let us consider the color based classifiers 
(Fig. 3(e) and (f)), as it can be noticed the legs of the human are 
not well segmented; in particular, there is one squared hole in 
the foreground regions, due to the color camouflage, and the detec­
tion is affected by strong reflections in the floor due to a door open­
ing in the back wall. On the contrary the illumination conditions do 
not affect the depth based classifiers (Fig. 3(g) and (h)); however, 
they are affected by the presence of large areas with nmd pixels 
that cause a poor segmentation of the legs. Finally, it can be noticed 
how the noise that affects depth data at object boundaries reduces 
the accuracy of the segmented object boundaries (e.g., in the hu­
man head). The proposed approach MoG - RegPRE allows to im­
prove the final foreground detection accuracy, by recovering the 
detection of the human legs thanks to the foreground region anal­
ysis and the temporal consistency score to. Moreover, more refined 
object boundaries are obtained. Refined object boundaries are ob­
tained also with CLW (Fig. 3(i)); however, the absence of the anal­
ysis of foreground regions and of the temporal score do not allow 
to completely recover the human legs. It has to be noticed that 
the foreground regions obtained by MOGRGB-D (Fig. 3(1)) are in this 



Fig. 3. Lobby2 sequence frame 195: (a) color data, (b) depth data (nmd pixels in black), (c) ground truth, 
(i) CLW proposed by Camplani and Salgado (2013), (1) MOCRCB-D proposed by Gordon et al. (1999). 

(¡) 

(d) proposed MoC -

(I) 

RegPRE, (e) MoCc, (f) MoCRC, (g) MoCD, (h) MoCRD, 

Table 2 
Detection accuracy obtained by analyzing the Lobby2 sequence. 

MoC - RegPRE 

MoCc 

MoCD 

MoCRC 

MOCRD 

MoCBi„ 

MOCRCB-D 
ViBeu„ 

CLW 

TE 

7.74 
11.26 

7.20 
12.32 
11.21 

8.01 
8.22 
7.54 
9.75 

FN 

28.54 
54.74 
56.99 
59.42 
56.01 
67.89 
17.86 
56.75 
22.21 

FP 

5.05 
5.63 
0.76 
6.22 
5.42 
0.26 
6.97 
1.17 
8.14 

S 

0.47 
0.31 
0.32 
0.26 
0.25 
0.27 
0.47 
0.38 
0.43 

case more compact, however a higher level of false positive (e.g., 
the roof) is present in this case. 

The results of the algorithms comparison for the sequence Lob-
by2 are reported in Table 2. Also in this case, the proposed algo­
rithm allows to improve the performance obtained by the 
independent classifiers: by reducing the number of FN and keeping 
low the value of FP. The proposed algorithm allows to obtain the 
highest value for S; a similar value is obtained with MOGRGB-D, how­
ever this approach leads to a higher value of TE. It is worth noting 
that a smaller value for TE, with respect to the proposed approach, 
is obtained by MoGD and ViBeUn, however these approaches lead to 
unacceptable rate of FN. It has to be underlined that also in this 
case the approaches based on a binary combination of foreground 
masks such as ViBeUn and MoGUn lead to poor results, since an error 
in one of the two models affect negatively the overall performance 
of the system. 

Lobby3 sequence, the last one of the database proposed by Spi-
nello and Arras (2011), is presented in Fig. 4. The detected fore­
ground obtained with the proposed method is reported in 
Fig. 4(d), as it can be noticed also in this case, the combination of 
the independent models and the region-based foreground predic­
tion allows to efficiently fuse the depth and color information 
and obtain accurate foreground detections. In particular, the pro­
posed approach improves the detection obtained separately by 

the color based classifiers (Fig. 4(e) and (f)) and the depth based 
classifiers (Fig. 4(g) and (h)). A similar result in this example is ob­
tained also with CLW, however a high level of FP is obtained for 
example, in the background wall. The algorithm MOGRCB suffers 
the influence of the modification of the illumination conditions. 

The results obtained with the different algorithms are pre­
sented in Table 3. The proposed approach guarantees for this se­
quence the higher value of S and the second lowest value for TE. 
As in the case of sequence Lobby2, the lowest value of TE is ob­
tained by MoGD, however, by considering only the depth data a 
high value of FN is obtained. Regarding the other state of the art 
algorithms, it has to be underlined that the binary-like methods 
(MoGUn and ViBeUn) give poor results with a low value of S and a 
high value for TE. Results similar to the one reached with the pro­
posed approach are obtained with CLW, as also seen in the example 
in Fig. 4, however this approach leads to a high level of FP. Also in 
this case the best performance of the proposed approach are 
strictly related to the region-based foreground prediction module 
that helps to obtain more compact foreground detections, while 
at the same time reducing the number of FP. 

An example of one frame of the GenSeq sequence is shown in 
Fig. 5. Although in this less complex scenario the detection accu­
racy of the independent classifiers increases, they are still affected 
by different errors. Depth based classifiers (Fig. 5(g) and (h)) are 
characterized by noisy object boundaries and higher levels of FP. 
The typical errors of the color based classifiers are present also in 
this sequence, as it can be noticed from Fig. 5(e) and (f), where 
fragmented foreground regions are obtained mainly due to the col­
or camouflage problem. The proposed approach reduces the errors 
that affect the independent classifiers leading to compact and re­
fined foreground detected regions. As it can be noticed from 
Fig. 5(i) and (1) the algorithms CLW and MOGRCB-D are affected by 
a higher level of false positive. 

The obtained results are showed in Table 4. The proposed algo­
rithm achieves the lowest TE and the highest S, proving its superior 
performance. Moreover, the values of FP and FN are lower than the 
ones obtained using only the independent classifiers of our system. 
Regarding the performance of state of the art algorithms, MOGRCB-D 



Fig. 4. Lobby3 sequence frame 420: (a) color data, (b) depth data (nmd pixels in black), (c) ground truth, (d) proposed MoC - RegPRE, (e) MoCc, (f) MoCRC, (g) MoCD, (h) MoCm, 
(i) CLW proposed by Camplani and Salgado (2013), (1) MOCRCB-D proposed by Gordon et al. (1999). 

Table 3 IdUIC O 
Detection accuracy obtained by analyzing the Lobby3 sequence. 

Table 4 
Detection accuracy obtained by analyzing the CenSeq sequence. 

TE FN FP TE FN FP 

MoC-
MoCc 
MoCD 

MoCRC 

MOCRD 

MoCBi„ 
MoCRCB 

ViBeu„ 
CLW 

RegPRE 

-D 

4.32 
9.19 
3.65 
9.47 
7.08 

11.50 
48.04 
25.24 

7.06 

20.36 
54.74 
31.70 
55.17 
31.21 
58.24 

9.21 
41.31 
18.06 

2.87 
5.06 
1.11 
5.33 
4.89 
7.27 

51.56 
23.79 

6.06 

0.46 
0.21 
0.34 
0.21 
0.23 
0.13 
0.13 
0.12 
0.36 

MoC-
MoCc 
MoCD 

MoCRC 

MOCRD 

MoCBi„ 
MoCRCB 

ViBeu„ 
CLW 

RegPRE 

-D 

0.85 
2.13 
1.61 
3.36 
2.49 
2.03 
1.93 

12.39 
1.13 

1.28 
8.41 
3.70 
8.74 
3.86 

17.01 
0.63 
0.65 
2.26 

0.79 
1.35 
1.35 
2.69 
2.32 
0.16 
2.09 

13.85 
0.99 

0.88 
0.74 
0.81 
0.66 
0.75 
0.74 
0.79 
0.44 
0.85 

Fig. 5. CenSeq sequence frame 984: (a) color data, (b) depth data (nmd pixels in black), (c) ground truth, (d) proposed MoC - RegPRE, (e) MoCc, (f) MoGRC, (g) MoGB, (h) MOC¡¡L 
(i) CLW proposed by Camplani and Salgado (2013), (1) MOCRCB-D proposed by Gordon et al. (1999). 



Table 5 
Acronyms description. 

Type 

Modules 

Data 

Name 

MShift 
BgMod 

RegPreg 
MoE 
MoCc 

MoCD 

MOGRC 

MoCm 

Q,Dt 

Description 

Mean Shift 
Background Modeling 

Depth-based Foreground Region Prediction 
Mixture of Expert 
Classifier based on the color per-pixel 
background model 
Classifier based on the depth per-pixel 
background model 
Classifier based on the color region 
background model 
Classifier based on the depth region 
background model 

Actual color and depth data 
MS-C,,MS- Dt Segmented depth and color data 

Bgt 

fg t-i 
Pfg,Pbg 

I 
nmd 

Depth background model 

Previous Foreground mask 
Predicted foreground and background 
probabilities 
Likelihoods estimated by BgMod 
non measured depth pixels 

Type 

Main Equation Symbols 

Algorithms in the Results 
Section 

Name 

r 
a>,a,¡i 

^noise 
a 
DP,M,W 

PG,PC,PD 

tc 

Sh,S/h,Si¡ 

MoG - RegPRE 

MoCm 

MoCRGB_D 

ViBea„ 
CLw 

Description 

Sorting factor in MoG 
Weight, variance and mean of the MoG 
distributions 
Variance of the distance-dependent noise 
MoG learning rate 
Decision Profile, overall support, Weight 
used in MOE 
Edge closeness probabilities 

Temporal Consistency Score 

Depth histograms sets for prediction 

Bhattacharyya distance 

Proposed Approach 
Approach presented by Stormer et al. 
(2010) 
Approach presented by Gordon et al. 
(1999) 
Approach presented by Leens et al. (2009) 
Approach presented by Camplani and 
Salgado (2013) 

and CLW have comparable results with our approach. However, the 
proposed approach guarantees a better balance between FN and 
FP. As expected, the binary combination (MoGBin and ViBeBin) ob­
tained with independent modules does not guarantee accurate re­
sults due to the fact that the final classification is completely 
compromised when one of the classifier fails. 

4. Conclusions 

In this paper, we present an innovative background subtraction 
algorithm based on the fusion of multiple region-based classifiers 
that processes data provided by RGB-D imagery. The proposed 
strategy employs different background models, based on the Mix­
ture of Gaussian algorithm, that are built by analyzing the spatial 
and temporal evolution of depth and color features. These models 
are combined with a foreground prediction scheme that is based 
on a depth-histogram appearance model of the foreground regions 
combined with a dynamic model. The background models and the 
foreground prediction data are fused in a mixture of experts sys­
tems that implements a weighted average scheme that is able to 
improve the final detection accuracy. The main contributions of 
the proposed approach are therefore the following: the use of 
background models based on region and pixel temporal evolution, 
considering depth and color data, and the foreground prediction 
scheme based on a region-based foreground model. The results 
show that the proposed background subtraction approach outper­
forms state of the art algorithms based on RGB-D imagery. More­
over, as described with the test on databases that include 
difficult and elaborated scenes, the results demonstrate that it is 
able to efficiently detect foreground objects in very challenging sit­
uations such as strong illumination variations, RGB-D camera 
interferences, large region containing non-measured depth data, 
depth camera noise and crowded scenes. 
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