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Abstract: In this paper, the mathematical description of the temporal self-
imaging effect is studied, focusing on the situation in which the train of 
pulses to be dispersed has been previously periodically modulated in phase 
and amplitude. It is demonstrated that, for each input pulse and for some 
specific values of the chromatic dispersion, a subtrain of optical pulses is 
generated whose envelope is determined by the Discrete Fourier Transform 
of the modulating coefficients. The mathematical results are confirmed by 
simulations of various examples and some limits on the realization of the 
theory are commented. 
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1. Introduction 
Photonic Signal Processing [1-5] is becoming today one of the most active research topics in 
optics and photonics, as all-optical processing offers a better performance for high-speed 
signals than electronic alternatives. Many well-established techniques for optical processing 
are based on volume optics, employing schemes that combine the diffraction of optical 
beams propagating through free space, thin lenses and prisms. This area of optics is highly 
developed and is usually known as Fourier Optics [6-8]. However, volume optics presents 
several drawbacks associated to the use of bulk optical components, which have to be 
carefully aligned and occupy a large space. 

To overcome some of these limitations, the space-time duality [9-12] has appeared as a 
promising alternative. It combines the wide-band advantages of all-optical processing and the 
flexibility of the electronic approaches, enabling the possibility of using all-fibre processing 
systems which are dual to the well-known space optics approaches. This duality is based on 



the formal equivalence of the mathematics that govern the paraxial diffraction of beams 
propagating through free space and the dispersion in time of narrowband pulses through 
dielectric media. Although this duality was already described in the late 1960s, it has been 
mainly in the last two decades when it has started showing its full potential, especially after 
the extension of the duality to include the "time lens", that is, the equivalent in the temporal 
domain to a conventional spatial thin lens [13-16]. Since then, scientists have developed 
numerous photonic processing systems, using integrated and robust optical waveguide 
components [17-20]. Among these proposals, the Optical Fourier Transform and the 
temporal self-imaging effect have gained a special attention as candidates for the processing 
of single optical pulses and optical trains of pulses. 

In many signal processing applications based on Fourier optics, the ability to generate the 
Fourier transform and its inverse for a given signal are essential for the operation of the 
system. In space optics, a simple approach to obtain the Fourier transform of an object is the 
use of Fraunhofer diffraction. The basic idea is that far-field diffraction of an object produces 
the formation of its Fourier transform in the transverse space [6]. This scheme can be 
replicated in the time domain by simply passing a time-limited waveform through a highly 
dispersive medium, mapping the spectral information of the signal to the time domain. The 
proposal of this real-time Fourier transformer, also known as frequency-to-time converter, 
was made by Muriel et al. [21, 22] who were the first to use a chirped Fiber Bragg Grating as 
the dispersive device. The realization of the Fourier transform by means of a dispersive 
medium in the optical domain has found several applications, such as the realization of 
temporal magnification systems, causing the waveform to be stretched in time and allowing 
thus the single-shot characterization of ultrafast waveforms [23-26]. In combination with 
electro-optic modulation, this setup can also perform the temporal and spectral shaping of 
optical pulses [27-31]. 

Temporal self-imaging is another popular development of temporal optical processing 
systems. The Talbot effect or self-imaging effect is a near-field diffraction effect that was 
first reported by H. F. Talbot in 1836 [32]. When a coherent plane wave is passed through or 
reflected by a ID or 2D periodic object, an exact image of the object can be observed at 
regular distances [33-36]. Also, sub-images of the object can be observed at shorter distances 
where, depending on the distance, a certain reduction of the image size is presented. As the 
spatial Talbot effect is a diffractive effect, an equivalent outcome occurs when a periodic 
signal, such as a train of optical pulses, is passed through or reflected by a dispersive 
medium. This result is known as temporal Talbot -or temporal self-imaging effect. Being first 
proposed and demonstrated by Jannson et al. [37] and generalized in [38-40], it has been 
broadly studied and has gained a special interest for the multiplication of the repetition rate 
of an optical train [41-43]. 

However, there is a situation of special interest that has not been fully studied: the 
propagation through a dispersive element of a train of modulated ultrashort pulses. The 
Fourier transform can only be obtained for individual pulses (or very short pulses compared 
with the temporal window over which the Fourier transform is calculated) and hence is not of 
application when different pulses interfere. On the other hand, the temporal self imaging 
effect has been usually analyzed for uniform trains of pulses, where the pulses are of 
identical shape. However, if the modulation applied to the input train is periodic, the 
equations for that effect are still valid. Yet, only in some specific cases will the output train 
of pulses result in the variation of the repetition rate of the pulses while maintaining the train 
envelope, as will be reviewed in section 2.1. In some others, the interference between pulses 
when propagated through a medium where chromatic dispersion is the dominant effect will 
alter the output envelope. By examining the equations in detail, in this paper it will be proven 
that, for some precise values of dispersion, the resulting output envelope is determined by the 
Discrete Fourier Transform of the periodic coefficients that modulate the train of pulses. The 
structure of the paper is as follows: in Section 2 the mathematical analysis of the dispersion 
effect on a periodically modulated train of pulses is presented. Section 3 studies the specific 
case for a determined value of dispersion that results in the Discrete Fourier Transform. In 



section 4 numerical simulations that show the validity of the proposal are presented and some 
of its possible applications for the processing of optical trains of pulses are outlined. Finally, 
a summary of the most important results is provided in Section 5. 

2. Temporal self-imaging effect for modulated pulses 

In this section, the temporal self-imaging effect when the train of optical pulses at the input 
of the system has been previously modulated will be studied. As hypothesis, it will be 
assumed that a train of optical pulses with equal phase and amplitude has been modulated by 
a complex signal, c(t). Thus, the complex envelope of this signal, x(t), is given by: 

x{t) = c{t)Yja{t-kT0) (1) 

where a(t) is the individual shape of each pulse, T0 is the repetition period and c(t) is the 
complex modulating signal and, in consequence, applies a different phase and amplitude to 
every pulse. The pulse width of each individual pulse, At, which is determined by a(t), is 
considered to be small enough so that the pulses will not overlap, that is, At<T0. Also, two 
additional restrictions are imposed to c(t): 

• c(t) has to be periodic and its period is given by NT0, where TV is an integer 

c(t) = c(t + NT0) (2) 

• c(t) is a slow signal when compared to the duration of the individual pulses, At, so 
that it it can be considered as constant within the duration of an individual pulse: 

c(t) ~ c(kT0 ) = ck for kT0 <t< kT0 -\ where k is an integer (3) 

By introducing conditions (2) and (3) to Eq. (1), the signal at the input of the system can 
be expressed as the summation of TV different trains of pulses with periodicity Tx = NT0, a 

temporal delay between each train of T0 and being each of them modulated by a different 

coefficient c,. Accordingly, it is possible to group the pulses in TV different trains, each with 

constant phase and amplitude: 

*C)=E c^ait-lT^-kT^ (4) 

An example of such grouping can be observed in Fig. 1, when the input train of pulses is 
modulated by a signal c(t) with periodicity 4T0. As a result of this, it is possible to regroup 

the pulses in four different trains each one modulated by a fixed coefficient c, (I = 0,1,2,3), 

which is determined by the value of c(t) in / = IT0 . As a consequence of this rearrangement 
of the input train of pulses in N different trains, it is possible to determine the total resulting 
train after applying some dispersion as the superposition of TV dispersed trains of equal pulses 
and repetition rate T\. The expression for each one of those dispersed trains is given by the 
analysis made for the uniform train cases that result in the different temporal self-imaging 
conditions and cases. 
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Fig. 1. (a) Train of pulses that have been intensity modulated by a set of coefficients with N = 
4 and (b) grouping of the different trains depending on the modulating coefficient. 

2.1 Temporal self-imaging 

As all the trains of pulses defined by / in Eq. (4) have a similar period, Tx, the amount of 
dispersion required in order to obtain the temporal self-imaging effect [38] for every one of 
them is given by: 

E1-. 
In In 

= ± 1 + 2 + 3 . (5) 

where, depending on the value of s, two different cases can be distinguished: the ordinary 
and the inverted temporal self-imaging effect. 

When s is even, the obtained result is the ordinary temporal self-imaging effect for each 
of the subtrains defined in Eq. (4) inside the brackets. As a consequence, each train produces 
after the dispersion a train of pulses modulated by the corresponding coefficient c, and with 

no additional temporal delay. Therefore, the signal at the output of the system, y(t), can be 

expressed as: 

y{t) = Y c^ait-w.-n, (6) 

Due to the time delay IT0 between the different trains, the pulses coming from the 
different trains will not overlap in time, not existing any interference between the trains of 
pulses. Thus, the output of the system is a replica of the train at the input, maintaining the 
same modulating coefficients than the input train, and the detected optical power at the 
output of the system is given by: 

^,W=£hf ZK'-^i-'-To (7) 

Similarly, when s is odd, each of the N trains in which the total signal has been 
decomposed is affected by the inverted temporal self-imaging effect. As a result, each of the 
trains produces at the output another train of pulses also modulated by the corresponding 
coefficient c, but with an extra delay of Z¡ ¡2 . The signal at the output of the system can be 
expressed as: 

y{t) = Y c^ait-kT.-lT.-Tjl) (8) 



As in the case of the ordinary self-imaging effect, the train of pulses at the output of the 
system is a replica of the train at the input, but in this case with an additional time delay of 
Tx¡2 . Therefore, the optical power at the output of the system is: 

iV- l 
|2 ¿U')=Xlc/l XK'-*?;-^0-71/2)1 (9) 

1=0 k=-°, 

In Fig. 2 an example for both (a) s even and (b) odd can be observed. In the first case the 
train of pulses obtained at the output is a replica of the input train, whereas in the second an 
additional Tj2 delay appears. These results can also be understood by considering 

iV- l 

a'(/) = ^ [ c ; - a ( / - / 7 ,
0 ) ] as the shape of a single pulse of the total train. Under this 

1=0 

condition, the input train of pulses can be interpreted as an unmodulated train of pulses 
whose pulse shape is determined by a'(t) and with a periodicity Tx. Therefore, by applying 

the dispersion given by Eq. (5), the train of pulses will suffer the integer self-imaging effect, 
which corresponds to the obtained results. That is, these results can be simply considered as 
the particular case of the integer temporal self-imaging effect for which there are non-equal 
amplitude or phase pulses. It is worth noting that the condition for the dispersion is given by 
Eq. (5), that is, the usual value for the integer temporal self imaging effect is used but with 
the period of the modulating signal, Tx, and not the temporal separation between consecutive 

pulses, T0. 

A A l\ l\ A A A l\ l\ A A 

(a) T l / 2 2T° (b) 

Fig. 2. Output of the system, for the input train shown in Fig. 1, when (a) s is even or (b) s is 
odd. 

2.2 Fractional temporal self-imaging 

Depending on the amount of dispersion applied to the input train of pulses, it is also possible 
to obtain the fractional temporal self-imaging effect for each of the N train of pulses in Eq. 
(4). In this case, the required condition for the dispersion [38] is given by 

7f s=NX s ¡s = ±l,±2,±3... ( i o ) 

2K m 2K m [ m =2,3,4... 

where s/m is an irreducible fraction. Also, in order to avoid the overlapping of adjacent 
pulses after the dispersion, an additional restriction has to be imposed to the duration of the 
pulses, limiting it to a fraction of the output repetition rate determined by m : 

T T 
At<^ = ^ - (11) 

m mN 
As in the study of the temporal self-imaging effect for unmodulated trains, two different 

scenarios depending on the value of the product s • m have to be studied: the ordinary and 
the inverted fractional temporal self-imaging effects. 

If s • m is even, each of the N trains of pulses in Eq. (4) is affected by the ordinary 
fractional temporal self-imaging effect. Therefore, after the dispersion, a train of pulses 



whose intensity repetition rate is given by Tjm = NT0/m and without any additional 
temporal delay is obtained for each subtrain. Hence, the resulting train of pulses for each 
value of / can be expressed as [38]: 

c^Aatt-k^-lT,) (12) 

where Ak are the coefficients associated to the temporal self-imaging effect and are given 
by: 

4=!gexpi/-J^-34] (13) 
mq=0 \ [m m }) 

As a result of this, the signal at the output of the system is determined by the 
superposition of these trains: 

y{t)=YJH
c
1
AAt-k-T0-lT0\ (14) 

kTL££ y m ) 
It is worth emphasizing that, although the intensity repetition rate has been multiplied by 

a factor m, the term in Eq. (13) introduces a different phase shift for each subtrain, resulting 
thus in a train whose periodicity is Tx, as in the original train. 

On the other hand, if s • m is odd, each train of pulses is affected by an inverted fractional 
temporal self-imaging effect. Consequently, each of the N trains of pulses results at the 
output in another train whose intensity repetition rate is given by Tx ¡m = NT0 ¡m and with an 
additional delay of Tx /2m : 

c^sJi-k^-lT,-^-) (15) 
¿~L v m 2m) 

where the coefficients Bk are given by: 

is 7 2k+1 
Bk=— 2_QMJ7V\— q + q 

mq=0 \ [m m 
Finally, the signal at the output of the system is determined by 

(16) 

- «-i ( N N \ 

y{t) = X i > M t~k-T° ~lT° ~^T° (17) 

*«o/=o V m 2m J 
As it can be observed in Eqs. (14) and (17), the outcome in both cases is the superposition 

of N trains of pulses whose intensity repetition rate is given by Tx ¡m = NT0 ¡m and a delay 
between each subtrain of T0. Consequently, the profile of the trains is going to be determined 
by the relation between m and N. Also, if N/m is an irreducible fraction, there would be 
no interaction between the different subtrains, so that the amplitudes of the pulses at the 
output can be directly determined by the coefficients c,Ak or c,Bk. However, if N/m is a 
reducible fraction, then the pulses coming from different subtrains will occupy the same time 
slot, overlapping in time and producing interference between the different subtrains due to 
the different phase terms associated to each of them. In consequence, the optical power of the 
pulses at the output cannot be evaluated to obtain a general expression, since the coefficient 
modulating each pulse is now given by the sum of several coefficients c,Ak or c,Bk. 
Therefore, it is necessary to evaluate each case independently in order to obtain the output 



optical power, as we will be doing in the next section for a specific case that is of special 
interest. 

3. Discrete Fourier transform of the modulating coefficients 

In the previous section, it has been demonstrated that, when the fractional temporal self-
imaging condition determined by Eq. (10) is verified, the train of pulses at the output 
presents an intensity repetition rate given by Tx ¡m = NT0 ¡m, which depends on the relation 

between m and N . In this section, the case for 5 = 1 and m = N2 is going to be studied. 
This case is specially interesting because the amount of dispersion which is applied has a 
fixed value <j> = T2 ¡In , being thus independent on the number of coefficients modulated to 
the input train, N, and on the period of the modulating signal, Tx. As in the previous section, 
depending on the value of sm being even or odd, two different cases have to be studied. 

In the first case, N is going to be considered even. In consequence, the product 
s-m = N2 is also going to be even, and the train of pulses at the output will be given by Eq. 
(14). Therefore, by inserting the aforementioned conditions for s and m into this expression 
and introducing k' = k+lN, the train of pulses at the output can be expressed as a single 
train of pulses whose repetition rate is given by T0/N : 

*(0=I ÍX/c/ a\t-k'^-
N 

EH'-*§) 
(18) 

and the coefficients nk, can be expressed as: 

iV-liV2-l 

^ - t Z ^ e x p í y ^ + íl*'-^),} 
1=0 q=0 

N 

1 N -1 

q=0 

Sc,exp|-;y/? exp lj-^{q2+2k'q] 

(19) 

Additionally, by introducing the variables w and z , defined to be two integer numbers 
that verify q = w + zN, the first sum term can be divided in two summations, obtaining: 

"'•=T»T T\T,c¡exp(j^{(w + zN)2
+(2k'-2lN)(w + zN)} 

JV w=a z=a ;=n V N w=0 z=0 L '=0 

iV-1 

Â 2 lZH;7> 2 +2*MÍ: AT 
Í l7ti 

(20) 

I - 1 )Zexp(y-^z(w + ^') 

Thus, by rearranging the different terms in Eq. (20), the coefficients nk, can be rewritten 

as: 

^=-^ikexpi^K+2^jl|: 
N't-i w 'VN2 

-l)zexp| j-?-z{w + k'} (21) 

where Cw can be identified as the w-th term of the Discrete Fourier Transform of the 

modulating coefficients c,: 



C„ ,= Í> ; exp 
In, 

-1—lw 
N 

(22) 

To further work with this expression, it is demonstrated in the Appendix that the 
summation inside the inner brackets can only have two possible values depending on the 
value of the complex exponential: 

X ( - l ) Z e x p ^ z { W + r } 
0 if w±rN-k'+ 

N if w = rN-k'+ 

N_ 
2 
N_ 
2 

(23) 

where r is an integer. In order to determine which terms of the summation within nk, are 
non-zero, the values where the condition w = rN - k'+ N/2 is verified have to be found. Due 
to the external summation in Eq. (21), w is restricted to be an integer between 0 and N -1, 
i. e., 0 < w < N-l. Therefore, given a certain value of k', the possible valid values for r 
are going to be limited to the interval: 

k'-N/2 k'+N/2-
• < / • < • 

1 
(24) 

N N 
As it can be seen, the size of the interval in Eq. (24) is (N-l)/N, which is going to be 

inferior to the unity. Therefore, as r has to be an integer, there is only one possible value of r 
within the interval, r0, which verifies the condition w = rN-k'+ N/2. As this value is 

unique, it also determines the single possible value of w , w0, that, for a fixed value of k', 
verifies the necessary conditions for the inner summation in Eq. (21) to be different than 
zero: 

Wn -•r0N + 
N 

•k' (25) 

In consequence, the external sum of Eq. (21) is reduced to a single summand whose index 
is determined by w0 and that has a value of N according to Eq. (23). Therefore, the 

coefficient^, can be simplified to: 

"f=^CWoexp{j^{w2
0+2w0k'} 

1 
CA, 

.71 

And the signal at the output of the system, given in Eq. (18), thus results into: 

^ ^ e x p ^ i e x p -J% 

(26) 

y(')= ¿ 7 7 C ^ e x P | ^ l e x P 
, ÍV 2 

• ( k ' 

-J7Z\ — 
{N 

<\2"\ 
a\t-k^ 

N 
(27) 

Introducing the variable k" = N/2 - k' and considering that the pulse width is small 

enough so that pulses don't overlap (At < T0 ¡N), the optical power at the output of the 

system can be finally expressed as: 

PoAt) 
N2 TK alt + k"^-7^-

N 2 
(28) 



The second case to be considered is when N is odd, which corresponds to the inverted 
fractional temporal self-imaging effect. Under this assumption, the product s-m = N2 is 
going to be odd, so the output train of pulses is determined by Eq. (17). As in the previous 
case, the output can be expressed as a single train of pulses whose repetition rate is given by 
TJN: 

y(t)=Y ÍX/v a\t-k'^--^-
N 2N 

( T T 

*£t { N 2N 

with k' = k + lN and where the coefficients mk, are given by: 
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Ye,exp -j-

In order to further simplify this expression and following a similar procedure as in the 
even case, the variable w = q - zN with z an integer is introduced in the equation, so that by 
rearranging the terms of the summations the following equation is obtained: 

m,r ^1M^{,,. + ,,(«,1)} n X ( - l ) Z e x p h ^ - z ( 2 W + 2^'+l 
Af 

(31) 

where Cw corresponds again to the w-th term of the Discrete Fourier Transform of the 

coefficients c,. The inner summation can be fiirther simplified using the relation 

demonstrated in the Appendix, which results in: 
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and the interval for the possible values for r so that the summation is non-zero is now: 
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(33) 

As in the previous case, there is only one integer value r0 with its corresponding w0 that 
verifies this condition, and Eq. (31) can be simplified to: 
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Consequently, the optical power at the output of the system when Â  is odd can be 
written as: 
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- k', the resulting optical power at the output of the 
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As it can be inferred from Eqs. (28) and (36), when 5 = 1 and m = N2 the optical power 
of the train at the output of the system is similar regardless of the parity of N. In both cases, 
the separation between consecutive pulses is going to be determined by T0 fN, that is, by the 
number of coefficients modulated to the train at the input, and an additional T0/2 delay is 

introduced to the output train. Also, the amplitude of the pulses at the output of the system is 
going to be determined by the Discrete Fourier Transform (DFT) of the modulating 
coefficients c, applied in reverse order. It is worth recalling that in this case, the required 
dispersion depends only on the repetition rate at the input of the system, regardless of the 
number N of modulating coefficients. Thus, by modifying only the coefficients c, that are 

determined by an easily tunable electrical signal, it is possible to simultaneously control the 
amplitude and repetition rate at the output, as it can be seen in Fig. 3. 
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Fig. 3. (a) Train of pulses modulated at the input of the system with N = 3, and (b) at the 
output of the system. 

4. Numerical simulations 

To verify the validity of the proposal, the system shown in Fig. 4 was evaluated using 
Matlab. The simulated pulsed source produced a train of Gaussian optical pulses operating at 
a repetition rate T0=l00ps ( / 0 =10GHz) and a pulsewidth of 1 ps. The train was 

modulated using two ideal electro-optic modulators to modify both the amplitude (intensity 
modulator) and phase (phase modulator) of each pulse, assuming neither bandwidth 
restrictions nor modulator losses. As the modulation was done both in phase and amplitude, 
the coefficients were evaluated using the DFT of the desired envelope to be obtained at the 
output, as demonstrated in the previous section. Finally, the modulated signal was dispersed 
using 15.6 km of Dispersion Compensating Fibre (DCF) with « = 0.55dB/km, 
D = -80 ps/nm/km, 5' = 0.19ps/nm2/km, which corresponds approximately to the total 
chromatic dispersion required by the condition for obtaining the optical DFT, <p = T2 fin . 
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Fig. 4. Proposed setup with intensity and phase modulation in the time domain followed by a 
dispersive device (EO-IM: Electrooptic Intensity Modulator, EO-PM: Electrooptic Phase 
Modulator, DCF: Dispersion Compensating Fibre). 

In Fig. 5 the pulses (a) at the input and (b) at the output of the system when no 
modulating signal is applied are presented. As it can be observed, the signal at the output of 
the system corresponds to a train of pulses with the same repetition rate as the input and an 
additional T0/2 delay. This result was expected, as this scenario corresponds to the self-
imaging effect when the parameters 5 = 1 and m = \, which corresponds to the inverted case 
analyzed in section 2.1. Also, as a result of the DCF third order dispersion, the pulses present 
the typical deformation associated to it, showing some ripples at one side of the pulses. 
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Fig. 5. Train of pulses at the input (a) and at the output (b) of the system when no modulation 
is applied. 

Initial simulations were done using only intensity modulation and binary c, coefficients. 
In Fig. 6 the train of pulses obtained at the output of the system for the coefficients (a) 
1000000000 and (b) 1000000001 can be seen, as well as the expected output envelope 
(dashed line) obtained by the DFT of the different modulating coefficients that have been 
applied. As expected, the train of pulses at the output presents a time delay of T0 ¡2, that is, 
50 ps and the repetition frequency is multiplied by a factor N = 10, resulting in a separation 
between pulses of only 10 ps. However, as the pulse width at the input was 1 ps, no 
overlapping occurs despite the smaller separation between the pulses. Also, the envelope of 
the output train of pulses has been modulated, obtaining a constant signal and a cosine signal 
envelope, respectively, which correspond to the DFT of each of the modulated coefficients. 
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Fig. 6. Train of pulses at the input (dashed) and output (solid) of the system and the expected 
output envelope (dotted), when intensity-only coefficients (a) 1000000000 and (b) 
1000000001 are applied. 



In order to further verify the shaping capabilities of the setup, four different functions 
were chosen to be obtained as envelopes at the output of the system: a ramp envelope, a 
triangular envelope a burst of binary data (1001110101) and a signal with random 
amplitudes, in all cases with TV = 10. The modulating coefficients were evaluated using the 
DFT of the desired output envelope in each case. The obtained trains at the output of the 
system can be seen in Fig. 7, obtaining that the peak power of the output pulses corresponds 
to the DFT of the modulating coefficients that were chosen for the example but in reverse 
order, as expected. 
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Fig. 7. Train of pulses at the input (dashed) and output (solid) of the system and the expected 
output envelope (dotted) for a (a) ramp, (b) triangular, (c) binary data and (d) random 
envelope. 

In the previously presented examples the pulse width and the repetition factor were small 
enough so that there was no overlapping between adjacent pulses. However, if the number of 
modulating coefficients TV is increased, the condition given by Eq. (11) will not be fulfilled, 
appearing interference between adjacent pulses and invalidating the result obtained in Eq. 
(36). Two examples where this interference is significant can be seen in Fig. 8 and Fig. 9, 
where TV = 20 and TV = 60 respectively, and the modulating coefficients were chosen to 
obtain a triangular envelope at the output. As it can be seen, in the first case the pulses do not 
overlap completely, but a small amount of interference appears due to the sidelobes resulting 
from third order dispersion. The effect of this interference is a degradation of the peak optical 
power obtained in some of the pulses. 

On the other hand, when the number of coefficients is high enough (TV = 60 in Fig. 9), 
the pulses completely overlap, resulting in a complete interference between them. When the 
phases between adjacent pulses don't differ too much, the pulses overlap in power, obtaining 
a single pulse with the shape of the envelope instead of a train of pulses (see Fig. 9(b)). Yet, 
when the phases of the adjacent pulses diverge, the different pulses interfere with different 
phases and the signal at the output presents a noisy behavior, showing very fast power 
fluctuations and a general loss in the obtained peak optical power (Fig. 9(c)). This behavior is 
periodic, as the phases of the coefficients nk, and mk, from Eqs. (26) and (34) present a 

periodicity TV2, resulting in a periodicity for the output train determined by NT0 (6000 ps in 
this case). In further works, we aim to explore the use of this situation for obtaining 
individual pulses with arbitrary shapes, although only one over TV pulses will probably 
acquire the desired shape. 
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Fig. 8. Train of pulses at the output of the system for a desired triangular envelope with N = 
20; 20 periods of the output are shown in (a) and zooms of the signal in (a) for three specific 
periods are shown in (b) to (d). 
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Fig. 9. Train of pulses at the output of the system for a desired triangular envelope with N = 
60; 60 periods of the output are shown in (a) and zooms of the signal in (a) for three specific 
periods are shown in (b) to (d). 

5. Conclusions 

This work has been developed within the well-known space-time framework for the 
manipulation of optical pulsed trains. It has focused on a situation of special interest that 
cannot be considered neither a single-pulse Fourier Transform nor the repetition rate 
multiplication obtained by means of the temporal self imaging effect: the propagation 
through a dispersive element of a train of periodically modulated ultrashort pulses when 
different pulses interfere at the output. It has been found that, for some precise values of 
chromatic dispersion, the resulting outcome is composed of a periodic pulse train whose 
intensity repetition rate has been multiplied and whose envelope can be evaluated as the 
Discrete Fourier Transform of the modulating coefficients. A mathematical demonstration of 
this transform has been developed, showing the conditions in which it is valid. 

The proposal was verified with different numerical simulations using Matlab. Some basic 
examples, using only intensity electrooptic modulators and binary modulating signals, were 



presented, extending afterwards these results to more complex envelopes obtained employing 
both phase and intensity modulation and the DFT of the desired output envelope in each case. 
This enables the application of the proposed scheme as an optical train pulse shaper, allowing 
for example the generation of high-speed binary optical bursts that are of great interest in 
optical communication systems. Additionally, as the dispersive medium is fixed, the 
proposed setup could be used to modify the intensity repetition rate of the train at the output 
by varying only the modulating electrical signal. Furthermore, another possible area of 
application is the generation of arbitrary millimeter and microwave waveforms employing an 
envelope detector at the output of the system. 

Finally, a study of the limitations of the analysis was made. More specifically, it has been 
demonstrated that, for a given pulsewidth, there is a maximum number of modulating 
coefficients that can be used, and a corresponding maximum repetition rate at the output, 
since otherwise adjacent pulses overlap and the interference prevents the formation of the 
desired Discrete Fourier Transform. However, it has been found that under these conditions, 
the system operates as an optical pulse shaper, allowing the synthesis of at least one optical 
pulse in each period of N with the desired envelope, a finding that will need further 
research. 

Appendix 

Previously, in order to simplify the resulting mathematical expression for the superposition 
of different trains of pulses when 5 = 1 and m = N2, the mathematical identities of Eqs. (23) 
and (32) were imposed for N even and odd, respectively. For the completeness of the 
demonstration, in this appendix the full derivation of these expressions will be presented. 
Introducing s' = 2w + 2k' for Eq. (23) and s' = 2w + 2k'+l for Eq. (32), it is possible to 
unify both expressions as: 

"-' .h ( _n \ Í0 s'*(2r + l)N 
Y(- l ) "exp | j—hs'\ , 
^y ' ! N ) \N s' = (2r + V)N 

(37) 

Also, it will be proven that this equality is only valid as long as s and N have the same 
parity. As it can be observed, due to the definition of s' for N even and odd, this condition 
is fulfilled by Eqs. (23) and (32). To continue the analysis, two different cases are going to be 
considered depending on N being even or odd. 

If N is assumed to be even, then the summation can be divided in two different 
summations by selecting the summands depending on h being odd or even: 
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As it can be observed, a summation of complex exponentials is obtained. In order to 
calculate its value, we only need to use the well-known mathematical identity that exists for 
the summation of geometric series: 
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where, in our case, a = exp(j2ns'/N). Therefore, the result of the summation in Eq. (38) is 

given by: 
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and introducing Eq. (40) in Eq. (37), it is obtained that: 
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Equally, a similar analysis can be performed when TV is odd. However, in the separation 
of the even and odd terms done in Eq. (38) an additional term has to been taken in 
consideration before grouping: 
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As in the previous case, the summation of a complex exponential function is obtained so 
that it can be simplified by applying Eq. (39), which results in: 
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and introducing this identity into Eq. (42), the summation can be expressed as: 
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With this result and combining it with Eq. (41), a single expression for both TV even and 
TV odd can be obtained: 
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As it can be observed, the numerator of Eq. (45) is always going to be zero if the value of 
TV + s' is even, which is satisfied only when the parity of s' and TV is the same. Therefore, 
if both s' and TV are even or odd simultaneously, the result of Eq. (45) is going to be zero 
unless the denominator is also zero. In this last case, an indeterminate form is obtained and 
the value of the function has to be determined by using its limits at those points. This will 
occur only when exp(jns'/N) = - 1 , that is, when the value of the complex exponent is an 
odd multiple of n, which is satisfied when s '/TV corresponds to an odd number. Therefore, 
the limits when s' = (2r + 1)TV are going to be studied, where r is an integer number. By 
applying L'Hopital's rule, it is obtained that the value of the function at those points is: 
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Therefore, if the parity of s' and TV is the same, the value of the summation is going to 
be: 

¿ ( - t f e x p ; ^ 
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TV s' = (2r+l)TV 
(47) 

as we wanted to demonstrate. 
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