
Comment: Is memristor a dynamic element? 

R. Riaza 

In [1] the authors present a charge/flux formulation of the equations of 
memristive circuits which seemingly show that the memristor should not 
be considered as a dynamic circuit element. We show in this Letter that 
the authors' approach implicitly reduces the dynamic analysis to a certain 
subset of the state space in a way such that the dynamic contribution of 
memristors is hidden. This reduction might entail a substantial loss of 
information, regarding e.g. the local stability properties of the circuit. Two 
examples illustrate this. We conclude that the memristor, even with its 
unconventional features, must be considered as a dynamic element. 

Introduction: Memristors [2, 8] are known to display unconventional 
dynamical features; notably, equilibrium points of memristive circuits are 
not isolated [5, 7]. Equilibria in a nonlinear circuit including m memristors 
lie on m-dimensional sets. However, this does not mean that memristors 
do not contribute to the state space dimension of the circuit (that is, the 
dimension of the space where solutions lie or, equivalently, the number 
of initial conditions which can be freely assigned). On the contrary, this 
property of memristors is responsible for subtle dynamical properties 
which require a delicate analysis. 

In [1], the authors propose a charge/flux formulation of the equations 
of memristive circuits which seemingly prove that the memristor is not a 
dynamic element, namely, that it does not actually contribute to the state 
dimension of the circuit. We show below that the approach of [1] implicitly 
reduces the analysis to a lower dimensional (so-called invariant) manifold 
of the actual state space, and that the number of disregarded dimensions 
(or codimension) equals the number of memristors. We apply these results 
to the canonical Chua's memristor oscillator considered in [1], showing 
that the results there are restricted to a three-dimensional subset of the full 
space space, which is four-dimensional. We also discuss a simpler circuit 
with just two devices for a better understanding of this matter. 

Charge/flux formulation of memristive circuit equations: As in [1], we 
consider a lumped circuit with k branches, composed of r linear resistors, 
c linear capacitors, I linear inductors and m memristors, with k = r + c + 
I + m. All devices are assumed to be time-invariant and their constitutive 
relations will be written as vr = Rir (resistors), qc = Cvc (capacitors), 
ipi = Lii (inductors) and 

•pm = <í>{qm) (1) 

(memristors), with <j>: R m —»Rm; note that R, C and L are resistance, 
capacitance and inductance matrices. For the sake of simplicity we 
ignore voltage and current sources but they can be accommodated in 
the discussion in a straightforward manner; the same happens with flux-
controlled memristors. 

Time-integration of Kirchhoff laws makes it possible to reformulate 
them in terms of charges q and fluxes ip as 

Aq(t) = Aq(0) 

B<p(t) = B<p(0). 

(2a) 

(2b) 

Here A and B are reduced incidence and loop matrices (see e.g. [3, 6]) 
and q, ip join together all charges/fluxes; that is, q = (qr, qc, q¡, qm), <P = 
(ipr, ipc,ipi, ipm)- It is well known in circuit theory that Kirchhoff laws 
specify k linearly independent relations between the circuit variables. 

To get a full description of the circuit dynamics in terms of charges and 
fluxes, we also need to reformulate the equations for resistors, capacitors 
and inductors. By time-integration of vr = Rir, the charge/flux equations 
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for resistors should read as 

ipr{t) - Rqr(t) = ipr(0) - Rqr{0), 

whereas the equations for capacitors and inductors are 

CVc(i) = qc(t) 

Lq[{t) = Vl{t). 

(3) 

(4a) 

(4b) 

The system defined by (1), (2), (3) and (4) specifies the charge/flux 
dynamics of the circuit. Note that this model involves a total amount of 
2fc = 2(r + c + I + m) variables. 

In [1], the authors implicitly assume that the right-hand sides of (2) 
and (3) do vanish. This key assumption implies that both equations impose 
k + r linear restrictions among the circuit variables. Since (1) imposes m 
additional restrictions, there is a total amount of k + r + m restrictions 
among the 2fc variables, yielding a state dimension or dynamical degree 
of freedom oí 2k — (k -\- r -\- m) = k — r — m = c -\-1. Equivalently, in 
terms of initial values, the aforementioned vanishing assumption on the 
initial conditions implies that only c + 1 initial values can be freely 
assigned. Under this assumption, the state dimension is indeed defined 
by the total number of capacitors and inductors, and it seems that the 
memristors do not contribute to this dimension. 

This contradicts what one would expect from the conventional 
formulation, which is defined by the equations Cv'c = ic, Li't = v\, 
?m = »m vr = Rir, Vm=M(qm)im (where M(qrn) = 4>'(qm) is the 
memristance), together with Kirchhoff laws Ai = 0, Bv = 0. Here 2fc + m 
variables are involved (all voltages and currents besides the memristors 
charges qm), and there are r + m + k restrictions, yielding a state 
dimension of c + I + m; notice the contribution of memristors to this 
dimension. 

As illustrated by the examples below, the conventional formulation is 
of course correct, and the absence of memristors in the state dimension as 
computed in [1] is a consequence of the fact that more initial conditions 
than necessary are imposed by the vanishing assumption indicated above. 

Chua s memristor oscillator: Figure 1 displays the canonical Chua's 
oscillator with a flux-controlled memristor [4]. 
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Fig. 1. Canonical Chua's memristor oscillator 

We will denote by (qci, qC2 ,qi,qm,qr) and (ipci, ipC2 , ipi, ipm, ipr) the 
charges and the fluxes at the capacitors C\ and C'2, the inductor, the 
memristor and the resistor. The memristor is a flux-controlled one, and its 
characteristic qm = Cifm) is assumed to be differentiable, with W(ipm) = 
C(<Pm)- It is straightforward to write the circuit equations in terms of the 
capacitor charges and the fluxes at the inductor and the memristor (cf. eq. 
(38) in [4]); these are 

1ct 

l'c2 

fl/L-W(<fm)qc1/C1 

-<pi/L + GqC2/C2 

-qcl/C-i +qC2/C2 

<?C1/Ci. 

(5a) 

(5b) 

(5c) 

(5d) 

By using, as in [1], equations (2) and (3) with a vanishing right-hand 
side, one gets the restrictions qr + qC2 + q¡ = 0, q¡ — qci — qm = 0 , ipr = 
tpC2, tpC2 — ipci — if 1 = 0, ipci = ipm and qr + Gipr = 0. Together with 
Qm = Cifm), these seven restrictions allow one to express the six variables 
Ql, Qm, qr, ¥>ci, <fic2 and ipr in terms of the four variables involved in (5); 
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only one restriction remains and this can be easily seen to read as Q, 

<?ci + <?c2 + C(fm) - G(ipm + (pi) = 0. (6) 

This equation defines a three-dimensional invariant manifold for the flow 
defined by (5). This means that, provided that an initial point satisfies (6), 
the trajectory emanating from it remains in the manifold defined by (6). 
This property can be shown to hold by checking that the time derivative of 
the left-hand side of (6) vanishes: 

i'ci + q'C2 + (C(fm)Y - G(v'm + v[) = 

= ict + ic2 + W{ipm)vm - Gvm - Gvi = 

— 1c\ \ 1c2 i 1>m ~T ^r = U, 

where the last identity owes to the fact that the four vertical branches in 
Fig. 1 define a cutset and hence the total current flowing through it is zero. 

Moreover, by restricting the system (5) to the manifold defined by (6) 
one gets the three-dimensional model discussed in [1]. Indeed, by writing 
qci in terms of qC2, ipi and ipm via (6), equations (5b), (5c) and (5d) yield 

q'C2 = -<Pi/L + GqC2/C2 (7a) 

f'i = (qc2+C,(Lpm)-G(Vm+Vl))/Ci+qC2/C2 (7b) 

V'm = -(qc2+((<Prn)-G(<Pm+<Pl))/C1. (7c) 

By means of the linear coordinate change defined by the identities x = ipm, 
y = <Pm + fu z = -qC2 + G(ipm + fi) and setting 1/Ci = a, l/C2 = /3, 
G/C2 = 7, L = 1, as in [1], one easily recasts (7) as 

= a(z-C(x)) 

= IV- fiz 

= -x + y, 

(8a) 

(8b) 

(8c) 

which is exactly eq. (13) in [1]. This shows that the three-dimensional 
system derived in [1] only describes the flow of Chua's memristor 
oscillator on the invariant manifold defined by (6); the whole flow is four-
dimensional and is fully described by (5). The distinction is important 
because the flow on other invariant manifolds may exhibit a completely 
different behavior; this is illustrated below by means of a simpler example. 

A two-device example: The results discussed above can be further 
illustrated by a simpler circuit example just defined by the connection of a 
linear inductor and a charge-controlled memristor, as depicted in Figure 2. 

Fig. 2. ML circuit 

Let <Pm=<j>(qm) be the characteristic of the memristor and write 
M(qm) = <j>'(q-m)• It is straightforward to write the equations of such 
circuit, which in terms of qm and the inductor current i¡ read as 

Li[ = -M(qm)ii 

= n-

(9a) 

(9b) 

Note that i\ = 0 defines a curve of (non-isolated) equilibrium points. For 

the sake of simplicity let as fix L = 1 and assume that <j>(qm) = q2
n/2, 

so that M(qm) = qm. By recasting (9) in terms of -^- = ¿-^-, it is not 

difficult to check that the trajectories lie on curves of the form 

it = -q2
m/2 + k, (10) 

for any real constant fc. The actual trajectory behavior is displayed in Figure 
3. Equilibria, displayed in a continuous straight line, are located on the 
(vertical) gm-axis. 

Fig. 3. Possible trajectory behavior in the ML circuit 

For fc < 0, trajectories do not reach the equilibrium line; these are 
located on the left of the boldface curve in the Figure. This boldface curve 
corresponds to the case fc = 0 and includes an equilibrium at the origin. 
The trajectory on this curve with qm > 0 approaches asymptotically the 
equilibrium point located at the origin, whereas the trajectory with qm < 0 
leaves asymptotically the equilibrium and escapes to infinity. 

Finally, curves on the right of the boldface one comprise two 
equilibrium points in the qm axis. Trajectories leave and/or approach 
asymptotically an equilibrium as indicated by the arrows in Figure 3. One 
can check that equilibria defined by i¡ = 0, qm > 0 are stable, whereas 
those with ii = 0, qm < 0 are unstable. This indicates that the origin 
behaves as a bifurcating point. 

By contrast, following the approach of [1] we would get the relations 
Ql = Qm, <Pi + <Pm = 0, ipm = 4>(Qm) and a single differential equation 

2«(0) 

Lq[ = -4>(qi). 

With L = 1 and <j>(q) = q2 /2 , as above, one easily gets q\ = ^—t—v^r. 
using qm = qi and i\ = q'v we obtain that trajectories of this model are 
forced to lie on the curve defined by 

(11) 

.By 

n = -<Ll% (12) 

which corresponds to fc = 0 in (10) and to the boldface curve in Fig. 3, 
which includes the equilibrium at the origin. This is only one invariant 
curve in the whole phase portrait, which is two-dimensional. It would not 
be accurate to conclude that this curve describes the whole dynamics of 
the circuit since, as indicated above, very different trajectory behaviors 
do happen within other invariant curves. Specifically, other curves may 
accommodate no equilibria or, on the contrary, two equilibrium points. 

Concluding remarks: The results above show that the charge/flux 
approach of [1] provides a description of the dynamics of memristive 
circuits in lower dimensional invariant manifolds of the actual state space, 
with the number of disregarded dimensions given by the number of 
memristors. When considering the full dynamic flow of a circuit with 
memristors, these are responsible for unconventional phenomena such as 
the existence of manifolds of non-isolated equilibria. The local dynamical 
properties of the circuit may change as we move along such manifolds. 
Therefore the memristor must be considered as a dynamic element which 
actually play s a key role in the qualitative behavior of the circuit. 
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