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1. Network reliability, maximum product probability paths and the probability of connectivity metric 

Hock and Mumby (2015) describe an approach to quantify dispersal probabilities along paths in 

networks of habitat patches. This approach basically consists in determining the most probable (most 

reliable) path for movement between habitat patches by calculating the product of the dispersal 

probabilities in each link (step) along the paths in the network. Although the paper by Hock and Mumby 

(2015) has value and includes interesting analyses (see comments in section 7 below), the approach 

they describe is not new. Jordán (2000) presented explorations of reliability methods for assessing 

probabilities of species migrations and corridor designs in some illustrative habitat networks. Saura and 

Pascual-Hortal (2007) described an approach for analysing connectivity in probabilistic habitat networks 

through the probability of connectivity (PC) metric that was widely applied and developed after (see 

sections below). PC combines the attributes of the patches (e.g. habitat area or quality) with the 

maximum product probability paths for movement between patches. The approach of using the most 

reliable paths described by Hock and Mumby (2015) is the same as the maximum product probability 

paths in Saura and Pascual-Hortal (2007). The product probability along a path (product of the dispersal 

probabilities in each link in the path) as defined by Saura and Pascual-Hortal (2007) is the same as the 

reliability of the path, rel(p), in Hock and Mumby (2015). The maximum product probability in Saura and 

Pascual-Hortal (2007) is the same as rel(MRP) in Hock and Mumby (2015). Bode et al. (2008) also used 

the maximum product probability paths or most reliable paths, which were called the strongest 

connections (paths) in that paper. 

2. A widely used approach implemented in a free software package 

The maximum product probability paths (most reliable paths) and the PC metric were implemented in 

the Conefor software package (Saura and Torné 2009), a free and open source software available at 

www.conefor.org. The first version of Conefor was released in 2007, already including the maximum 

product probabilities and the PC metric (Saura and Pascual-Hortal 2007b), and has been regularly 

updated since then. The last version was published at www.conefor.org  in September 2014. This 

version includes both a graphical user interface (easier to apply for most users) and a more powerful 

command line interface that allows for automation via scripting and batch processing of multiple 

probabilistic (stochastic) networks.  

The maximum product probability paths and the PC metric have been widely used since 2007 in a large 

variety of studies on the connectivity of habitat networks (see section 3 below). A list of published 

studies using the maximum product probability paths and PC through Conefor can be found amongst 

those listed at http://www.conefor.org/applications.html 

The implementation of the maximum product probability paths (most reliable paths) in Conefor (in 2007 

and in subsequent versions) applies the Dijkstra’s algorithm to a negative logarithmic transformation of 

the link probabilities. This is the same as the calculation procedure described in Hock and Mumby 

(2015); i.e. finding the maximum product probability paths (and calculating PC) is equivalent to using the 

classical additive network search algorithms to find the path with the minimum sum of the weights in 

the log-transformed network. The source codes of Conefor in C++, with this implementation included, 

are freely available since 2009 under a GNU license (GPLv2) at www.conefor.org or directly at 

http://sourceforge.net/projects/conefor/ 
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3. Using the probability of connectivity and the maximum product probability paths to support 

management and conservation 

The maximum product probability paths (most reliable paths) in the probability of connectivity (PC) 

metric have been used in a large number and variety of applications, such as the following: 

 Identifying the habitat patches or links that are critical for connectivity, generally based on path 

or link removal procedures followed by an evaluation of the disruption of the dispersal 

pathways (Saura and Pascual-Hortal 2007, Bodin and Saura 2010, Laita et al. 2011, Saura et al. 

2011b, Carranza et al. 2012, Rubio et al. 2012, Szabó et al. 2012, Ziólkowska et al. 2012, 

Blázquez-Cabrera et al. 2014, Zhao et al. 2014, Merken et al. 2015, Giannini et al. 2015, Rubio 

et al. 2015). 

 Quantifying the connectivity of protected area networks (Gurrutxaga et al. 2011, Estreguil et al. 

2013, Fajardo et al. 2014, Mazaris et al. 2013, Maiorano et al. 2015). 

 Evaluating the barrier effect of transport infrastructure and identifying priority locations for 

fauna passages (Fu et al. 2010, Gurrutxaga et al. 2011, Gurrutxaga and Saura 2014, Loro et al. 

2015). 

 Assessing the impacts of habitat types and landscape matrix on species distributions, 

movements, space use or population dynamics (Cheveau et al. 2013, Harris et al. 2014, Saura et 

al. 2014, Pérez-Hernández et al. 2015). 

 Evaluating the effects of connectivity on gene flow and population genetic structure (Neel 

2008, Aavik et al. 2014). 

 Assessing the impacts of landscape changes on connectivity and monitoring landscape 

dynamics (Mitsova et al. 2011, Rippa et al. 2011, Saura et al. 2011, Rubio et al. 2012, Khalyani 

and Mayer 2013, Martín-Martín et al. 2013, Vergara et al. 2013, Liu et al. 2014, Nogués and 

Cabarga-Varona 2014). 

 Planning for restoration of habitats and landscapes (Tambosi et al. 2014, Tambosi and Metzger 

2014, Giannini et al. 2015, Rappaport et al. 2015).  

 Evaluating the role of landscape connectivity on species distribution, community composition 

and colonization patterns (Pereira et al. 2011, Awade et al. 2012, Zozaya et al. 2012, Zozaya et 

al. 2012b, Gil-Tena et al. 2013, Gil-Tena et al. 2013b, Saura et al. 2014, Rodríguez-Pérez et al. 

2014, Fernandes et al. 2015). 

 Quantifying habitat connectivity and availability (amount of reachable habitat) as a function of 

dispersal abilities, scale and/or habitat configuration parameters (Pascual-Hortal and Saura 

2007, Laita et al. 2011, Perotto-Baldivieso et al. 2011, Rubio and Saura 2012, Crouzeilles et al. 

2014, Ernst 2014, Ernst 2014b). 

 Quantifying the impacts of sea-level rise and drought scenarios on network connectivity and 

species conservation status (O’Farrill et al. 2014, Zhang and Gorelick 2014).  

 Forest harvesting and zoning (Neto et al. 2013). 

 Urban planning (Tannier et al. 2012, Xun et al. 2014, Frazier and Bagchi-Sen 2015).  

 Evaluating the effectiveness of conservation strategies (Trainor et al. 2013). 

These applications of the maximum product probability paths (MPP) and of the PC metric include a 

variety of network types and management contexts, showing the versatility of MPP and PC for network 

analysis. Different types of nodes have been used, such as habitat patches (e.g. Neel 2008, Pereira et al. 

2011, Awade et al. 2012), protected areas (e.g. Gurrutxaga et al. 2011, Mazaris et al. 2013, Maiorano et 

al. 2015), sets of nearby patches (e.g. Rubio et al. 2012, Blázquez-Cabrera et al. 2014), individual cells as 

resulting from raster-based habitat suitability models (e.g. Saura and Pascual-Hortal 2007), landscape 

units (e.g. Khalyani and Mayer 2013, Tambosi and Metzger 2014), animal territories (Trainor et al. 2013), 

forest stands (Neto et al. 2013) or individual trees (e.g. Rodríguez-Pérez et al. 2014). Different attributes 



of the nodes (node weights) have been considered, such as habitat area (the most frequent option), 

species occurrence or occupancy probabilities (Saura and Pascual-Hortal 2007, Vergara et al. 2013), 

habitat quality or suitability (e.g. Mazaris et al. 2013, Trainor et al. 2013), area weighted by habitat 

quality (e.g. Loro et al. 2015), water depth (Fernandes et al. 2015) or tree fruit production (Rodríguez-

Pérez et al. 2014, Pérez-Hernández et al. 2015). The links in the network (and the probabilities in these 

links) have been characterized through different options, such as Euclidean (straight-line) distances (the 

most frequent option), effective least-cost path distances through a resistance surface (e.g. Gurrutxaga 

et al. 2011, Carranza et al. 2012, Estreguil et al. 2013, Trainor et al. 2013, Fajardo et al. 2014), structural 

corridors (Saura et al. 2011b), or dispersal kernels derived from stochastic simulations of a spatially 

explicit and mechanistic dispersal model (Pérez-Hernández et al. 2015). Several studies (Saura et al. 

2014, Merken et al. 2015) have also used the maximum product probabilities and the PC metric in 

directed probabilistic networks (asymmetric exchanges between habitat patches), i.e. those in which the 

probability of movement from patch A to B is different than from patch B to A. The management 

applications and ecological implications of the maximum product probability paths (most reliable paths) 

and the PC metric have focused on a variety of species and habitat types. Further details on these and 

other related studies and applications are available at http://www.conefor.org/applications.html 

4. Empirical support to the use of the maximum product probability paths and the probability of 

connectivity metric 

Apart from the analytical developments and the applications of the maximum product probability paths 

(most reliable paths) in habitat connectivity assessments (see previous sections and section 6 below), 

several studies have evaluated the ability of the PC metric, and of the maximum product probability 

paths (MPP) in this metric, to explain or predict ecological processes related to habitat connectivity. 

These studies have supported the use of PC and MPP after confronting them with empirical data on 

species distributions or seed deposition patterns, as described next.  

Pereira et al. (2011) analysed a pond system used by an endangered species, the European pond turtle 

(Emys orbicularis), at a coastal region under strong agriculture intensification in south-western Portugal. 

Their study took into account different types of species-specific behavioural and ecological information: 

a surface of resistance to movement through the landscape matrix, the maximum travelled distance, 

observed pond presence/absence data, and an empirical habitat suitability model based on field 

sampling. Pereira et al. (2011) evaluated a set of network metrics in their ability to explain the actual 

species pond occupancy patterns in the study area. They found that, among the analysed network 

metrics, PC was the one that allowed a better discrimination of the occupied and unoccupied sites by 

adult and juvenile turtles; see the results for the three metrics in figure 6 in that article, plus the lack of 

relationship with turtle presence that is reported for betweenness centrality in page 74 of that article. 

Note that the betweenness centrality metric does not consider probabilities of dispersal nor MPP paths. 

PC also outperformed the results obtained when considering only the information provided by the 

habitat suitability model. In words of the authors, “the difference in dPC values [patch-level PC 

values] between occupied and unoccupied ponds was slightly more pronounced than habitat suitability 

values alone. This was especially true for the presence-absence of hatchlings and juvenile individuals”. 

They concluded that “among the different estimated parameters, this [PC] is possibly the most relevant 

for management purposes”. 

Awade et al. (2012) used playback techniques to empirically determine the inter-patch movements and 

occurrence patterns of a rainforest insectivorous bird (Pyriglena leucoptera) in three fragmented 

Atlantic forest landscapes in Brazil. They considered several models as candidates for predicting the 

observed presence/absence patterns of the species in the study area, including variables at the patch 

and landscape levels and different ways to characterize the links between patches. Awade et al. (2012) 

found that (i) the Equivalent Connected Area index, ECA(PC), which is a square root transformation of 

http://www.conefor.org/applications.html


the PC index that was proposed by Saura et al. (2011), was the best predictor of the bird occurrence 

patterns, and that (ii) the probabilistic connection model in ECA(PC) outperformed in this case the 

results provided by a similar metric that only accounted for the number of links in the paths between 

patches (and not for the product probabilities along the paths). In their words, “the single landscape-

level model including ECA(PC) was found to be the best”, “all three best-supported models included 

ECA(PC)”, and “we advise the use of probabilistic metrics, such as ECA(PC), when inferring the effects of 

habitat availability on the occurrence of a certain species”. They stated that “models should include at 

least one landscape-level habitat availability predictor and that a probabilistic measure of connectivity is 

mandatory to obtain good predictions”. They concluded that “habitat availability is an essential factor 

determining species occurrence in fragmented landscapes” and that “evaluation of the abovementioned 

habitat availability aspects is strongly recommended to properly guide management decisions”. 

Rodríguez-Pérez et al. (2014) analysed avian seed dispersal of fleshy-fruited trees in a secondary forest 

of the northern Iberian Peninsula. In this forest they set up an 18 hectare plot where they recorded the 

standing fruit crop of all trees and the abundance of seeds deposited by birds below the canopy of each 

tree. They aimed to infer the effects of connectivity between trees on the seed deposition patterns in 

each tree resulting from seed dispersal by frugivorous birds. They calculated the contribution of each 

tree to network connectivity for frugivorous birds through different connectivity metrics, which included 

PC but also two other metrics: the total number of links in the study area (NL) and IIC (Pascual-Hortal 

and Saura 2006), a similar metric to PC but that only considers the number of links in the paths between 

patches (and not the product probabilities along the paths). Rodríguez-Pérez et al. (2014) found that 

from the three connectivity metrics in the univariate models of fruit crop PC was the one that best 

predicted (lowest AIC) seed abundance (see table 1 in that paper). They concluded that trees with 

higher PC had higher seed abundance below them (see figure 3 in that paper), and that PC was the most 

important factor explaining seed abundance (see table S5 in the supporting information in that paper). 

PC was therefore able to capture factors driving seed dispersal and the abundance of seed deposition by 

frugivorous birds. Trees with the highest PC values accumulated larger seed clumps under their 

canopies, demonstrating agreement between the network connectivity as characterized by MPP and PC 

and the actual process of seed dispersal by birds. 

Zozaya et al. (2012) evaluated the role of forest fires that occurred in recent decades in Catalonia (NE 

Spain) as drivers of the pattern of expansion of early-successional, open-habitat bird species. 44 large 

forest fires occurring between 2000 and 2005 (with sizes ranging from 50 to more than 6000 hectares) 

were analysed and surveyed in the field for the presence of six bird species with preference for open 

habitats in Mediterranean landscapes. Several scenarios of potential colonizer sources were assessed: 

open habitats created by previous recent fires, shrublands and farmlands. They used the flux fraction of 

the PC index (see a brief description of this fraction in section 6.1 below) to estimate potential species 

colonization dynamics on the selected fires. They differentiated the nodes comprising the sources of 

colonisers and the nodes corresponding to the new suitable habitat patches originated by the wildfires. 

They evaluated the capacity of that PC flux metric to explain the empirically observed species 

occurrences in the studied sites by using generalized linear mixed models. They found that the 

occurrence and colonization patterns of the focal species on the newly burnt sites were significantly 

related to the potential flux as estimated by PC. This occurred for five of the six surveyed open-habitat 

bird species and for all the scenarios of potential colonizer sources (although with a stronger signal for 

the scenario that considered previous wildfires). The authors concluded that “fires occurring in the last 

decades are acting as sources of immigrants to the new suitable habitats appearing in the landscape. 

Overall, the probability of colonisation of a recently burnt area was greatest in those sites well connected 

by dispersal to other previously burnt areas”. 



Finally, it is interesting to mention the study by Visconti and Elkin (2009), who assessed five connectivity 

metrics for their ability to predict the contribution of each patch to metapopulation viability. The 

probability of connectivity (PC) was one of the five evaluated metrics. The study was based in simulating 

the dynamics and viability of species occupying the landscapes using a metapopulation model linked to 

continuous time logistic population growth models. The authors compared the results from that model 

with the patch importance ranking derived from each connectivity metric. They concluded that from all 

the five evaluated metrics “only the metapopulation capacity and the PC index were reasonably 

successful in predicting patch value in over-dispersed, heterogeneous landscapes”. They also concluded 

that “to assess the persistence of a species in a landscape, [interpatch] connectivity is a necessary but by 

itself insufficient factor to consider. It is also necessary to consider the other components of 

metapopulation dynamics, which are taken into account in metapopulation capacity and PC index”. This 

is not an empirical validation study since it is based in landscape simulations and modelling, but provides 

a different kind of support to the PC metric by comparing it with a much more complex, biologically 

detailed and data hungry spatially explicit population model. A related study is that by Bode et al. 

(2008), who showed that the simulated probability of metapopulation extinction was negatively related 

to the average of the maximum product probabilities between all pairs of patches (called average path 

strength in that paper) in a set of small networks.  

5. Cases in which the maximum product probability paths (most reliable paths) may not be the best 

option for analysing habitat network connectivity 

Despite of the advantages and the improved approach for connectivity analysis provided by the 

probability of connectivity (PC) metric and the maximum product probability (MPP) paths, as outlined 

above and noted by Hock and Mumby (2015), PC and MPP are not necessarily always the most 

appropriate way to analyse the connectivity of habitat networks. 

Bodin and Saura (2010) compared the behaviour of the PC metric (MPP) with IIC, a similar metric that 

only accounts for the number of links (and not for the probabilities) in the paths connecting each pair of 

patches (Pascual-Hortal and Saura 2006). Bodin and Saura (2010) noted that the MPP paths in the 

probabilistic PC metric resulted in the intermediate stepping-stone patches being highlighted as less 

important for network connectivity than when an unweighted network with binary links (IIC) was used. 

They also noted that since PC uses the product of the individual dispersal probabilities between pairs of 

patches (MPP) to assess the flows throughout the network, it follows that if these individual pair-wise 

probabilities are considerably lower than 1, the product (MPP) decreases very rapidly, and essentially 

vanishes for network distances (i.e. number of intermediate links) higher than just a few number of 

steps (links). Thus, in this case, the patches that are highlighted as those most important for connectivity 

(stepping stones) by PC and MPP are generally confined within relatively dense clusters where the 

patches are situated fairly close to each other. 

PC and MPP give more weight to patches and links that potentially carry large flows of organisms, and 

much less weight to patches and links that carry fewer organisms (lower MPP) (Bodin and Saura 2010). 

Therefore, in those studies intending to explain the abundance of individuals, or to explain species 

presence in those cases in which species detection likelihood increases with population size, PC (MPP) 

may be the best way to characterize habitat connectivity (see some of the empirical validation studies 

mentioned in section 4). However, in other cases the focus may not be so much on how much flow there 

is or on how many individuals may move, but just on whether the movement of some individuals (even 

if not many) is possible. In this latter case, it may be more appropriate to use other metrics like IIC, 

which focus on whether movement is possible or not between two patches (unweighted network that 

does not differentiate the strength or probability of dispersal along the different links in the network). If 

focus is, for example, on genetic transmission, is does not matter that much if the flow of organisms is 

very high or low, as long as it is high enough to provide at least one or few immigrating individuals per 



generation (Mills and Allendorf 1996, Wang 2004). Similarly, for an invasive species to spread it is 

generally not required that a large number of individuals can colonize a vacant habitat patch, but just 

that very few individuals are able to do so. Since the MPP paths in PC give much less weight to the less 

frequently used paths than to those with a high product probability, it follows that the actual 

importance of the long-distance (low-frequency) movements will be underestimated in the connectivity 

analysis, which will be dominated by a potentially small subset of very strong and frequently used paths 

(those with high MPP). In using IIC (or more broadly a network with unweighted links), more focus is laid 

on the likelihood of a successful movement happening throughout the network, and less focus is laid on 

assessing the actual quantities of organisms that flow throughout the landscape, which would be better 

captured by PC and MPP paths. This implies that IIC (unweighted network with no link probabilities) may 

be better suited to study long-term mixing of populations. As long as the movement probability for an 

individual situated in a certain patch to reach a neighbouring patch is not too low, it is reasonable to 

assume that at least one individual can mix with the local population in the neighbouring patch and thus 

create a new foothold from where further genetic transmission can take place. This means that all 

patches that are genetically connected would, over time, make up a single metapopulation. This 

suggesting discussion is supported by the findings from a study where more significant correlations were 

found between genetic diversity statistics and IIC compared to PC (Neel 2008). Related to this 

discussion, more recently Saura et al. (2014) noted that the maximum product probability paths (most 

reliable paths) and the PC metric may be need to be generalized to better account for the number of 

dispersing individuals, both those that are available for dispersal in a source patch and those that need 

to reach a vacant patch for a certain species spread or population mixing process to occur. This 

generalized network approach by Saura et al. (2014) seems to better account for the actual patterns of 

species range expansion through habitat networks and is summarized below in section 6.3. 

6. Further analytical developments beyond the definition of the maximum product probability paths  

The approach for assessing connectivity in probabilistic networks based on maximum product 

probability paths (most reliable paths) has been considerably developed in the last five years. These 

further developments have provided further insights or enriched analyses on the PC metric and on the 

maximum product probability paths in this metric, as summarized next in sections 6.1, 6.2 and 6.3. 

6.1. Partitioning network connectivity in commeasurable fractions 

Saura and Rubio (2010) showed how the PC metric can be partitioned in three fractions quantifying the 

different ways in which a habitat patch can contribute to connectivity. Two of these fractions directly 

deal with interpatch connectivity as quantified by the maximum product probability paths (most reliable 

paths). These two fractions are the flux fraction and the connector fraction.  These fractions are 

measured in the same units (a common currency for connectivity) and can be directly compared to each 

other.  

The flux fraction of PC quantifies how well a given habitat patch is connected to the rest of the habitat 

patches in the network. The flux fraction for a given patch is quantified as the attribute-weighted 

(usually area-weighted) dispersal flux along the maximum product probability paths of that patch with 

all the other habitat patches in the network.  

The connector fraction quantifies how important a given patch is for maintaining connectivity between 

the rest of the patches, as a connecting element or stepping stone between them. The connector 

fraction for a given patch quantifies how much the maximum product probability paths (most reliable 

paths) between other pairs of patches would be affected by the removal of that patch (Saura and Rubio 

2010). A given patch can only contribute through the connector fraction if it is part of the maximum 



product probability path between other patches different from itself. The connector fraction of PC can 

also be calculated in the same way for links in the network (and not just for nodes or patches).  

An example of the values of these fractions for patches and links is shown in figure 1 and in tables 1 and 

2 in Saura and Rubio (2010). Saura and Rubio (2010) showed how the relative importance of these 

fractions varies for different network and species traits, and how each of the fractions highlights 

different critical patches for connectivity. Related analyses of interest can also be found in Baranyi et al. 

(2011). The calculation of these fractions is also implemented in the Conefor software package (version 

2.6 or newer). Further details on conservation management applications resulting from these fractions 

can be found in some of the studies mentioned above in section 3 (e.g. Gurrutxaga et al. 2011, Rippa et 

al. 2011, Carranza et al. 2012, Trainor et al. 2013, Rodríguez-Pérez et al. 2014). 

More recently, Saura et al. (2014) presented and applied a conceptually similar partitioning but focusing 

on the network-level (landscape-level) connectivity values rather than on the importance of individual 

nodes (patches) or links (the latter already addressed in Saura and Rubio (2010)). Two of these three 

network-level fractions in Saura et al. (2014) are the direct and step fractions, accounting respectively 

for how much of the overall connectivity is due to direct and indirect movements between patches (as 

given by the maximum product probability paths in the network). 

6.2. Network centrality and maximum product probability paths 

Bodin and Saura (2010) combined patch removal techniques and network analytical approaches into 

one integrated modelling framework for assessing the role of individual patches as connectivity 

providers. They showed that (i) the connector fraction of PC and the maximum product probability paths 

can be linked with classical network centrality metrics (betweenness centrality, BC), and that (ii) the 

classical betweenness centrality (BC), which is based on identifying the shortest paths (as given by the 

number of links along the path), can be generalized to incorporate the maximum product probability 

paths and then be measured in the same units as PC.  

Bodin and Saura (2010) described the different connectivity aspects captured by the connector fraction 

of PC and by the generalized BC. The generalized BC captures how much a given patch is part of the 

maximum product probability paths between other patches, i.e. how much that patch sits between (or 

is involved in) movements between other pairs of patches by serving as an intermediate stepping stone 

patch in the network (as captured by the maximum product probability paths). The connector fraction of 

PC quantifies which proportion of that connector role (given by the generalized BC) would be actually 

lost if the patch was removed from the network, i.e. how much the connectivity between other habitat 

areas actually depends on the presence of that patch in the network.  

If the removal of a patch X breaks the only path that was available for movement between the other 

patches, then the connector fraction for X will be high, as high as the generalized BC; this is the case of 

an irreplaceable patch (or path). If, on the contrary, there are many other alternative paths and patches 

that can compensate for the network disruption, then the impact on the network connectivity will be 

low; and the connector fraction of PC will be low for X even if the generalized BC was high (because the 

alternative paths for movement not affected by the removal of X have a product probability that is 

almost as high as that of the maximum product probability path in the intact network). Therefore, how 

high the connector fraction of PC is compared to the generalized BC may be linked to the difference 

between the maximum product probability path (most reliable path) and the product probability in the 

nearest alternative path as identified in the dispersal simulations and related discussion by Hock and 

Mumby (2015). 

The generalized BC, measured in the same units as the connector fraction of PC, is also implemented in 

the Conefor software package (version 2.6 or newer). The same concepts and metrics can be extended 



to links in the network. Further details and analytical expressions are provided in Bodin and Saura 

(2010).   

6.3. Accounting for the number of dispersers in probabilistic networks 

Saura et al. (2014) presented a generalized network model that accounts for the number of dispersing 

individuals and for long-distance dispersal processes across generations. In this model, the dispersal 

probabilities and maximum product probability paths are modified to account for the number of 

dispersing individuals, the number of immigrants that need to reach a vacant patch to allow for species 

establishment and reproduction, and the potential long-term role of stepping stones to promote species 

range shift and expansion across generations. In this way, Saura et al. (2014) provide a conceptually 

broader model to assess connectivity in probabilistic habitat networks. When confronted with empirical 

data on the large-scale range expansion of a forest bird species, the Black Woodpecker Dryocopus 

martius, over a 20-year period, this generalized model was shown to outperform previous standard 

network connectivity models (Saura et al. 2014). The developments in this generalized network model 

may be in line with some of the possibilities suggested by Hock and Mumby (2015) of modifying link 

probability values and maximum product probability paths by considering parameters such as 

population size or patch quality. 

7. Concluding remarks 

The analytical approach of the maximum product probability paths (most reliable paths) and the 

probability of connectivity metric has been widely used and developed for assessing the connectivity of 

habitat networks. This analytical approach has supported a better understanding of ecological 

processes, has contributed to assessments of the impacts of habitat network changes, and has provided 

guidance for decision making in conservation planning, as outlined in previous sections. The applications 

of the maximum product probability paths (most reliable paths) in previous studies include the 

prediction of patterns of species distribution, spread or colonization and planning for spatially-explicit 

measures focusing on the key patches or links along the dispersal paths in probabilistic networks (see 

section 3 and the references therein for further details). 

Hock and Mumby (2015) add several valuable results on this previously presented approach through the 

demonstrative dispersal simulations they performed in a set of random graphs. These simulations show 

that the maximum product probability path is the path most likely (most frequently used) to conduct 

dispersal through the analysed habitat networks. The maximum product probability path (most reliable 

path) was used nearly twice as often as the next more frequently used path in these dispersal 

simulations, and it was also used more often than the path with the fewest number of links or the path 

determined by classical additive network search algorithms (Hock and Mumby 2015). It is also of 

interest that Hock and Mumby (2015) explicitly linked the path probabilities with the speed of the 

expected traversal time in terms of the number of necessary dispersal events, and that they explored 

the effect of targeted disruptions on patch occupation delay in the dispersal simulations. These findings 

by Hock and Mumby (2015) provide valuable insights that add to the considerable body of research on 

the maximum product probability paths (most reliable paths) outlined in previous sections. These 

insights by Hock and Mumby (2015) contribute to understand why the maximum product probability 

paths and the probability of connectivity metric may provide better predictions of different ecological 

processes than other classical network metrics, as reported in some previous studies (see section 4). It 

may be noted, however, that in some cases there might be reasons that may make other approaches 

different from the maximum product probability paths more appropriate in certain management or 

ecological applications (see section 5). 



The intention of this document was to provide an overview of the wider context and considerable body 

of published research that has previously presented and developed this analytical framework for 

assessing probabilistic dispersal in habitat networks based on the maximum product probability paths. 

Hopefully, this overview will help researches and conservationists to make further use and have a better 

understanding of this analytical framework and of the software tools in which it has been implemented, 

which may be in the benefit of improved insights on ecological processes and better informed decisions 

for managing connectivity in habitat networks. 
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