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A numerical method has been developed to determine the stability limits for liquid bridges held
between noncircular supporting disks, and the application to a configuration with a circular and an
elliptical disk subjected to axial acceleration has been made. The numerical method led to results
very different from the available analytical solution, which has been revisited and a better
approximation has been obtained. It has been found that just retaining one more term in the
asymptotic analysis the solution reproduces the real behavior of the configuration and the numerical
results. © 2003 American Institute of Physics. [DOI: 10.1063/1.1601615]

I. INTRODUCTION

The study of liquid bridges behavior started more than a
century ago. However, interest in their response has been
continuously growing during the last decades due to different
applications as the floating-zone technique for crystal
growth, the measurement of the surface tension, shear vis-
cosity and extensional viscosity of molten Newtonian and
non-Newtonian liquids, and the agglomeration of particles,
among others. Concerning the floating-zone technique, liquid
bridges offer the simplest,"> while still representative, model
of the mechanical behavior of this crystal growing technique.
In this technique, a liquid zone is established by melting an
initially solid rod where the molten region is held between
two still solid parts of the rod. One part plays the role of a
charge or feed material (typically polycrystalline) and on the
other solid part a single crystal is grown by translating the
rod through a temperature gradient so as to melt the feed rod
and solidifying a crystal from the molten zone.

The nominal configuration considered in the literature is
a cylindrical shape held between equal circular disks. The
equilibrium shapes and stability limits of the mentioned con-
figuration subjected to various disturbances, that can act ei-
ther accidentally or intentionally, is a matter of great con-
cern. Most of these studies deal with the stability of liquid
bridges held between circular disks and subjected to an ac-
celeration field.>* Some effort has also been devoted to ana-
lyze the influence of other perturbations that can be used to
modify the stability of the liquid bridge configuration (for
example, by using flow stabilization,? acoustic stabilization,®
electric field stabilization,’ magnetic field stabilization,8 or
thermal convection”'?).

The influence of different perturbations on the stability
of liquid bridges have been extensively analyzed from both
the theoretical and the experimental point of view. However,
leaving apart nonmechanical disturbances, except in a few
papers very recently published (two of them dealing with the
equilibrium interface shapes of liquid bridges between non-
circular supports,'*!? and a third dealing with the asymptotic
stability of long liquid bridges between noncircular disks'?),
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to our knowledge all published works to date deal with liquid
bridge configurations (either axisymmetric or nonaxisym-
metric) that are held between circular supports. Therefore,
except for the above quoted papers, the effects of noncircular
supports have never been considered, and no efforts have
been devoted to the study of the behavior of liquid bridges
held between noncircular supports (although some early
work concerning capillary jets emerging from noncircular
nozzles has been published'?).

In the above quoted asymptotic stability analysis,'? it is
demonstrated that the influence on the stability limit of per-
turbations like an axial gravity and the existence of noncir-
cular supporting disks can somehow interact in the way of
balancing each other. The destabilizing effect of an axial
gravity can be counteracted by placing the liquid column
between noncircular disks, and this compensation will take
place irrespective of the values of the parameters involved,
provided the resulting configuration is stable. Obviously this
behavior is derived from an asymptotic study, so that one
cannot expect that in a real situation the values of both grav-
ity and the parameter measuring the eccentricity can be in-
creased without any further limitation and the results will
still be valid.

A numerical method capable of solving the problem
without any asymptotic approximation is implemented in
Sec. III. This method was already used for analyzing stability
problems of nonaxisymmetric liquid bridges held between
circular disks,'>!'® but it is here adapted to the particularities
imposed by the nonaxisymmetric boundary conditions.

In Sec. IV the asymptotic stability approximation pub-
lished by Meseguer et al.'> is revisited, and higher-order
terms dealing with the combined effect of both axial accel-
eration and noncircular disks are added to the bifurcation
equation. The bifurcation equation already known' is there-
fore substituted by a more accurate expression, the effect
being a significant reduction of the stable region, in great
accordance with the numerical results.

Due to the infinite possible disk shapes that can be con-
sidered, and to keep the effort in the analysis within reason-
able limits, still obtaining conclusions, it is assumed that one
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of the disks is circular and the other disk is elliptical, its
mean radius being equal to the radius of the circular disk. If
any other mean radius were used, the effect of the difference
with the other disk’s mean radius would be much larger than
the effect of having a noncircular shape and would mask the
aspect analyzed.

Il. FORMULATION

The liquid bridge model considered here consists of an
isothermal mass of liquid of constant properties (the differ-
ence in density between the liquid bridge and the surround-
ing fluid, Ap, and surface tension, o), held by surface tension
forces between two parallel, one circular and the other ellip-
tical, solid disks and subjected to an axial acceleration, g
= —gk. It is therefore assumed that g is positive when the
axial acceleration is directed from the upper to the lower
disk, and g is negative if the acceleration is directed from the
lower to the upper disk. The lower disk is circular with ra-
dius R, and the upper disk is elliptical with semiaxes equal
to Rg(l +a) and Rg(l —a), respectively. Both disks are
coaxial and they are separated by a distance L (see Fig. 1),
and V is the volume of the liquid drop spanning between
both disks.

Equilibrium shapes of liquid bridges are described by the
Young—Laplace equation, which in dimensional variables
takes the form

oM(F)+P—ApgZ=0, (1)

where M (ﬁ ) is twice the mean curvature of the interface,
F=F(Z,0) is the equation for the liquid bridge interface, and
P is a constant related to the origin of pressure. The bound-
ary conditions and constraints express the azimuthal period-
icity of the interface shape, F(Z, 0)=F(Z, 0-+2), the con-
stant value of the liquid bridge volume, and that the bridge
surface is anchored or pinned to the edges of the supporting
disks.
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FIG. 1. Sketch of the considered configuration. The lower disk is a circle
while the upper disk is bounded by an ellipse.

Let, in a general case, f(L/2, #) and f(—L/2,0) be the
shape of the supporting disks. If the following characteristic
lengths, associated to the respective disk shape, are intro-
duced:

1 (27~
R+:—f F(L/2,6)d6,
21 0

1 [(27_
R‘=—f F(—L/2,6)d6, ()
27 0

then, taking R=(R"+R™)/2 as the characteristic length of
the problem, and defining F=F/R, z=7/R, Eq. (1) can be
written as

M(F)+P—Bz=0, (3)

where P has been made dimensionless using o/R, B is the
axial Bond number, B=A pgRZ/ o, and

_ F[1+(F)?)(F gg= F)+ FF_[F?+(F )*]=2F y(F g+ FF F )

M P (F)21+ (Fy) "

is twice the dimensionless mean curvature. The subscripts z
and 6 indicate derivatives with respect to these variables.

For the disk configuration considered in this paper [a
circular disk of radius R, and an elliptical disk with semi-
axes equal to Rg(l +a) and Rg(l —a)], the boundary con-
ditions expressing that the bridge surface is anchored or
pinned to the edges of the supporting disks are

Ry (1—a?)

F(LI2,0)= ;
(1+a*>—2acos20)"?

B “)
F(—LI2,0)=R; .

To decouple the effect of noncircularity from the effect of
mean radii difference, the following characteristic parameter
associated to the upper disk shape is introduced:

1 (2« 1—a?

Tp=="— deo,
K2 Jo (1+a*>—2acos26)?

®)

and assuming that the upper disk mean radius is 1/7; times
the radius of the lower disk, Rar =R, /7, both disks will
have the same characteristic radius: R=R~ =R*. Otherwise,
as already stated, the effect of the noncircularity of the disks
would be masked by the effect of the different mean sizes of
the disks.
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The boundary conditions at the disks can be expressed in
dimensionless form as

(1-a’)
mr(1+a*—2acos26)"?

F(—A.0)=1, ©)

F(A,0)=

whereas the azimuthal periodicity condition and the volume
preservation condition are

F(z,0+2m)=F(z,0), (7)
1 A 2
—f dzf F?d0=2mAV. (8)
2J-a "o

In the above expressions V is the dimensionless volume,
V= \7/(7TR2L), and A =L/(2R) is the slenderness. Although
both the numerical and the asymptotical analysis allow us to
consider different volumes, in the subsequent sections the
volume of the liquid bridge will be fixed to that of the right
cylinder of the same slenderness and radii equal to that of the
circular supporting disk, which means V=1.

Ill. NUMERICAL ANALYSIS

In previous papers ' 16 an algorithm, based on a continu-

ation method!” capable of overpassing bifurcation points and
turning points, was developed using a finite-difference
method, and was used to obtain the bifurcation diagrams and
equilibrium shapes of nonaxisymmetric liquid bridges sub-
ject to a lateral gravitational force, and to combined lateral
and axial gravitational forces. In this section the algorithm is
extended to liquid bridges held between noncircular disks in
the presence of an axial gravitational field.

The method is based on linearizing the formulation [Egs.
(3), (6)—(8)] around a known solution [Fy(z,6),Py], by
seeking solutions of the form

ol
o)

) ©)

F(Z’e):FO(Z’a)+f(Z70)+O

0

P:P()+p+0

where |f/Fy|<1 and |p/Py|<1. The leading terms obtained
for Eq. (3) now give an equation for f(z,6),

5 145342 [z 3AS A5 3AT
26 f ~ fz 26 fﬁ
+Ef it G gt Hf ot Pot p—Bz=0, (10)

where g E, 5, 5, E, 5, ﬁ, 5, é, §, and T are known
functions of F((z,6) and, consequently, of the point consid-
ered on the interface.

The leading terms obtained for the boundary conditions
and the constraint that determines the reference pressure are

A 2 A 21
f dzJ Fo(z,0)2d0+2f dz | [Fo(z,0)f(z,0)]d6
—A 0 A 0

—4mA, (11)
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Fo(A,8)+f(A,0)— (1=a% 0, (12)
Tr(1+a’>—2acos26)"?

Fo(—A,0)+f(—A,0)—1=0, (13)

f(z,0)=f(z,0+2m), (14)

where if (Fy(z,6),P,) were an exact solution of the prob-
lem, in Egs. (10)—(14) some terms would cancel each other,
but all terms have been retained because [ F(z,0),P] will
only be an approximation to the solution in the iterative
scheme.

A finite difference scheme has been developed character-
izing the mesh as the intersection between the free surface
and the planes,

Z A J 1 s .] 0’1’"'7 ’
I l, l PY TR aN

Doing so, the system (10)—(14) yield a linearized finite-
difference equations system that can be written as follows:

' ' ' i—1 i+1
a;if i+ Bifi—1t Vil i1t 6l it

it pim 1 il i1
+éi(fii— i fisiH i) =—Bz;+p=i;,

i=0l =0, (15)
fi= (e —F! i=1,..1 (16)
! orp(1+a?=2acos26)? sl
fo=1-Fog, i=1..1, (17
J
i—ZO j=0 a;f;=A, 8)
I+1_
fj')_fj =0, 19)

where the coefficients a;i, Bijs Yij s 5,~j, @i d)ij, i ajjs
and A are functions of the values F, j» and Py. The resulting
set of linear algebraic equations has been solved by Crout’s
method with partial pivoting.

If no further modifications were made, the algorithm
would destabilize when crossing any critical point (both
turning points and pitchfork points). To stabilize the algo-
rithm, a new equation needs to be included.'>!7 With the
method modified in this way, a sequence of equilibrium
shapes is obtained whether they are stable or unstable. The
details of the numerical methods used to locate bifurcation
and limit points in the families of equilibrium shapes are
identical to those outlined elsewhere'>!® and will not be re-
peated here.

The extra equation added to stabilize the method defines
the arclength parameter, but the arc’s origin needs to be pe-
riodically actualized because of the error introduced with the
discretization. To define the arc’s origin a second known con-
figuration is needed. The integration must therefore always
start from two known configurations in order to define the
starting point and the advancing direction along the equilib-
rium shapes sequence for a given value of the parameter a,
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which is a monotonous function of the eccentricity, and
changing the Bond number, B. It is important to start the
integration with known stable shapes because the numerical
method can determine a change in the stability character but
not the stability character. If starting from a stable equilib-
rium shape, the Bond number can be increased to obtain a
sequence of stable equilibrium shapes until a maximum in B
is reached. Alternatively the Bond number can be decreased
to obtain another sequence of stable equilibrium shapes until
a minimum in B is reached. Beyond the maximum and mini-
mum values of the Bond number, the equilibrium shapes of
both sequences are unstable. In both cases extremes are
found because the unstabilities are turning points. In all the
analyzed cases the instabilities are due to a turning point and
never has a pitchfork point been encountered.

For small enough values of @ an analytical asymptotic
expression'® for B=0 and the given value of a suffices for
one of the initial shapes, while the second equilibrium shape
is an analytical asymptotic expression for the same value of
a and slightly different value of B. The same two initial
shapes may be used as initial equilibrium shapes to advance
in the opposite direction and reach the other stability limit
interchanging their role. If the value of a is not so small, the
analytical approximations provide too bad of an approxima-
tion for the two initial shapes needed and the sequence never
starts. A way to overcome this problem is to use equilibrium
shapes already calculated with the numerical method for a
slightly smaller value of a and two different values of B.
These solutions are then used without any change but assum-
ing a slightly larger value of a. Note that not necessarily
either of the two initial values of B for the two shapes is zero
as, if a is large enough, the stable range of B may not include
zero for slenderness close to 7. The range of stable Bond
numbers decreases for increasing values of « until it vanishes
just in the same way as for the analytical asymptotic solution
developed below.

To illustrate the above described behavior, a sequence of
equilibrium shapes has been calculated for a particular case
and represented in Figs. 2 and 3. For A=2.9 and a=0.2, the
area of section z=A/2 is plotted in Fig. 2 versus the Bond
number. For this disk configuration two turning points are
encountered. This value of the parameter measuring the ec-
centricity, «=0.2, and the selected slenderness, A=2.9, yield
stable configurations, provided the values of the Bond num-
ber lie in the stable region, which is the one bounded by the
mentioned turning points. The value of B for these two par-
ticular points is extracted and later used for plotting the sta-
bility limits for every value of a, as can be seen in Fig. 4.

As the value of a increases, the distance between the two
turning points decreases until the stable branch collapses in
an inflection point. The evolution of the area of section z
= A/2 with the Bond number for a liquid bridge configura-
tion having A=2.9 and a=0.7 is shown in Fig. 3. No turning
points exist for this value of a and a single unstable branch is
obtained.

Figures 2 and 3 also show the interface shape of equi-
librium liquid bridges for several Bond values corresponding
to different points along the curves. Note that, from all plot-
ted shapes, only (b), (c), and (d) of Fig. 2 are stable equilib-
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FIG. 2. Evolution with the Bond number B of the cross-section area at a
quarter of the total length of a liquid bridge for a disk configuration (A=2.9,
a=0.2) with a stable range of Bond numbers bounded by unstable regions.
The equilibrium shapes for some fluid configurations (identified by letters
on the curve) are drawn below. Shapes b, ¢, and d are stable, and a and e are
unstable.

rium shapes, while the rest are unstable equilibrium shapes,
as explained above.

Figure 4 shows the stability limits in the a — B plane for
different slendernesses. A detail has been plotted in Fig. 5 to
show the behavior near the Rayleigh stability limit (A=).
Qualitatively, all limits behave as parabolas for small values
of a, but the slopes of the lower limit are greater than those
of the upper limit and, finally, both curves contact in a point;
beyond that point there are no stable configurations. The
known asymptotic approximation does not fit well the nu-
merical results when B and especially a are not very small,
because the stable region found numerically is far smaller
than the asymptotic one; thus a higher-order approximation
is developed in the next section.
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FIG. 3. Evolution with the Bond number B of the cross-section area at a
quarter of the total length of a liquid bridge for a disk configuration (A=2.9,
a=0.7) with no stable range of Bond numbers. The equilibrium shapes for
several fluid configurations are drawn below. All the equilibrium shapes are
unstable and they are identified by letters on the curve.

IV. ASYMPTOTIC ANALYSIS

The boundary conditions at the disks can be expressed in
dimensionless form as

F(A,0)=F*(6)=1+ >, (y, cosn6+ 8" sinnd),
n=1

F(—A,0)=F (0)=1, 20)
where the lower disk is already specialized for a circular
shape. If the upper disk has a symmetry axis in 6=0, all
coefficients &, are zero.

As it is well known, in the case of liquid bridges in
gravitationless conditions (B=0), spanning between co-
axial, equal in diameter, circular disks (H= y: :5: =0),
and having cylindrical volume (V=1), the problem under
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-0.08
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FIG. 4. Stable configurations, Bond number range as a function of a. Labels
identify the value of the slenderness A. A detail for slendernesses close to 7
and smaller values of B is shown in Fig. 5.

consideration has the trivial equilibrium solution F(z,#)
=1, P=1 for any A. The introduction of the expansions
F(z,0)=1+€f(z,0)+0(€*) and P=1+ep+0(e),
where € stands for the magnitude of the deformation of the
interface, allows us to calculate f(z,ﬂ) after neglecting
O(€?) terms. Nontrivial (different of zero) solutions of the
linear problem appear only for a discrete number of values of
A. The smallest value of A for which a nontrivial solution

0.04 T T T T T T

0.02

0.02

0.04

FIG. 5. Stable configurations, Bond number range as a function of a for
slendernesses close to 7. Labels identify the value of the slenderness A.
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FIG. 6. Bond number at the stability limit, B, versus the parameter used to
measure the ellipse eccentricity, a, according to expression (27). The figure
has been calculated for A=3.1. Numbers on the curves indicate the value of
k. A curve labeled with k=0 reproduces the results of expression (24). The
dashed line corresponds to the numerical results.

(bifurcation to noncylindrical equilibrium shapes) exists is
for A= (the well-known Rayleigh stability limit), where
the transition from stable to unstable equilibrium shapes oc-
curs. Therefore, the only relevant instability appears at A=
and, within this approximation, the departure from the cylin-
der of the unstable equilibrium shapes are defined by
f (z,8)=sin(mz/A), p=0, which is the only solution of the
linear problem that has to be considered in order to calculate
the variation of the maximum stable slenderness.

For the problem stated here, the bifurcation equation re-
duces to'?

23+26)\—£—263+"'=0, (21)
40 2
where
F*=nZl [(71)2+(5;)2]=% :ﬂ[F(ﬂ',ﬂ)—l]de.

(22)

If the elliptical disk is only slightly eccentric, a<<1, the
boundary condition at this disk can be expressed as

F(m,0)=(1—a*)(1+a’>—2acos20) 2
~1+acos20+0(a?), (23)

and then I' " =a?+ 0(a®). Hence, for a given value of the
maximum slenderness A, , the variation with the parameter
measuring the ellipse eccentricity, @, of the Bond number for
which the liquid bridge becomes unstable, is given by

4 ( . Amax)” (I

B=+— +—a". (24)

9 T 8

Equation (24) has been represented in Fig. 6 (the lines
labeled with zero). In this plot two branches are shown, de-
pending on the sense of the gravity vector for A=3.1. Let us
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consider first the case of two circular disks (a=0) and B
>0 (upper branch). The deformation of the liquid bridge
interface due to gravity will be a bulging of the liquid col-
umn in its lower half and a necking at the upper one. There
is a value of the Bond number for which the interface shape
becomes unstable and the breaking of the liquid column oc-
curs if the value of the Bond number increases.

When an elliptical disk is considered (the upper one),
there is an excess of volume close to the noncircular disk, so
that the liquid column necks closer to the circular disk.
Therefore, in this case (gravity pointing to the circular disk)
the interface deformation due to the existence of an elliptical
disk is in opposition to the interface deformation due to grav-
ity, so that the value of the Bond number needed to break the
liquid bridge will be larger as the value of the parameter a
grows. Points above the stability limit curve in the plane a
— B represent unstable configurations, whereas points under
this curve, if no other perturbations are taken into account,
represent stable liquid bridge configurations.

When gravity points to the noncircular disk (the leftmost
part of the lower curve), the interface deformation caused by
both effects is similar (in both cases the liquid column necks
at the bottom half and bulges at the upper one). Since both
effects act in the same sense, if one of them grows the sec-
ond must be reduced to keep the liquid bridge configuration
stable. Therefore, in this branch points above the curve rep-
resent stable configurations while the unstable ones are rep-
resented by points lying below the curve. The same tendency
of the curve holds even when, for larger values of «a, the
gravity points to the circular disk. If both branches are con-
sidered, obviously the stable region is that located between
both curves, whereas points outside this region represent un-
stable liquid bridges.

Expression (24) predicts that the influence of a on the
maximum stable Bond is quadratic and equal for both
branches. This result is only representative for small values
of a and B. For large values of the parameters, this simple
asymptotic result cannot reproduce the behavior of the con-
figuration. Within this approximation both branches never
intersect, therefore a can take values as large as desired,
provided that B has the appropriate value, and two possible
extremes of B will exist no matter the value of a. Note that a
is bounded by 1, for that particular value the disk collapses
to a line. Obviously, the behavior described by Eq. (24),
asymptotically correct for small values of all parameters,
cannot hold for large values of a (the critical point depending
on the slenderness), where the two mentioned extremes
should disappear and a new situation with no stable interval
of B should occur. Higher-order terms have to be retained to
reproduce the phenomena. From Eq. (21), it is deduced that
B and a? are of the order of €, and \ of the order of €. All
terms considered in the equation are of order € and the first
terms neglected are of order €*. To reproduce the numerical
behavior described above only new terms in €* need to be
considered and there is no need to consider higher-order
tems. A symmetry analysis shows that the only nonzero €*
term is that in a*€, hence the new bifurcation equation reads
as
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1 3
2B+2eN— —a’— =€ +ka’e+---=0. (25)
41 2

The analytical calculation of the value of the new coef-
ficient, k, multiplying the new term in a”€ is too involved, so
its value will be estimated by fitting the analytical results to
the numerical results. Figure 6 shows how the stability limits
look like for different values of k along with the exact nu-
merical result.

To obtain the stability limit, one should look for possible
extremes of B as a function of e for given values of the other
parameters (a and \). After the derivation of Eq. (25), one
finds

9, 2

2)\_§Eex[+ka +---=0. (26)
The values of €., (the deformation at the stability limit)
depend not only on A but also on a. Thus, assuming a stable
shape for a=0 and a negative value of &, and increasing the
value of a, one reaches a critical value of a, a.;; beyond
that value no further solutions for e.,, exist. After substitu-
tion of €., in Eq. (25), one finds two extreme values of B for
a<da.;, one for a=a; and none for a>a .,

B= L a’F—

1 32
. 5 >\+5ka2) ) (27)

It is also easy to show that the curves yielding B as a
function of a are tangent at a =a_;,. This behavior is exactly
the one obtained with the numerical analysis described in the
preceding section.

The qualitative behavior of the numerical results is now
explained by the asymptotic analysis, even though the pa-
rameter k has not been calculated. Taking into account the
results given by Eq. (27), a value for k can be obtained,
fitting the asymptotic results to the numerical ones. The in-
tersection point, where the stability region ends, is adjusted
to coincide with the numerical results for A=3.1; doing so,
the obtained value of k is —0.29. The analytical results for
A=3.1 and k=—0.29 are plotted along with the numerical
results in Fig. 6.

V. CONCLUSIONS

To summarize, the combined effect of Bond number and
disk shape has been analyzed numerically. Particular shapes
of the disks (an ellipse and a circumference) have been con-
sidered and the stability limits have been obtained for a wide
range of slendernesses. These slendernesses result in large
values of a for small values of B and, for those values, the
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€’-order asymptotic analysis no longer yields accurate
enough results. Nevertheless, it is demonstrated that just by
retaining one more term in the bifurcation equation, the be-
havior of the solutions obtained numerically are qualitatively
reproduced by the asymptotic analysis.
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