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There is a self-similar solution for the stability limits of long, almost cylindrical liquid bridges
between equal disks subjected to both axial and lateral accelerations. The stability limits depend on
only two variables; the so-called reduced axial, and lateral Bond numbers. A novel experimental
setup that involved rotating a horizontal cylindrical liquid bridge about a vertical axis of rotation
was designed to test the stability limits predicted by the self-similar solution. Analytical predictions
compared well with both numerical and experimental results. ©2000 American Institute of
Physics.@S1070-6631~00!01704-9#
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I. INTRODUCTION

Liquid bridges are volumes of liquid held between soli
by surface tension forces. They occur in both natural a
technological situations and have been studied for prac
reasons and for basic scientific interest. In this article
consider the stability of a cylindrical liquid bridge to non
axial acceleration. The bridge consists of an isothermal d
of liquid held by surface tension forces between two paral
coaxial, solid disks of the same diameter as shown in Fig
The equilibrium interface shape,r 5F(z,u), of such a liquid
bridge configuration is determined by the following dime
sionless parameters: the slenderness,L5L/(2R), the axial
Bond number,Ba5DraaR2/s, and the lateral Bond num
ber, Bl5DralR

2/s, and a dimensionless volumeV
5V* /(pR2L) defined as the ratio of the actual volumeV*
to the volume of a cylinder of the same length and diame
HereL andR are the distance between the disks and the d
radius, respectively. The difference between the density
the liquid and the density of the surrounding medium isDr,
aa , andal , are the axial and lateral components of the
celeration acting on the liquid, as indicated in Fig. 1, ands is
the surface or interfacial tension. In this article, our analy
is restricted to bridges with volumes close toV51 ~cylindri-
cal volumes!.

The stability of a liquid bridge with a cylindrical volum
depends on the values of the slenderness and the natu
the imposed perturbation. Equilibrium shapes and stab
limits of capillary liquid bridges have been investigated the
retically and experimentally for some time, and there is
extensive body of literature dealing with such fluid config
rations~see, for example, Ref. 1!. However, most of the pub
lished articles deal with axisymmetric liquid bridges~in
9791070-6631/2000/12(5)/979/7/$17.00
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which the direction of the acceleration is parallel to the l
uid bridge axis, that isBl50), and, apart from the earlie
work of Coriell, Hardy, and Cordes,2 nonaxisymmetric liquid
bridges have been considered only recently. An asympt
analysis concerning the influence of lateral Bond number
the stability limit of liquid bridges having cylindrical volume
(V51) was published by Perales.3 The combined effect of
nonaxial acceleration, in the form of a lateral Bond numb
and noncoaxial supporting disks on the stability limit of c
lindrical volume liquid bridges was analyzed both analy
cally and experimentally in Ref. 4. More recently the eq
librium shapes and stability limits of nonaxisymmetric liqu
bridges were examined5–9 and nonaxisymmetric configura
tions appear in an experimental work which explores the
of liquid bridges as accelerometers.10

An asymptotic analysis of the stability limits of liquid
bridges was conducted by Mesegueret al.4 According to
their results, for a liquid bridge between equal coaxial dis
close to the cylindrical volume and subjected to both ax
and lateral Bond numbers, the maximum stable slendern
Lmax, becomes:

Lmax5pF12S 3

2D 4/3

Ba
2/31

1

2
v2

p2

4
Bl

2G , ~1!

where v5V21. This expression can be written in a mo
compact form by introducing reduced axial and lateral Bo
numbers defined as follows:

ba5S 3

2D 2 Ba

l3/2, ~2!

bl5
p

2

Bl

l1/2, ~3!
© 2000 American Institute of Physics
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where l512Lmax/p1v/2. Substituting the above expre
sions in Eq.~1! yields

bl5~12ba
2/3!1/2. ~4!

This seems to indicate that, at least close to the refere
configuration~L→p, v→0, Ba→0, Bl→0), there is a self-
similar solution for the stability limits of liquid bridges. Tha
is, the stability limit is independent of the slenderness,L or
volume,V.

The range of validity of Eq.~4! was investigated through
a set of experiments and through numerical calculations.
stability limits of liquid bridges subjected to both axial an
lateral Bond numbers have been obtained and compare
~4!. It is implicit in ~4! that the Bond numbers are sma
SinceB5DraR2/s, it can be made small by reducing th
acceleration,a, acting on the liquid column. This can b
achieved in a free-fall experiment~for example in a drop
tower, on aircraft flying parabolic flight trajectories,
sounding rockets, and on low-earth orbit platforms!. The
Bond number can also be reduced by matching the dens
of the working liquid and the surrounding fluid~the plateau
or neutral buoyancy technique! or by using supporting disks
with very small radius~micro- or millimetric liquid bridges!.

The experiments described in this article were perform
using an experimental facility in which the three previous
mentioned effects that contribute to the magnitude of
Bond number can be, within limits, independently co
trolled. In this facility, the neutral buoyancy technique
employed andDr is controlled by selecting the appropria
density of the surrounding fluid. Support disks of differe
diameters can be also used and the liquid column is mou
on a centrifuge so that the magnitude of the accelera
acting on the bridge can be adjusted by varying the rota

FIG. 1. The liquid bridge set-up.
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rate. The accelerations that must be accounted for are gra
plus the centripetal acceleration due to the solid-body ro
tion of the liquid bridge.

It must be pointed out that the Bond number is not co
stant along the liquid column. This is because the liqu
bridge rotates as a solid body and the centripetal accelera
varies with the distance to the rotation axis. However,
certain conditions the effect of the Bond number gradient
be negligible as shown in the Appendix.

The range of validity of Eq.~4! was tested using a nu
merical approach and by laboratory experiments. Our
merical approach employed the codeSURFACE EVOLVERand
the results are presented in Sec. II. The experimental a
ratus and results are described in Sec. III. The results
discussed in Sec. IV.

II. NUMERICAL APPROACH

The range of validity of Eq.~4! was investigated by
calculating the stability of equilibrium configurations using
numerical procedure that involved solving for energ
minimizing surface configurations. We considered liqu
bridges with constant surface tension and held between r
coaxial disks of radiusR that are separated by a distanceL
and subjected to steady nonaxial acceleration represente
axial and lateral Bond numbers~see Fig. 1!. The stability
limits of these bridges were obtained using the followi
procedure. It is assumed that the surface of the bridg
anchored to the edges of two coaxial circular disks and
the bridge volume is constant. Both lateral acceleration~i.e.,
gravity directed perpendicular to the bridge axis! and axial
acceleration were considered. We first considered a liq
bridge of cylindrical volume,v5V2150. For this fixed
volume, the objective was to find stable configurations of
bridges for both axial and lateral accelerations. To determ
the location of the stability boundary for given axial an
lateral Bond numbers,Ba andBl , we sought the maximum
stable slenderness,Lmax. For bridges above the stabilit
limit defined byLmax, the bridges break and no stable brid
shape is found. Below the stability boundary, the bridg
maintain their integrity and reach a minimum energy co
figuration. Using a simple iterative search technique we w
able to find the maximum stable slenderness correspon
to the stability boundary. For fixedBa andBl we selected a
value of slenderness,L, and computed the minimum energ
configuration. If the bridge reached a minimum energy wi
out breaking we then increased the value ofL and repeated
the calculations. This procedure continued until the brid
broke.

The problem was approached using the codeSURFACE

EVOLVER.11 SURFACE EVOLVERseeks the shape of an energ
minimizing surface subject to given boundary conditions a
constraints. The surface is locally discretized using triangu
elements. The vertex coordinatesX of the elements are
points in 3D Euclidean space and are used to parametrize
surface.SURFACE EVOLVERminimizes the energyE(X) as-
sociated with each surface element. Through evaluation
the energy gradient at a givenX, SURFACE EVOLVER seeks
the minimum by proceeding down the direction of the ste
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est slope using either a steepest descent or a conjugate
dient method. It is often advantageous to change the typ
descent method during the iterative process. At each it
tion, the force on each element vertex is calculated from
local energy gradient evaluated at that vertex. This fo
yields the direction of motion of the element and must a
account for global constraints due to boundaries or volu
preservation. The actual motion is found by multiplication
the resultant force by an optimum scale factor that is ca
lated at each step and each element is then moved to its
location. This procedure is repeated until the total energ
minimized. We tested the ability ofSURFACE EVOLVER to
find the stability limits for axisymmetric bridges subject
axial acceleration. In general, it was necessary to refine
triangular mesh frequently. Each minimization genera
took several hundred iterations. Energy changes of one
in 108 were assumed sufficient to ensure that equilibrium h
been reached~see comments in Ref. 11!.

The computational results for cylindrical volume bridg
are listed in Table I. Here the axial Bond numberBa , the
lateral Bond numberBl , and the maximum slendernessLmax

for which the liquid bridge is stable, are shown. The reduc
axial and lateral Bond numbers,ba and bl , calculated with
Eq. ~2! and ~3! are also shown in Table I. For certain cas
~indicated in the tables! calculations were carried out fo
situations with an axial gradient in the Bond number cor
sponding to the centrifuge-type rotation used in the exp
ments described in the next section and in the Appendix

Points that represent the limits of stable liquid bridg
computed withSURFACE EVOLVER, are plotted in Fig. 2~a!,
together with the predictions of Eq.~4!. In this case, the
agreement between numerical and theoretical results is
good. A sequence of the stable shapes calculated for
maximum stable slenderness is shown in Fig. 2~b!.

TABLE I. Reducedba andbl for cylindrical liquid bridges (V51). Bold-
face rows were calculated with an axial Bond number gradient corresp
ing to rotation.

Ba Bl Lmax ba bl

0 0.20 2.85 0 1.03
0.001 0.26 2.57 0.029 0.957
0.0025 0.22 2.68 0.1 0.9
0.003 0.2 2.73 0.14 0.868
0.003 0.2 2.735 0.145 0.873
0.003 0.18 2.78 0.173 0.833
0.004 0.17 2.785 0.235 0.793
0.005 0.155 2.805 0.32 0.74
0.005 0.14 2.83 0.36 0.7
0.006 0.13 2.835 0.443 0.654
0.006 0.13 2.835 0.443 0.654
0.006 0.12 2.855 0.49 0.624
0.007 0.11 2.853 0.565 0.57
0.008 0.1 2.848 0.63 0.514
0.008 0.09 2.863 0.68 0.475
0.009 0.08 2.856 0.74 0.417
0.010 0.07 2.854 0.81 0.36
0.010 0.05 2.869 0.88 0.267
0.012 0.04 2.845 0.93 0.204
0.012 0.04 2.845 0.93 0.204
0.012 0.02 2.858 0.995 0.105
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FIG. 2. ~a! Stability limits for a cylindrical volume bridge subject to stead
nonaxisymmetric acceleration in terms of the dimensionless reduced
and lateral Bond numbers,ba andbl . Symbols denote the calculated resu
obtained usingSURFACE EVOLVER ~Ref. 11! and correspond to the value
listed in Table I. The solid line was obtained using Eq.~4!. Points marked by
numbers refer to the calculated shapes shown in Fig. 2~b!. ~b! Sequence of
stable shapes close to the stability limit calculated for the maximum st
slenderness usingSURFACE EVOLVER. The numbers correspond to the num
bered points in (ba , bl)-space shown in Fig. 2~a!.
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To test the extent to which~4! reliably predicts the sta
bility of bridges with vÞ0, we repeated our calculation
with liquid bridges slightly different from the reference co
figuration ~L;p, v;0, Ba;0, Bl;0). The results for vol-
umesV51.1,V51.2, andV51.3 are listed in Tables II–IV.
These results are plotted in Fig. 3 together with the theo
ical results. For liquid bridges with relative volumes as lar
asV51.2 the agreement between numerical and theore
results is good. For larger volumes, the ability of Eq.~4! to
predict the stability limit deteriorates. For a limited numb
of calculations carried out for volumes less than 1, the r
ability of Eq. ~4! deteriorated forV,0.9.

III. APPARATUS AND EXPERIMENTAL RESULTS

To perform the experiments described in the followin
an experimental facility, as sketched in Fig. 4, has been u
The apparatus consists of a liquid bridge cell mounted o
horizontal, rotating platform. The platform can rotate at a
prescribed angular velocity within the range 0–1.05 rad.21

~0–10 rpm! with an accuracy of6231023 rad.s21 ~60.02
rpm!. The rotating platform is a metallic beam 1.5 m
radius, mounted on a support structure where the con
electronics and the electric motor used to rotate the beam
located.

Experiments were performed using the so-called neu
buoyancy or plateau technique. Here the liquid column
formed inside another immiscible liquid~a surrounding
bath!. For neutral buoyancy the bath liquid has practica
the same density as the bridge liquid. The bath density~and,
thus, the Bond number! can be changed by adjusting th
composition of the bath liquid.

TABLE II. Reducedba and bl for V51.1 liquid bridges. Boldface rows
were calculated with an axial Bond number gradient corresponding
rotation.

Ba Bl Lmax ba bl

0.004 0.3 2.40 0.063 0.88
0.004 0.3 2.40* 0.063* 0.88*
0.01 0.27 2.47 0.178 0.826
0.015 0.23 2.54 0.306 0.735
0.021 0.18 2.61 0.495 0.604
0.021 0.18 2.60 0.486 0.60
0.026 0.14 2.64 0.655 0.48
0.032 0.1 2.64 0.806 0.343
0.036 0.07 2.64 0.91 0.24
0.04 0.03 2.63 0.985 0.102
0.04 0.03 2.625 0.98 0.10

TABLE III. Reducedba andbl for V51.2 liquid bridges.

Ba Bl Lmax ba bl

0.008 0.35 2.20 0.082 0.87
0.02 0.3 2.33 0.24 0.787
0.03 0.25 2.41 0.404 0.68
0.04 0.19 2.48 0.598 0.535
0.05 0.15 2.49 0.759 0.425
0.06 0.11 2.49 0.91 0.28
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The Liquid Bridge Cell~LBC!, where the liquid bridge
is formed, is a tight chamber connected to a calibrated
ringe. The LBC test chamber is a 0.04 m30.04 m30.04 m
aluminum cube, with two opposite faces made of a transp
ent, plastic material. This allows visualization of the liqu
bridge. The liquid bridge is formed between two equal dis
0.01 m in diameter. One of the disks is connected to
piston of the syringe and can be displaced along its axis
using a micrometer screw. The remaining disk is fixed to
opposite side of the test chamber such that both disks rem
in coaxial alignment whatever their separation distance. L
uid is injected and removed from the liquid bridge through
hole in the center of the moving disk which connects it w
the syringe. The diameter of the syringe is equal to the
ameter of the disks and the moving disk is mounted at
end of the piston syringe. Thus, the amount of liquid injec
or removed when the disk is displaced causes the volum
the liquid column to be cylindrical within 0.1% accurac
@V5(160.001)2pL# regardless of the distance separati
the disks.

Two quick-disconnect valves are used to fill the te
chamber with the surrounding liquid. LBC as well as t

FIG. 3. Stability limits for noncylindrical volume bridges subject to stea
nonaxisymmetric acceleration in terms of the dimensionless reduced
and lateral Bond numbers,ba andbl . Symbols denote the calculated resu
using SURFACE EVOLVER, according to the following key:V51.1 ~circle!,
V51.2 ~rectangle!, V51.3 ~rhomb!, and the solid line is Eq.~4!.

to
TABLE IV. Reducedba and bl for V51.3 liquid bridges. Boldface rows
were calculated with an axial Bond number gradient corresponding
rotation.

Ba Bl Lmax ba bl

0.025 0.45 1.85 0.164 0.944
0.025 0.45 1.85 0.164 0.944
0.035 0.4 1.9 0.25 0.864
0.04 0.35 2.12 0.336 0.798
0.045 0.3 2.24 0.429 0.713
0.05 0.26 2.31 0.516 0.634
0.055 0.24 2.33 0.581 0.59
0.06 0.22 2.35 0.65 0.54
0.065 0.18 2.38 0.729 0.451
0.07 0.12 2.44 0.846 0.31
0.08 0.1 2.41 0.93 0.25
0.08 0.1 2.40 0.93 0.253
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illumination system and a Charge Coupled Device~CCD!
video camera are mounted on a plate, which in turn
mounted on the rotating platform. The liquid bridge axis
horizontal and perpendicular to the axis of rotation. T
CCD camera is connected to a small television~TV! trans-
mitter which sends signals to a TV receiver placed a f
meters away at the control station.

In each experiment, the experimental procedure wen
follows: first, the moving disk is axially displaced until
becomes very close to the lower one. Then the test cham
of the liquid bridge cell is filled with the surrounding bath
the desired density. A small liquid bridge that fills the g
between both disks is formed. There are four liquid brid
cells, and the above operation is repeated for each one.
LBC is mounted on the plate, withZ* being the distance
between the rotation axis and the center of the LBC. T
moving disk is displaced axially until the prescribed slend
ness is reached. Working liquid is simultaneously injec
into the liquid bridge to keep its volume cylindrical~i.e., v

FIG. 4. Top view of the experimental arrangement: 1. liquid bridge c
~LBC!, 2. CCD camera, 3. supporting plate, 4. rotating platform.
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50) as the distance between the disks increases. Once
CCD camera and the TV transmitter are switched on,
rotating platform is rotated at a very low rate and the rotat
velocity is slowly increased until the liquid column break
The rotating platform is then stopped. The LBC is replac
a new liquid bridge with the desired slenderness is form
and the entire process is repeated.

Note that, when the platform is set into rotation at
angular velocityv, the accelerations acting on the liquid co
umn include gravity as well as the centrifugal accelerati
Thus, the axial and lateral Bond numbers are:Ba

5Drv2Z* R2/s andBl5DrgR2/s, respectively. It must be
pointed out that formally, the axial Bond number is not co
stant along the liquid bridge. It varies linearly with the di
tance to the axis of rotation. However, for some practi
situations, this linear effect is negligible, as demonstrated
the Appendix.

All experiments were performed at a temperature of
61 °C. The density of the working liquid~dimethyl-silicone
oil POLISIL M50!, rwl , at this temperature is

l

TABLE V. Variation with the difference in densities between the surroun
ing bath and the working liquid,Dr5rsb2rwl , of the interfacial tension
between both liquids,s.

Dr60.2 ~kg/m3! s60.002~N/m!

2.0 0.011
8.2 0.015

14.5 0.019
19.2 0.021
26.4 0.025
29.8 0.028
30.8 0.029
1
4
0
4
8
1
1
2
4
7
1
4
4
0
2
0
3
6
2
8
1
4
2

TABLE VI. Experimental results for maximum stable slenderness,L andV51. The values of the axial and lateral Bond numbers,Ba andBl , respectively,
are the values at which the maximum slenderness is reached. Also given are the reduced axial and lateral Bond numbers,ba andbl . In this tableblT is the
calculated reduced lateral Bond number based on the measuredba : blT5(12(ba)2/3)1/2.

L Ba Bl ba bl blT L Ba Bl ba bl blT

1.1 0.217 0.125 0.932 0.238 0.214 2.3 0.013 0.261 0.215 0.791 0.80
1.2 0.177 0.177 0.820 0.354 0.352 2.3 0.014 0.260 0.225 0.790 0.79
1.4 0.165 0.095 0.899 0.200 0.261 2.3 0.014 0.261 0.230 0.791 0.79
1.6 0.135 0.135 0.135 0.884 0.303 2.3 0.015 0.260 0.239 0.790 0.78
2.0 0.034 0.261 0.353 0.679 0.708 2.3 0.015 0.261 0.247 0.791 0.77
2.0 0.035 0.260 0.359 0.678 0.704 2.4 0.007 0.260 0.145 0.841 0.85
2.0 0.044 0.247 0.452 0.644 0.641 2.4 0.007 0.261 0.145 0.843 0.85
2.1 0.026 0.260 0.303 0.710 0.741 2.4 0.008 0.251 0.157 0.811 0.84
2.1 0.026 0.261 0.309 0.711 0.737 2.4 0.008 0.260 0.155 0.841 0.84
2.1 0.028 0.261 0.334 0.711 0.720 2.4 0.008 0.261 0.150 0.843 0.84
2.1 0.030 0.260 0.356 0.710 0.705 2.4 0.009 0.261 0.158 0.843 0.84
2.1 0.033 0.251 0.389 0.685 0.684 2.4 0.010 0.251 0.196 0.811 0.81
2.2 0.017 0.260 0.240 0.747 0.784 2.4 0.016 0.218 0.314 0.705 0.73
2.2 0.020 0.261 0.279 0.748 0.757 2.4 0.017 0.218 0.334 0.705 0.72
2.2 0.021 0.260 0.284 0.747 0.754 2.4 0.044 0.006 0.883 0.019 0.28
2.2 0.022 0.260 0.304 0.747 0.740 2.5 0.003 0.260 0.082 0.904 0.90
2.2 0.023 0.261 0.315 0.748 0.733 2.5 0.003 0.261 0.079 0.906 0.90
2.2 0.024 0.251 0.329 0.720 0.723 2.5 0.004 0.260 0.087 0.904 0.89
2.2 0.025 0.251 0.343 0.720 0.714 2.5 0.004 0.261 0.093 0.906 0.89
2.3 0.017 0.251 0.276 0.762 0.759 2.5 0.005 0.251 0.122 0.872 0.86
2.3 0.024 0.218 0.389 0.662 0.683 2.5 0.010 0.218 0.244 0.758 0.78
2.3 0.033 0.188 0.536 0.571 0.584 2.5 0.011 0.218 0.268 0.758 0.76
2.3 0.009 0.261 0.142 0.791 0.853 2.5 0.039 0.022 0.951 0.076 0.18
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rwl5959.460.1 kg.m23. For the surrounding bath seven di
ferent mixtures of methanol and distilled water were us
The densities of the surrounding liquid,rsb, used in the ex-
periments werersb5961.4, 967.6, 973.9, 978.6, 985.
989.2, and 990.260.1 kg.m23 ~note that, since the LBC tes
chamber is tight, no alcohol evaporation occurs and the
rounding bath density is constant for the duration of the
periment!.

To calculate the value of the interfacial tension betwe
the bridge liquid and the surrounding bath, the same pro
dure explained in Mesegueret al.10 was used. For each valu
of the surrounding bath density, different slenderness liq
bridges with vertical axes were formed. The deformation
the liquid bridge interface depends on the value of the Bo
number. Thus, by fitting a second-order approximation of
liquid bridge interface to the experimental liquid bridge co
tours, the value of the Bond number,Ba , is obtained. The
value of the interfacial tension is then obtained indirect
s5DrgR2/Ba , where Dr5rsb2rwl and g is the gravity
acceleration (g59.81 m.s22). The results obtained,s vs.
Dr, are shown in Table V. The value of the interfacial te
sion varies as the surrounding bath density varies, bec
the ratio of alcohol to water of the mixture changes. To t
whether sedimentation of the surrounding bath occurs du
centrifugation, interfacial tension measurements were m
after centrifugation of a stable liquid bridge for a few cas
The tests were carried out under the same conditions as
stability tests. The measured values of interfacial tens
were found to be the same.

Experimental results obtained by using different d
tances to the rotation axis (Z* varies from 0.3 to 1.2 m! are
listed in Table VI. The maximum slenderness,Lmax, the
lateral Bond number,Bl5DrgR2/s, and the axial Bond
number,Ba5Drv2Z* R2/s, are given.~Herev is the maxi-
mum rotation velocity for which the liquid bridge is stable!
The reduced axial and lateral Bond numbers,ba and bl ,
given by Eqs.~2! and ~3! are also shown in Table VI.

The variation with the reduced axial Bond number of t

FIG. 5. Experimentally determined stability limits for a cylindrical volum
bridge subject to steady nonaxisymmetric acceleration in terms of the
mensionless reduced axial and lateral Bond numbers,ba and bl . Open
circles denote experimental results, open triangles denote numerical re
with V51, and the solid line is Eq.~4!.
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reduced lateral Bond number that results from express
~4!, as well as experimental and numerical results, has b
represented in Fig. 5. As it can be observed, at least in
case of cylindrical liquid bridges, the agreement between
perimental and theoretical results is good. There is, howe
an experimental point (ba50.883,bl50.019) which lies far
from the theoretical prediction. The reason for this discre
ancy could be that this point was obtained at a higher ro
tion speed. At this very high rotation velocity some spurio
vibration of the rotating arm was observed, and it is proba
that this vibration caused breakage of the liquid column
fore the static stability limit was reached.

IV. CONCLUSIONS

An experimental and computational study of the stabil
of liquid bridges between equal disks has been perform
The study focused on determining the range of validity o
self-similar solution for the stability limits of slender liqui
bridges subject to steady nonaxisymmetric acceleration
addition to the results described in Sec. II, we carried
computations using the same values ofBa and Bl as the
experimental ones and obtained the maximum stable slen
ness. The solution appears to a reasonable approximatio
dimensionless volumesV5V* /(pR2L) that are close to a
cylindrical volume (V51).
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APPENDIX: EFFECT OF BOND NUMBER GRADIENT
ON Lmax

Let us assume a liquid bridge of cylindrical volum
V* 5pR2L, placed between two equal, coaxial, paral
disks, R being the radius of the disks andL the distance
between them. The liquid bridge, as sketched in Fig. 6
rotating as a solid body with angular velocityv. The rotation
axis is parallel to the local gravity vector. Both axes t
liquid bridge and the rotation axis are perpendicular and h
a common pointO. Let Z* be the distance between the ax
of rotation and the center of the liquid column, where t
local coordinate axes (z* , r * , u! are located.

The equation defining the shape of the interface of
liquid bridge,F* 5F* (z* ,u), must express the balance b
tween capillary and hydrostatic forces:

i-

lts

FIG. 6. Sketch of the liquid bridge as a rotating body showing the dista
Z* between the rotation axis and the center of the liquid column.
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s~z1
211z1

21!1P* 1Dr@gF* cosu1v2~ 1
2z* 22Z* z* !

1 1
2v

2F* 2 sin2 u#50. ~A1!

Here (z1
211z2

21) is the curvature of the interface,s is the
interfacial tension,P* is a constant that fixes the origin fo
the pressure, andDr is the density difference between th
working liquid and the surrounding fluid.

We now introduce the dimensionless variablesz
5z* /R, L5L/(2R), V5V* /(pR2L), F5F* /R, P
5P* R/s,...) anddefine the different ‘‘Bond numbers’’ ap
pearing in the formulation as follows:

axial Bond number:Ba5DrR2v2Z* /s, ~A2a!

lateral Bond number:Bl5DrR2g/s, ~A2b!

axial gradient of Bond number:Da5DrR3v2/~2s!.
~A2c!

The nondimensional differential equation defining the eq
librium interface shapes now reads:

M ~F !1P2Baz1BlF cosu1Da~z21F2 sin2 u!50,
~A3!

where

M ~F !5$F@11~Fz!
2#@Fuu2F#1FFzz@F21~Fu!2#

22Fu@Fu1FFzFzu#%•$F2@11~Fz!
2#

1~Fu!2%23/2,

and the boundary conditions are:

F~6L,u!51, F~z,u12p!5F~z,u!,

1

2 E2L

L S E
0

2p

F2du D dz52pL.

It can be observed that if the term inDa is neglected in
Eq. ~A3!, the formulation is similar to that of a liquid bridg
of cylindrical volume subjected to a constant accelerat
with both axial and lateral components. This last probl
was analyzed in Ref. 4 using standard bifurcation theory
the following asymptotic expression for the maximum sta
slenderness,Lmax, was obtained:

Lmax5pF12S 3

2D 4/3

Ba
2/31

1

2
v2

p2

4
Bl

2G . ~A4!

To properly account for the nonuniformity of the acce
eration a similar asymptotic expression for a liquid brid
with an axial Bond number gradient has been calcula
~Additional details can be obtained upon request.! In this
case, the expression giving the maximum slenderness o
liquid column is now:
i-

n

d
e

d.

he

Lmax5pF12S 3

2D 4/3

~Ba1fBDBaDa!2/31
1

2
v2

p2

4
Bl

2G
~A5!

with fBD550/424p2/3.
Note that, according to the above expression, the B

number gradient is a second-order effect which becom
negligible in most practical situations. The second-ord
termfBDBaDa is approximatelyDa times the value of axial
Bond number. On the other hand, from the definition of t
axial Bond number,Ba , Equation~A2a!, and the definition
of the axial Bond number gradient,Da , expression~A2c!,
one getsDa5(R/Z* )Ba .

In the experiments reported here~see Sec. III!, the maxi-
mum value ofBa is approximately 231022. The supporting
disks were 5 mm in radius and the minimum distance
tween the liquid bridge and the rotation axis wasZ*
5300 mm. Therefore, the maximum value of the axial acc
eration gradient effect under consideration wasDa

5(R/Z* )Ba'331024. This means that the axial acceler
tion gradient effect is 1024 times less important than th
effect of the axial Bond number. Consequently, Eq.~A4!
rather than Eq.~A5! can be used to fit the experimental r
sults.
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