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Abstract—In this paper, experimental results related to both the stability and the dynamics of ax i symmetric liquid 
bridges between unequal disks are presented. Experiments have been performed by using a drop tower facility and 
the response of the liquid bridge to a sudden change of the acceleration level acting on it has been obtained. Concerning 
stability limits, experimental results are in agreement with theoretical ones; the agreement between theoretical and 
experimental results being worse when the breaking of the liquid column is considered; available numerical results 
obtained through an one-dimensional model for the liquid bridge dynamics give breaking times which are almost half 
the breaking times measured in experiments. 

INTRODUCTION 

The fluid configuration considered in this paper con­
sists of an isothermal, axisymmetric column of liquid 
of volume V, held by surface tension forces between 
two coaxial, parallel, solid disks placed a distance L 
apart, as sketched in Fig. 1. The liquid is subjected 
to a microgravity field, gy acting parallel to the liquid 
column axis. Such fluid configuration, known as li­
quid bridge, can be uniquely defined by the fol­
lowing dimensionless parameters: the ratio of the 
smaller disk radius, Ru to the large one, R2, K = Rxl 
/?2, the slendemess A = L/(2R0), where RQ = (Rt + 
R2)/2> the dimensionless volume V = VI(JZRIL) and 
the Bond number B = AggR^fc, where AQ stands for 
the difference between the density of the liquid of the 
column and the density of the surrounding medium, 
and o stands for the surface tension. 
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Fig. 1. Geometry and coordinate system for the liquid bridge pro­

blem. 

The stability of liquid bridges has attracted the 
attention of many investigators during the last two 
decades. In early studies only liquid bridges between 
equal disks, K = 1, and in gravitationless conditions, 
5 = 0 , were considered. It was found that for each 
value of the slendemess there is a minimum volume 
of liquid for which the liquid bridge is stable [1,2]; 
liquid bridges having less volume, or higher slender-
ness, than those corresponding to the minimum vo­
lume stability limit will break into two main drops 
(plus a small satellite droplet) whose volumes de­
pend on the value of the slendemess A. It was de­
monstrated that effects like Bond number, B # 0, or 
unequal disks, K * 1, increase the minimum volume 
stability limit [3-5]: for a given slendemess the liquid 
bridge needs more volume of liquid to be stable 
when B * 0 than when Z? = 0, and the same happens 
with the relative size of the disks, for a given slender-
ness the stability limit is higher when K * 1 than in 
the case of equal disks (K = 1). The reason of this 
behaviour can be roughly explained taking into ac­
count that each one of these two effects are non-sym­
metric with respect to the middle plane parallel to the 
disks. Each one of these effects isolately considered 
force the appearance of a neck close to one of the 
disks which decreases the stability of the liquid co­
lumn; in consequence, the volume of liquid must be 
increased, or the slendemess decreased, to compen­
sate this necking destabilizing effect. However, when 
both effect are simultaneously considered the situa­
tion can be rather different. If both effects are in 
phase (both effects tend to cause a neck close to the 
same disk) the resulting configuration is less stable 
than when each one of the two effects are considered 
separately; but if both effects are in counter-phase 
the resulting configuration is more stable than that 
resulting from the action of only one of them (see 
Fig. 2). According to the above explanation, a liquid 
bridge between unequal disks can be stable when 
subjected to an axial acceleration (provided the acce­

leration has the appropriate sense) and become unsta-
ble in gravitationless conditions [6-7]. 

Besides stability studies, several attemps have 
been made to analyze the dynamics of liquid bridges. 
Concerning the breaking process, available theoreti 



Fig. 2. Variation with the Bond number, B, of the stability limit of 
minimum volume of liquid bridges between unequal disks, K * 1. 
Each one of the curves splits the plane in two regions; points 
belonging to the region placed over the corresponding stability-limit 
curve represent stable configurations whereas those belonging to the 
lower region represent unstable configurations. Note that a point like 
A can be stable or unstable depending on the value of the Bond 

number. 

cal results have been obtained by using a onedimen-
sional model derived from capillary jet theory [8-10], 
although recently some results obtained by using a 
more refined model have been published [11]. 

Stability limits of liquid bridges have been experi­
mentally studied either on Earth (by using very small 
samples [12] or neutral buoyancy, the so-called Pla­
teau technique [4,7,13,14]) or on board space-plat­
forms [15,16]. Concerning the dynamics, the situa­
tion is rather different; leaving apart experimental 
studies dealing with the oscillation of liquid bridges, 
available experimental results related to the breakage 
of liquid bridges are mainly concerned with the final 
result of the breaking process (i.e., the volume of the 
drops resulting after breaking [15,17,18]) and, as far 
as we know, no attempts have been made dealing 
with the breaking process itself. The reason for this 
lack of experimental results is that some characteri­
stics of the breaking process, for instance, the 
breaking time or the time variation of the neck ra­
dius, are strongly influenced by initial conditions, 
which are extremely difficult to be controlled during 
experimentation. Fortunately, there are other charac­
teristics of the breaking process which are almost 
independent of the initial conditions, this is the case 
of the volume of the drops resulting after breaking, 
which have been used to check the suitability of 
mathematical models to predics this aspect of the 
dynamics of liquid bridges. 

There is, however, an experimental situation in 
which initial conditions can be accurately controlled. 
Let us assume a liquid bridge between unequal disks 
(K * 1) subjected to a positive Bond number (B > 0) 
and with the appropriate values of both the slender-
ness and the volume, in such a way that the liquid 
column be stable,(such a liquid bridge could be re­

presented by a point like the one labelled as A in the 
A-V stability diagram shown in Fig. 2). If the Bond 
number is now set to zero, the resulting configuration 
will be unstable, and it will break. Roughly speaking,, 
the above paragraph describes the experimental pro­
cedure followed in the experiments reported in this 
paper: a liquid bridge between unequal disks was 
formed inside a Plateau cell and the density of the 
outer liquid was adjusted to have a stable liquid 
bridge. Then the apparatus was dropped out in a drop 
tower facility and the evolution during the free fal­
ling (B ~ 0) of the liquid bridge interface was recor­
ded. For a given slenderness such evolutions can be 
of breaking, if the volume of the liquid column is 
smaller than that of the stability limit, or, on the other 
hand, an oscillatory motion can appear provided the 
liquid bridge volume is high enough. In this way, 
such experimental procedure allows the experimental 
determination of stability limits of liquid bridges 
between unequal disks {K *• 1, B = 0) and allows one 
to get some conclusions on the stability margin (the 
minimum amount of energy which is needed to force 
the breaking of a stable liquid bridge). The stability 
limit corresponding to liquid bridges with K = 0.805 
and B = 0 has been experimentally checked by fol­
lowing the above described method, experimental 
results being in agreement with theoretical ones. In 
addition, some conclusions concerning the dynamics 
of liquid bridges are presented: experimental results 
are compared with theoretical predictions obtained 
by using a one-dimensional model for the liquid 
bridge dynamics whose main characteristics have 
been published elsewhere [8-9]. 

APPARATUS AND EXPERIMENTAL TECHNIQUE 

The equipment used in the experiments here descri­
bed consists of a liquid bridge cell (Plateau Tank, 
PT) in which liquid bridges are formed plus a CCD 
camera, a commercial video recorder and the back­
ground illumination system, all of them mounted on 
a platform placed inside the drop-capsule (Fig. 3). 
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Fig. 3. Sketch of the experimental set-up. 1) Plateau Cell, 2) CCD 
camera, 3) video recorder, and 4) background illumination. 

The PT is a tight box made of aluminum with two 
transparent faces. The test chamber is 0.04 m x 0.04 
m x 0.06 m and contains the two disks which allow 
the formation of a liquid bridge between them. The 
lower disk is fixed, whereas the upper one can be 
displaced up and down by means of a calibrated 
screw. The rod supporting the upper disk is at the 
same time the piston of the syringe which acts as the 
working liquid reservoir. In this way, when the upper 
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Fig. 4. Comparison between experimental (white circles) and theoretical (solid lines) interfaces of liquid bridges between unequal disks, 
K = 0.805. Solid lines indicate the best fitted theoretical interfaces. 1) A = 2.19, V = 0.741, B = 0.024; 2) A = 2.30, V = 0.789, B = 0.023. 

disk is moved up the working liquid is forced to pass 
from the syringe to the liquid bridge through a duct 
which ends at a hole in the center of the upper disk. 
The contrary occurs when the upper disk is moved 
down: the liquid is forced Jto pass from the liquid 
bridge to the reservoir. To fill the reservoir, as well 
as to control the volume of liquid injected in the 
liquid bridge, the syringe has been provided with a 
quick-disconnect valve. There are other two quick-
disconnect valves at the test chamber, which are used 
for the filling of the surrounding liquid (and the 
removal of the air trapped inside). 

Working liquid was dimethyl silicone oil with a 
viscosity 20 times that of water and density 
QW = 954 kg.m"3; outer bath was a mixture of metha­
nol and water with the appropriate density to meet 
Bond number requirements. A typial value for the 
interface tension the liquid used is, according to the 
results reported in the literature [9,19], o= 0.017 
N.m"'. These values of QW and a, plus the value of 
the characteristic lenght, R0, define the characteristic 
time of the experiments, tc = (QWRQ/OY'2. Experi­
ments were performed at the drop tower facility exi­
sting at the Spanish National Institute for Aerospace 
Technics (INTA, Madrid) in which a free-falling 
time of 2 s is obtained; with this figure in mind the 
characteristic lenght /?0 = 4.5 x 10 m was chosen, 
so that the characteristic time becomes tc = 0.072 s, 
which is some 30 times smaller than the free-fall 
time. The ratio of size of the disks was K = 0.805 
and in all the experiments performed the liquid 
bridge configuration was similar to that represented 
in Fig. 1 (larger disk at the top). 

Once a liquid bridge of the desired slenderness, 
volume and Bond number is formed (the slenderness 
can be accurately measured by reading the position 
of the micrometric screw, whereas volume and Bond 
number are measured from the images of the liquid 
bridge contour, as will be explained in the following) 
and the Plateau Tank fixed to the platform of the 
drop-capsule, the illumination and the image recor­
ding system are switched-on and, after a few se­
conds, the capsule is dropped out, so that the evolu­
tion of the liquid bridge interface is recorded during 
the free-falling period. The images of the liquid 
bridge before dropping are used to calculate the di-
mensionless volume of liquid (by integration of the 
liquid bridge contour) and the value of the Bond 
number, by fitting theoretical contours of the liquid 
bridge to experimental ones. The last procedure can 
be some what tedious because liquid bridge shapes 
must be numerically calculated and in the shape of 
a liquid bridge there is a large number of parameters 
involved [5,7]. In Fig. 4 some example of this fitting 
process are shown. 

From the images recorded during the free-falling 
period the evolution of the whole liquid bridge inter­
face can be analyzed. However, in the following the 
study has been restricted to the analysis of a charac­
teristic section of the liquid bridge, this section being 
the one placed at one quarter of the lenght of the 
liquid column from the bottom disk (the smaller 
one). This section has been selected because it is 
close to the sections where the maximum deforma­
tion of the interface takes place if the liquid bridge 
either breaks or oscillates. 



THEORETICAL BACKGROUND 

Before presenting experimental results it would be 
convenient to give some basic ideas on the physics 
of the phenomenon under study. According to the 
experimental sequence described above, before free-
falling there is a stable liquid bridge whose configu­
ration is uniquely defined by the values of the set of 
parameters AJ/JCfi. Then the liquid bridge is drop­
ped, which means that, suddenly, the value of the 
Bond number is set to zero, the new set of parameters 
defining the fluid configuration during the falling 
period being AtVtKfl. Therefore, at t = 0 the fluid 
configuration is a liquid bridge whose interface is not 
in equilibrium (once axial Bond number is removed) 
and, in consequence, a capillary pressure field ap­
pears which causes the movement of the liquid as 
well as the deformation of the interface. From now 
on there are two possibilities for this process initiated 
by a step change in the value of the Bond number. 
It could be that for the new set of values (A,V,K,0) 
the liquid bridge be unstable; in such case the defor­
mation of the interface will continue until the liquid 
column breakage takes place, the final configuration 
being two main drops, one drop anchored to the 
upper disk and the second to the lower one, plus a 
small satellite droplet. The second possibility is that 
the fluid configuration defined by A,V,KJ& lies in the 
stable region of the stability diagram. In this second 
case there are also other two possibilities for the 
evolution of the liquid bridge depending on both the 
initial energy of the liquid bridge and on how close 
to the stability limit the liquid bridge is. In order to 
simplify the explanation let us assume a liquid bridge 
surrounded by a medium of negligible density when 
compared with the density of the liquid bridge (this 
situation can be achieved by working with very small 
liquid bridges in an Earth laboratory or with large 
liquid columns in a space laboratory, an is rather 
different of the experimental conditions existing in a 
Plateau Tank, in which the liquid column is surroun­
ded by another liquid of almost the same density). As 
already stated, at t = 0 the interface is not equili­
brium and the liquid bridge energy is higher than the 
one corresponding to the equilibrium shape. Such an 
excess of energy will force the evolution of the liquid 
bridge in such a way that, if no dissipative effects are 
accounted for, the total energy (surface energy plus 
kinetic one) will be kept constant; during the evolu­
tion there is a transfer from surface energy to kinetic 
one and viceversa. If the initial excess of energy 
(with respect to that of the stable equilibrium shape) 
is not too high the liquid bridge will oscillate with its 
natural frequency around the equilibrium shape (Fig. 
5), the amplitude of the interface oscillation increa­
sing as the excess of initial energy grows. However, 
if the initial excess of energy is high enough, the 
deformation of the interface during the evolution can 
be so high that forces the development of capillary 
instability. In this last case, once capillary instability 
has been triggered, the deformation of the interface 
will continue until the breaking of the liquid column 
occurs. After this reasoning it is clear that there is, 
for each stable liquid bridge, a stability margin 
whose magnitude can be measured by the difference, 
AE, between the energies of the stable configuration 
and the closer unstable one, as sketched in Fig. 5. 

To illustrate the above reasoning, in Fig. 6 the 

variation with the dimensionless time of the non-di­
mensional surface energy (which has been made di­
mensionless with ORQ) of a liquid bridge with 
A = 2.85, V = 1.3, K = 0.805 and B = 0 is shown. 
The different curves correspond to different initial 
conditions (at t = 0 the interface of the liquid bridge 
is that of a liquid column with the same A9 V and AT, 
but subjected to an axial Bond number Bt * 0). These 
results have been obtained by using a non-linear 
one-dimensional inviscid slice (ODIS) model for the 
dynamics of long liquid bridges*, already used in 

Fig. 5. Typical energy diagram for a long liquid bridge. In this plot 
E stands for the liquid bridge energy whereas £ is a parameter 
measuring, for instance, the magnitude of the deformation of the 
interface. Point S represents the stable configuration whereas U| and 

U2 represent the unstable ones. 
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Fig. 6. Variation with the dimensionless time, f, of the dimension­
less surface energy, E, defined as indicated in the text, of liquid 
bridges with A = 2.85, V = 1.3, K = 0.805 and B = 0. The dot line 
indicates the static stability margin for such liquid bridge configura­
tion. Numbers on the curves indicate the magnitude of the initial 

perturbation, Bt. 

* As demonstrated in Ref. 8, in the case of long, inviscid liquid 
bridges the radial momentum equation can be neglected. In this case 
the equations governing the dynamics of the liquid bridge are the 
continuity equation, St + Qz=0 and the axial momentum equation, 
QMQ2iS)t = SPZ, where P = 4[2S+(SZ)2 -SS^S+iS^T^+Bz, 
with the appropriate initial and boundary conditions: S(zJ0) = St(z) 
Q(z.0) = 0, S(±A,t) = (\±h?t Q(±Att) = 0, where k=(l-K)/ 
(1 + A"). In these expressions S = F2 and Q = F2Wt where F stand 
for the equation of the interface shape and W for the axial velocity 
field. To write down the above formulation all magnitudes have 
been made dimensionless by using R0 as characteristic lenght and 
{gJillo)m as characteristic time. Additional details on this model 
can be found in Refs. 8, 9 and 11. 
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liquid bridge problems [8,9,17,18]. In the same plot 
the stability margin corresponding to the liquid 
bridge under consideration has been represented. As 
it can be observed, the liquid bridge evolutions 
whose initial excess of energy is higher than the 
stability margin end in a liquid column breakage, 
whereas oscillations appear when the excess of 
energy is small enough with respect to the stability 
margin. The static stability margin has been defined 
as the difference in energies between the closest un­
stable shape and the stable one; however, in dyna­
mic processes, like the ones shown in Fig. 6, the 
real stability margin depends not only on the static 
stability margin but also on the nature of the initial 
perturbation. This is why a liquid bridge can break 
even if the imposed initial perturbation be smaller 
than the corresponding static stability margin, as it 
happens with the case Bk = 0.025 in Fig. 6. Of 
course the different evolutions shown in Fig. 6 are 
only an approximation of the real evolutions: they 
have been calculated by using an inviscid one-di­
mensional model (therefore no dissipative effects 
are acounted for) in which it is assumed that the 
effects due to the surrounding medium are negligi­
ble. However, both viscosity and a surrounding li­
quid of almost the same density than that of the 
liquid bridge increase the stability margin. The ef­
fect of the liquid viscosity is clear, and no additional 
explanations are needed. Concerning the surroun­
ding liquid, there are, according to Ref. 9, two ef­
fects to be taken into account at least. The first 
effect is that the outer bath force the movements to 
be slower: a given excess of energy at t - 0 has to 
be spent not only in the movement of the liquid 
bridge but also in the movement of the outer liquid. 
In fact, the following relationship between the 
breaking time of a liquid bridge with an outer li­
quid, 7fr, to the breaking time of a liquid bridge with 
no outer liquid, TQ, was calculated in Ref. 9. 

r*/rji + (eff/ew)/(D2-i)],fl (i) 
This expression was one of the results of a linear 

analysis of the dynamics of liquid bridges; Q0 and gw 
stand for the density of the outer liquid and liquid 
bridge, respectively, and D is a dimensionless para­
meter that measures the size of the reservoir contai­
ning both liquid bridge and outer bath (in such 
analysis it is assumed that the reservoir is of circular 
cross-section, its radius being DRQ). 

On the other hand, since the excess of initial 
energy has to be spent in the movement not only of 
the liquid bridge but also that of the outer liquid, the 
kinetic energy per unit of mass will be smaller and, 
in consequence, it could be that a stable liquid 
bridge, that could become unstable for a given per­
turbation if no outer liquid is considered, remains 
stable for the same perturbation when it is surroun­
ded by another liquid. To have an idea of the order 
of magnitude of this effect, an estimation similar to 
that reported in Ref. 9 can be done: the energy nee­
ded by the liquid bridge will be proportional to its 
mass, QVLRQ, and to the square of some characteri­
stic velocity, Wt in the same way the outer liquid 
will need an energy proportional to its mass, 
QoLR&D2-l), and to the square of its characteristic 
velocity, U7(D2- 1). Hence, from this very simpli­
fied reasoning can be deduced that the fraction of 

the total available energy spent in the liquid birdge 
is [1 + {Q0IQW)I(D2 - l)]"1, which is smaller than die 
energy that would correspond to the liquid bridge 
considered alone. It must be pointed out that, be­
cause of the outer liquid, the energy of the initial 
perturbation needed to reach a given stability mar­
gin level must be higher when an outer liquid exists 
than when the density of the outer medium is negli­
gible. Thus, the outer liquid can be a stabilizing 
effect from the point of view of the dynamics. 

EXPERIMENTAL RESULTS AND CONCLUSIONS 

Experimental results are summarized in Fig. 7, where 
the symbols represent the liquid bridge configura­
tions that were tested in the drop tower of INTA. 
White symbols indicate that during the free-falling 
period the liquid bridge interface oscillated whereas 
black ones indicate that the breakage of the liquid 
column took place. The shape of the symbols indi­
cate the value of the Bond number before dropping, 
Bi\ a circle means 0.01 £B,-< 0.02 and a square 
0.02 < B( < 0.03. Solid lines indicate the theorical 
stability limits (K = 0.805) corresponding to the va­
lues of the Bond number indicated. As it can be 
observed, experimental results are in agreement ith 
theoretical predictions: once Bond number is set to 
zero a liquid bridge will break if it is in the unstable 
region (with respect to the stability limit correspon­
ding to B = 0) or oscillate if the fluid configuration 
lies in the stable region. 

Concerning the evolutions in which the interface 
oscillates, little more can be said about: the free-fall 
period was too short with respect to the period of the 
oscillation, so that precise measurement of the natu­
ral frequencies or damping coefficients becomes im-

Fig. 7. Stability of liquid bridges between unequal disks 
{K = 0.805). Solid lines represent theoretical stability limits corre­
sponding to the indicated values of Bond number, B, whereas the 
symbols represent experimental results. A black (white) symbol 
indicates that the brekaing (oscillation) of the liquid column took 
place after dropping. The shape of the symbols indicate the value 
of Bond number before dropping, £ , , a circle means 

0.01 <, Bt < 0.02 and a square 0.02 £ B, < 0.03. 
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Fig. 8. Variation with the normalized time, t„ (defined as in the text) 
of the normalized radius, RHt of the liquid bridge at section z = ~AI 
4. The upper band corresponds to numerical results whereas the 

lower one corresponds to experimental results. 

possible (to measure these characteristics of the li­
quid bridge dynamics the characteristic length, R0, 
thus the characteristic time, would have been smaller 
to get several oscillations during the free-fall period, 
but then breaking processes would have been measu­
red worse). 
The evolutions in which a liquid column breakage 
took place are listed in Table 1, where experimental 
breaking times are compared with those resulting 
from numerical integration of the ODIS model (to 
write down dimensional values resulting from com­
putations the characteristic time tc = 0.072 s, already 
calculated in Section 2, has been used). Experimental 
breaking times are almost twice the calculated ones. 
This high difference could be partially explained by 
taking into account some peculiarities of the mathe­
matical model involved. In effect, according to Ref. 
11, the ODIS model gives breaking times some 10% 
smaller than those calculated by using a velocity-po­
tential model which accounts for radial momentum 
effects. On the other hand, no outer liquid has been 
considered in calculations. As above stated, the pre­
sence of an outer liquid increases the brekaing time 
by an amount that depends on the density ratio QJQW 

and on the distance D between the walls of the Pla­
teau cell and the liquid bridge axis. Then, assuming 
that both liquids, outer bath and liquid bridge, are of 
the same density and taking D « 3, equation (1) gi­
ves TbIT0 « 1.06. However, these two factors are not 
enough to explain the large discrepancies between 
theory and experiments concerning breaking time 
and it can be concluded that the ODIS model is only 
a rough tool when this aspect of the dynamics of 
liquid bridges is considered (in spite of that, other 
characteristics of the breaking process are accurately 
predicted by the ODIS model, this is the case of the 
volume of each one of the two main drops appearing 
after breakage [18]). To compare both numerical and 
experimental breaking evolutions the normalized 
breaking evolutions are shown in Fig. 8. In this plot 
the variation with normalized time, tn (the time, f, 
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malized radius at z = -A/4, Rn (the radius divided by 
the initial radius: Rn = R(-A/4,t)/R(-A/4fi)) has 
been represented. The lower band represents the en­
velope of all the experimental evolutions whereas the 
upper band includes all the numerical evolutions for 
the same values of A% V, K and Bit calculated by 
using the ODIS model. Note that this numerical mo­
del gives sharp motions when compared with experi­
mental results, the rate of change of the radius is 
slow, at the beginning of the movement and af­
terwards suddenly accelerates. 

The stability limits of liquid bridges between une­
qual disks, K * 1, have been experimentally analy­
zed by using a dynamic process in which an impor­
tant characteristic of the stability diagram has been 
used (a liquid bridge between unequal disks can be 
more stable when an axial acceleration acts on the 
liquid column than when such an acceleration is re­
moved). Experiments have been performed at the 
drop tower facility existing at INTA. The experimen­
tal procedure used to perform the experiments here 
described gives accurate knowledge of experimental 
initial conditions, otherwise almost impossible to be 
known when other experimental techniques com­
monly used in earth laboratories are employed, 
which could be used to experimentally check the 
validity of theoretical models to predict the non-li­
near behaviour of liquid bridges. 

Table 1 

Experimental and numerical breaking time, t^ and 
tbn, respectively of liquid bridges between unequal 

disks 

A V Bt **[*] ttnls] 
2.19 0.741 0.024 1.02 0.529 
2.30 0.789 0.023 1.16 0.554 
2.41 0.858 0.030 1.09 0.605 
2.63 0.971 0.016 1.29 0.663 
2.63 0.994 >0.030 1.12 0.682 
2.74 1.050 0.015 1.63 0.734 
3.01 1.290 0.016 1.76 0.907 
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