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In this paper the influence of an axial microgravity on the minimum volume stability limit of axisymmetric liquid bridges between 
unequal disks is analyzed both theoretically and experimentally. The results here presented extend the knowledge of the static 
behaviour of liquid bridges to fluid configurations different from those studied up to now (almost equal disks). Experimental results, 
obtained by simulating microgravity conditions by the neutral buoyancy technique, are also presented and are shown to be in 
complete agreement with theoretical ones. 

1. Introduction 

A liquid bridge is an idealization of the fluid 
configuration appearing in the crystal growth 
technique known as floating zone melting. The 
liquid bridge configuration, as sketched in fig. 1, 
consists of a mass of liquid held by surface tension 
forces between two parallel, coaxial, solid disks. 
Such a fluid configuration can be identified by the 
following dimensionless parameters: the slender-
ness, A = L/2R0, where L is the distance be­
tween the disks and R0 = (R^ + R2)/2 the mean 
radius, which is used as characteristic length; the 
ratio of the radius of the smaller disk to the radius 
of the larger one, K = R1/R2; the dimensionless 
volume of liquid, V = V/R\, V being the physical 
volume; and the Bond number, B = ApgR\/o, 
where Ap is the difference between the liquid 
bridge density and the surrounding medium den­
sity (either a gas or another liquid), g the axial 
acceleration and a the surface tension. 

The availability of flight opportunities to carry 
out fluid science experiments in microgravity is 
given rise to interest in the study of the behaviour 
of liquid masses under microgravity conditions, 
the liquid bridge being one of the fluid configura­
tions which is receiving increasing attention in 
those experiments [1-8]. The mechanical aspects 
of the liquid bridge problem have received the 
attention of many investigators during the last two 
decades and, leaving apart dynamic effects, one 
can find in the literature a large number of papers 
dealing with the equilibrium shapes and the static 
stability limits of liquid bridges. It is well known 
that for each set of dimensionless parameters (A, 
K, B), there is a minimum volume of liquid for 
which a stable liquid bridge can be formed. Stabil­
ity limits of minimum volume of liquid bridges at 
rest between equal disks (K=Y) under zero grav­
ity conditions (B = 0) have been studied in refs. 
[9-14], among others; the influence of micrograv­
ity (B # 0) has been considered, for instance, in 
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Fig. 1. Geometry and coordinate systems for the liquid bridge 
problem. 

refs. [15-17] in the case of liquid bridges between 
equal disks (K= 1), whereas the influence on sta­
bility limits of different disks (K¥=l) in zero 
gravity conditions (B = 0) has been analyzed in 
refs. [17-19]. Both, Bond number and unequal 
disks, are non-symmetric effects. Each one sep­
arately decreases the stability of the liquid column 
(the volume of liquid must be increased to keep 
the configuration stable), but both effects com­
bined may cancel each other or, in other words, 
each of these effects can be a stabilizer for the 
remaining one. This behaviour has been analyzed 
in refs. [20,21], although published results concern 
only liquid bridges between almost equal disks 
(K ~ 1) and very low values of the Bond number 
(B~0). 

This paper tries to fill the gap existing in the 
knowledge on the stability limits for minimum 
volume of liquid bridges between unequal disks in 
an axial microgravity field (AT# 1, B ¥= 0). Those 
limits have been calculated for a wide range of the 
parameters K and B (0.5 < K< 1, \B\ < 0.5) and 
some experiments have been performed in order 
to verify theoretical predictions. 

From the experimental point of view, the stud­
ies of liquid bridges carried out in earth-based 

laboratories are strongly constricted because the 
maximum stable length of a liquid bridge is of the 
order of a few milimetres. Slender liquid bridges 
can only be obtained by working on a very small 
scale, or by simulating microgravity conditions by 
using the neutral buoyancy technique, with one 
liquid surrounded by a second one with which it is 
immiscible and of precisely the same density. 
Neutral buoyancy has been extensively used [22-
35] because this technique is very appropriate for 
hydrostatic studies. Experiments have been per­
formed on liquid bridge configurations with K = 1 
and K = 0.82, and different values of the Bond 
number B ranging from 0.5 to —0.5, experimental 
results being in agreement with analytical ones. 

2. Theoretical analysis 

In the following, unless otherwise stated, all 
lengths are made dimensionless with R0. Axisym-
metric equilibrium shapes of liquid bridges 
anchored to the sharp edges of the supporting 
discs are characterized by the dimensionless 
meridian curve (outer shape) R = R(z), which is a 
function of the configuration and stimuli applied, 
namely, the ratio of the radius of the supporting 
discs K, slenderness A, liquid volume V, residual 
acceleration in the axial direction of the column 
measured by the Bond number B, and solid-body 
rotation speed, although this last effect is not 
considered in the following. Then, assuming the 
set of parameters (K, A, V, B) given, the outer 
shape, R = R(z) can be computed by numerical 
integration of the second order differential 
(Young-Laplace) equation: 

C(z) -Bz + P = 0, (1) 

where C(z) is the local mean curvature at a point 
in the shape: 

C(z) 
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and P is the non-dimensional gauge pressure at 



the origin, an implicit constant that must be also 
computed from the boundary conditions: 

R(-A)=2K/(1+K), R(+A) = 2/(1+K), 

(3) 

fA •n R2(z) d z = V. (4) 
• ' - A 

This is a typical boundary-value problem that 
has been solved here as an initial-value problem 
by the shooting method as explained below. 

The procedure to find stability limits of mini­
mum volume has been as follows: a clearly stable 
point in the parameter set (AT, A, V, B) is chosen 
(for instance, a short nearly cylindrical liquid 
bridge configuration), and subsequent points in 
the set (K, A, V, B) are found maintaining con­
stant all except V, which is decreased a certain 
amount at every step. 

To start with, finding the shape corresponding 
to a given set (K, A, V, B) is not so easy; with a 
shooting (Runge-Kutta) routine one finds the 
solution for the set (T, A, P, B), where T is the 
slope at z = — A of the meridian curve and P is 
the internal parameter that appears in eq. (1). A 
pair of corresponding values K, V is obtained, but 
not the desired one. 

A second iterative loop (the first one is for the 
Runge-Kutta) uses a Newton-Raphson algorithm 
to solve for the system of equations K(T, P) = K 
and V(T,P)=V. The problem with this al­
gorithm is that it only works if the initial guess for 
T and P is close enough to the solution. For­
tunately, if the shape to be found is very stable, 
the procedure converges quickly. When one is 
approaching the stability limit, if the jumps in V 
are small, the values T and P will vary little from 
shape to shape and the initial guess becomes very 
good. Besides the shape, the Newton-Raphson 
routine gives also the Jacobian of the transforma­
tion, / , 
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Fig. 2. Variation with the Jacobian, J, of: (a) the slope at 
z= - A of the liquid bridge shape, T(J)\ (b) the reference 
pressure, P(J); (c) the ratio of the dimensinless volume of 
liquid to the volume of a cylinder of the same slenderness, 
V(J)/2ITA. The results correspond to a liquid bridge with 

A = 2, K = 0.7 and B = 0.2. 

that approaches zero as the stability limit is ap­
proached. 

How close a given meridian curve R = 
R(z, K, A, V, B) is to an equilibrium shape, can 
be measured by the deviation c, defined as: 

e= fA [C(z)~ Bz + P]2 dz. (6) 
J -A 

A typical value of e used in the calculations 
could be £ = 1CT5. 

The stability limit is found by extrapolation to 
J = 0 of the functions T(J) and P(J), giving the 
limiting shape and in particular the minimum 
volume, which was the aim of this exercise; an 
example of the functions T(J), P(J) and V(J) is 
plotted in fig. 2. 

Some of the results obtained are shown in fig. 
3, where the influence of the Bond number on the 
minimum volume stability limit for different val­
ues of the parameter K can be observed. A liquid 
bridge configuration, represented by a point in the 
A- V diagram, will be stable if the point lies above 
the corresponding stability curve (identified by the 
values of K and B)\ otherwise the configuration 
will be unstable. 

The results show an aspect of the static be­
haviour of liquid bridges between unequal disks 
already pointed out in refs. [20-21]: for given 
values of A and K (K ¥= 1), the Bond number 



Fig. 3. Variation with the slenderness, A, of the minimum volume stability limit divided by the volume of a cylinder of the same 
slenderness V/2TTA. Numbers on the curves indicate the value of the Bond number, B. In the plots corresponding to A ' # 1 , the 

dashed line indicates the limit K = 1 , B = 0. 

may increase the stability of liquid bridges (the 
minimum volume may be smaller than that of the 
stability limit corresponding to B = 0 and the re­
sulting configuration be still stable) and this is 
because the unequality of the disks is a non-sym­

metric effect like the Bond number, so that both 
effects can be added (in that case the values of the 
minimum volume stability limit increase) or can 
cancel one another. Observe that if both disks are 
almost equal in diameter (0.8 < K < 1), the differ-



ent stability-limit curves have an envelope which 
roughly coincides with the stability limit corre­
sponding to K = 1, .6 = 0, which could be re­
garded as an absolute minimum volume stability 
limit, as already stated in ref. [21]. The envelope 
does not coincide with the limit for K = 1, B = 0 
when both disks are clearly different, and as K 
decreases the absolute minimum volume stability 
limit increases. 

3. Experimental technique and results 

Experiments have been performed in an ap­
paratus called Tele-Operated Plateau Tank 
(TOPT) Facility already described in ref. [36]. The 
working configuration consists of a column of 
silicone oil (with kinematic viscosity 20 X 10~6 m2 

s~') placed vertically inside a mixture of methanol 
and water of almost the same density of the sili­
cone oil. The overall arrangement, as sketched in 
fig. 4, consists of a tank which contains the 
methanol-water mixture and the liquid bridge held 
between two coaxial disks. Both disks are made of 
Perspex, in the shape of a frustrum cone, to pro­
vide sharp edges, their diameter being 30 mm for 
the experiments with K= 1, and 30 and 24.5 mm 
in the case K = 0.82. The injection and removal of 
the working fluid is done through a 4 mm diame­
ter hole in the centre of the upper disk. The 
working surface of the bottom disk is flat, whereas 
that of the feeding disk is slightly conic, the pur­
pose of which is to facilitate the evacuation of air 
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Fig. 4. Sketch of the experimental facility: (a) plateau tank; (b) 
liquid bridge; (c) liquid injection and removal; (d) background 

illumination; (e) TV camera. 

bubbles trapped in the liquid bridge through the 
injection hole. Working fluid injection and re­
moval is done with a calibrated syringe, the piston 
of which is driven by a variable speed electric 
motor. Liquid displaced by the piston passes 
through the filling duct. The filling duct has a 
three-way valve with a purge duct which traps air 
bubbles coming from the upper disk. 

Background illumination consists of a 150 W 
fiber optic illuminator (similar to those used in 
microscopy). A CCD video camera, placed 1 m 
away, is used for image recording. To enhance the 
visualization of shape of the liquid bridge (outline 
of its free-surface), only half of the background 
illumination plane is illuminated. Automated 
image analysis has been developed, so that the 
liquid contour can be extracted in near real time 
from the video frames [36]. 

The development of a typical experimental se­
quence is as follows: for a given value of K (to 
change the value of K requires to change some of 
the supporting disks), a value of the Bond number 
is fixed by selecting the appropriate density of the 
water-methanol mixture. Thus a liquid bridge of 
the desired slenderness and volume is established. 
From now on the process is quite similar to that 
described in ref. [29], the major difference being 
that now all the process and the data analyses are 
automatically made through a computer. Once the 
liquid bridge is formed, the experiment consists of 
sucking liquid from the bridge at constant slender­
ness until the liquid bridge disrupts. This is per­
formed by a slow withdrawal in steps of 0.5 cm3, 
separated by a 20 s wait to allow for instabilities, 
if any, to develop. The process stops when the 
liquid bridge disruption takes place. Then a new 
liquid bridge of another slenderness is formed and 
a new run starts. Recorded information during 
each test is, in addition ot the geometrical parame­
ters (disks separation, syringe piston position), a 
set of liquid-bridge interface shapes which are 
used further to calculate both the Bond number 
and the minimum volume for which the liquid 
bridge is stable. 

Once all the tests for a given value of B are 
performed, the value of the Bond number is mod­
ified by adding alcohol or water to the bath, and a 
new experimental sequence starts. 



One of the problems that could arise when a 
methanol-water mixture is used as surrounding 
liquid is the existence of a density gradient along 
the tank. This phenomenon was experimentally 
studied by Tagg et al. [27] and a density gradient 
as high as 50 kg m "4 was found with their experi­
mental configuration, although these authors did 
not state whether the density gradient was due to 
inhomogeneities in the mixture or to the signifi­
cant vertical temperature gradient existing in their 
experiment. 

Since we were aware of this problem, a previ­
ous experiment was performed aiming at measure 
density gradients in the bath. For this purpose a 
moire deflectometer was used. Results from this 
previous experiment show that density gradients 
inside the bath are negligible except in a thin layer 
close to its free surface. 

A second problem to be taken into account 
when alcohol-water mixtures are used is that al­
cohol evaporates rather quickly, and then the bath 
density varies with time, which implies that the 
Bond number also varies with time. To minimize 
alcohol evaporation, the tank must be kept as 
tight as possible. 

The value of the Bond number has been mea­
sured by fitting theoretical interface shapes to 
experimental ones. These measurements show that 
the Bond number varies with time along the dif­
ferent experimental sequences performed, the rate 
of change of the bath density being of the order of 
7 X 10"5 kg m~3 s_ 1 . This means that within one 
experimental sequence (a typical value of the time 
spent to perform an experimental sequence could 
be some 60 min), the bath density changes with 
0.25 kg m~3, which gives Bond number dif­
ferences of the order of 0.025 between the start 
and the end of the experimental sequence. How­
ever, this is not the reference value for the Bond 
number variation for a comparison between ex­
perimental and theoretical results. In effect, 
minimum volume stability limits are less sensitive 
to Bond number when the slenderness of the liquid 
bridge decreases. This is shown in fig. 5, where 
some experimental results are compared with the 
theoretical ones corresponding to B = 0.015 and 
B = 0.025. As one can observe, a Bond number 
difference of 0.01 gives differences in the values of 
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Fig. 5. Influence of the Bond number, B, on the minimum 
volume stability limit divided by the volume of a cylinder of 
the same slenderness, V/2TTA. The symbols indicate experi­
mental results, whereas the solid lines correspond to theoretical 
ones. The number on the curves indicates the value of B. The 
results correspond to liquid bridges between unequal disks 

(K = 0.82). The dashed line indicates the limit K = 1, B = 0. 

the volume stability limits which are less than the 
error in the experimental volume measurements 
for liquid bridges with A < 2.5. This seems to 
indicate that the Bond number variation is only 
significant with A > 2.5. However, the time needed 
to perform the experiments with A > 2.5 was ap­
proximately 1/3 of the time spent in the whole 
sequence. Thus, the reference value for the Bond 
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Fig. 6. Variation with the Bond number, B, of the minimum 
volume stability limit divided by the volume of a cylinder of 
the same slenderness, V/2TTA. The symbols indicate experi­
mental results, whereas the solid lines correspond to theoretical 
ones. The number on the curves indicates the value of B. The 
results correspond to liquid bridges between equal disks (K = 
1). The dashed line indicates the limit corresponding to B = 0. 



Fig. 7. Variation with the Bond number, B, of the minimum 
volume stability limit divided by the volume of a cylinder of 
the same slenderness, V/2irA. The symbols indicate experi­
mental results, whereas the solid lines correspond to theoretical 
ones. The number on the curves indicates the value of B. The 
results correspond to liquid bridges between unequal disks 

(K = 0.82). The dashed line indicates the limit K=\, B = Q. 

number variation with time should be at least 
three times smaller than that quoted above. 

Experimental results are shown in fig. 6 (K = 1) 
and in fig. 1 (K= 0.82). Experimental results show 
the same trends as theoretical ones. When both 
disks are equal in diameter, the minimum volume 
stability limit increases as the Bond number in­
creases, but when K+ 1 (K= 0.82), the behaviour 
of the liquid bridge is rather different and, de­
pending on the value of the slenderness, the Bond 
number can be a stabilizing effect, as clearly shown 
by the results presented in fig. 7. 
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