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Resumen

La sociedad depende hoy más que nunca de la tecnología, pero la inversión en seguri-
dad es escasa y los sistemas informáticos siguen estando muy lejos de ser seguros.
La criptografía es una de las piedras angulares de la seguridad en este ámbito, por
lo que recientemente se ha dedicado una cantidad considerable de recursos al de-
sarrollo de herramientas que ayuden en la evaluación y mejora de los algoritmos
criptográficos. EasyCrypt es uno de estos sistemas, desarrollado recientemente en
el Instituto IMDEA Software en respuesta a la creciente necesidad de disponer de
herramientas fiables de verificación formal de criptografía.

En este trabajo se abordará la implementación de una mejora en el reductor de tér-
minos de EasyCrypt, sustituyéndolo por una máquina abstracta simbólica. Para ello
se estudiarán e implementarán previamente dos máquinas abstractas muy conocidas,
la Máquina de Krivine y la ZAM, introduciendo variaciones sobre ellas y estudiando
sus diferencias desde un punto de vista práctico.
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Abstract

Today, society depends more than ever on technology, but the investment in security
is still scarce and using computer systems are still far from safe to use. Cryptography
is one of the cornerstones of security, so there has been a considerable amount
of effort devoted recently to the development of tools oriented to the evaluation
and improvement of cryptographic algorithms. One of these tools is EasyCrypt,
developed recently at IMDEA Software Institute in response to the increasing need
of reliable formal verification tools for cryptography.

This work will focus on the improvement of the EasyCrypt’s term rewriting system,
replacing it with a symbolic abstract machine. In order to do that, we will previously
study and implement two widely known abstract machines, the Krivine Machine and
the ZAM, introducing some variations and studying their differences from a practical
point of view.
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1. INTRODUCTION

In the last years, society is becoming ever more dependent on computer systems.
People manage their bank accounts via web, are constantly in touch with their con-
tacts thanks to instant messaging applications, and have huge amounts of personal
data stored in the cloud. All this personal information flowing through computer
networks need to be protected by correctly implementing adequate security measures
regarding both information transmission and storage. Building strong security sys-
tems is not an easy task, because there are lots of parts that must be studied in
order to assure the system as a whole behaves as intended.

1.1. Cryptography

One of the most fundamental tools used to build security computer systems is cryp-
tography. As a relatively low-level layer in the security stack, it is often the corner-
stone over which all the system relies in order to keep being safe. Due to its heavy
mathematical roots, cryptography today is a mature science that, when correctly
implemented, can provide strong security guarantees to the systems using it.

At this point, one could be tempted of just “using strong, NIST-approved cryp-
tography” and focusing on the security of other parts of the system. The problem
is that correctly implementing cryptography is a pretty difficult task on its own,
mainly because there is not a one-size-fits-all construction that covers all security
requirements. Every cryptographic primitive has its own security assumptions and
guarantees, so one must be exceptionally cautious when combining them in order to
build larger systems. A given cryptographic construction is usually well suited for
some kind of scenarios, and offers little to no security otherwise. In turn, this can
produce a false sense of security, potentially worse that not having any security at
all.
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1.2. Formal Methods

In order to have the best guarantee that some cryptographic construction meets its
security requirements, we can use use formal methods to prove that the requirements
follow from the assumptions (scenario).

While mathematical proofs greatly enhance the confidence we have in that a given
cryptosystem behaves as expected, with the recent increase in complexity it has
become more and more difficult to write and verify the proofs by hand, to the point
of being practically non-viable. In the recent years there has been an increasing
effort in having computers help us write and verify this proofs.

There are various methods and tools for doing this, but one of the most versatile and
powerful are the proof assistants, which are tools designed to help users develop
formal proofs interactively. A proof assistant usually follows the rules of one or
more logics to derive theorems from previous facts, and the user helps it by giving
“hints” on how to proceed. This is in contrast to some other theorem provers that
use little or no help from the user, making them easier to use but fundamentally
more limited. Coq1 and Isabelle2 are examples of widely used proof assistants.

One downside of proof assistants is that they require a considerable amount of knowl-
edge from the user, making them difficult to use for people that is not somewhat
fluent with theoretical computer science and logic. This is a significant obstacle to
the application of this technologies to other scientific fields that could benefit from
adopting the formal methods approach to verification.

1.3. EasyCrypt

EasyCrypt [1] is a toolset conceived to help cryptographers construct and verify
cryptographic proofs. It is an open source project3 being developed currently at
IMDEA Software Institute and Inria. It is the evolution of the previous CertiCrypt
system [2].

EasyCrypt’s works as an interpreter of its own programming language, in which
the programmer can express all that’s needed in order to develop the proofs. At
every step of the evaluation, EasyCrypt can output some information regarding the
state of the system so that external tools can parse and show it to the user. Together
with the fact that the evaluation steps can be reversed, this forms the basis of the

1http://coq.inria.fr/
2http://isabelle.in.tum.de/
3https://www.easycrypt.info
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interactivity of the EasyCrypt system: the user can evaluate the program step by
step, and if needed, undo it and re-evaluate in the fly.

Figure 1.1.: EasyCrypt

The preferred way of working with EasyCrypt is using the Emacs1 text editor,
with the Proof General2 interface to proof assistants (figure 1.1). This interface
shows both the source code and the EasyCrypt output at the point of evaluation
(the already evaluated code is displayed in a different color), and offers standard
key combinations for forward/backward code stepping.

As we’ll see later (section 2.4), EasyCrypt has different sub-languages for working
with different things, e.g., representing games, developing the proofs, etc. One
of them is specially relevant in this thesis: the expression language. It is the
language EasyCrypt uses to define typed values, like quantified formulas, arithmetic
expressions, functions, function application and such, and developing proofs relies
heavily on the manipulation of this expressions.

1http://www.gnu.org/software/emacs/
2http://proofgeneral.inf.ed.ac.uk/
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1.4. Contributions

In this work we will study and implement some well-known abstract machines to
improve the EasyCrypt’s current term rewriting engine. As we will see in the corre-
sponding section ( 6), the current implementation is an ad-hoc solution that works
well, but is monolithic, difficult to extend and somewhat inefficient. Before that, we
will introduce some theory to the field of term rewriting and implement both the
Krivine Machine and the ZAM, as a way to understand their differences and which
is the best reference to improve the EasyCrypt’s engine.
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Part I.

STATE OF THE ART
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2. CRYPTOGRAPHY

In this chapter we will review some concepts related to how cryptographic proofs
are built, in order to understand how EasyCrypt works and how proofs are written
in it.

2.1. Public-key Encryption

Here we will introduce some basic concepts in asymmetric cryptography, as they
will be useful to understand the next sections on EasyCrypt’s proof system and
sequences of games (section 2.3).

Asymmetric cryptography (also called Public Key cryptography), refers to
cryptographic algorithms that make use of two different keys, pk (public key) and sk
(secret key). There must be some mathematical relationship that allows a specific
pair of keys to perform dual operations, e.g., pk to encrypt and sk to decrypt, pk
to verify a signature and sk to create it, and so on. A pair of (public, secret) keys
can be generated using a procedure called key generation (KG).

The encryption (E) and decryption (D) functions work in the following way:

E(pk, M) = C

D(sk, C) = M

That is, a message (M) can be encrypted using a public key to obtain a ciphertext
(C). In turn, a ciphertext (C) can be decrypted using a private key to obtain
a message (M). Any complete encryption algorithm must satisfy the following
property, given that pk and sk were obtained by a call to KG:

D(sk, E(pk, M)) = M

6



2.2. Proofs by reduction

In cryptography it is usually not possible to prove perfect security, as the only
possible way to archieve it would be using keys as long as the message (Shannon’s
theory of information). So, the usual approach is to prove that some cryptographic
protocol’s security can be reduced to the security of some well-known primitive
that is believed to be computationally untractable. That is, the security relies
on the unability of any human being to solve some computationally hard problem.
The overall structure of this proofs is represented in the figure 2.1.

Primitive

Scheme

Attack

Attack

Construction Reduction

Figure 2.1.: Proofs by reduction

One of the most famous hard problems in cryptography is integer factorization.
It can be proven that the computational power needed to factor the product of two
big primes grows exponentially on the size of the primes, making it a practically
impossible task to archieve for sufficiently big prime numbers. The RSA cryptosys-
tem, for example, can be proven secure because it can be reduced to the integer
factorization problem.

2.3. Sequences of games

In 2004 [3], Victor Shoup introduced the concept of sequences of games as a
method of taming the complexity of cryptography related proofs. A game is like
a program written in a well-defined, probabilistic programming language, and a
sequence of games is the result of applying transformations over the initial one.
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Every game represents the interaction between a challenger and an adversary,
with the last one being usually encoded as a function (probabilistic program). In
the end, we will want the sequence of games to form a proof by reduction (see
section 2.2), where the transition of games proves that our system can be reduced,
under certain conditions, to some well-known cryptographic primitive. We say that
the adversary wins when certain event takes place. It generally has to do with his
capacity to extract some information or correctly guess some data.

We can define the following game in order to see a practical example of how sequences
of games work:

Game 2.1: IND-CPA game (from [2])
(pk, sk)← KG();
(m0, m1)← A1(pk);
b

$← {0, 1};
c← E(pk, mb);
b̃← A2(c)

The game 2.11 can be used to define the IND-CPA property of public key encryp-
tion schemes. IND-CPA (Indistinguishability Under Chosen Ciphertext Attacks)
means that the adversary is unable to distinguish between pairs of ciphertexts. The
IND-CPA game encodes this fact by letting the adversary chose two messages, en-
crypting one of them, and making him guess which one was encrypted. In this case,
the event that makes the adversary win is that he correctly guesses which of his
plaintexts was encrypted. In a full sequence of games, we would start with this
game and apply transformations over it trying to preserve the probability of that
event (the adversary winning) constant. The final game would hopefully be one in
which the calls

2.4. Verification: EasyCrypt

EasyCrypt allows the encoding and verification of game-based proofs, but it has
different languages to perform different tasks:

1KG and E are the key generation and encryption functions provided by the encryption algorithm,
respectively, and A1 is the encoding of the adversary
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2.4.1. Specification languages

This are the languages EasyCrypt uses to declare and define types, functions, ax-
ioms, games, oracles, adversaries and other entities involved in the proofs.

Expressions

The main specification language of EasyCrypt is the expression language, in which
types are defined together with operators that can be applied to them (or be
constant). EasyCrypt follows the usual semicolon notation [4] to denote the typing
relationship: «a : T» means “a has type T”. EasyCrypt has a type system supporting
parametric polymorphism: «int list» represents a list of integers.

The operators are functions over types, defined with the keyword «op» (e.g.,
«op even : nat −> bool»). An operator can be applied to some argument by putting
them separated by a space: «even 4». Operators can be abstract, i.e., defined with-
out any actual implementation; with semantics given by the definition of axioms and
lemmas that describe its observational behavior. Operators are also curried, so they
support multiple arguments by returning new functions that consume the next one.
For example, f : (A×B ×C)→ D would be encoded as f : A→ (B → (C → D)),
or, by associativity, f : A→ B → C → D.

In this example (from the current EasyCrypt library) we can see the how actual
types and operators are defined in the EasyCrypt’s expression language:

Code listing 2.1: Lists (expression language)
type ’a list = [
| ”[]”
| (::) of ’a & ’a list ].

op hd: ’a list −> ’a.
axiom hd_cons (x:’a) xs: hd (x::xs) = x.

op map (f:’a −> ’b) (xs:’a list) =
with xs = ”[]” => []
with xs = (::) x xs => (f x)::(map f xs).

The first line defines the «list» type as a sum type with two constructors (cases): the
empty list and the construction of a new list from an existing one and an element
that will appear at its head position. The rest of the code defines operators working
with lists.

9



The next line abstractly defines the operator «hd», together with its type. The
axiom following it partially specifies the behavior of the «hd» when applied to some
list: if the list has the form «x::xs» (element «x» followed by «xs»), the return value
is «x». The other case (empty list) is left unspecified.

The last line defines the «map» operator directly, using pattern matching. This
operator receives a function and a list, and returns the list consisting of the results
of evaluating the function over each element of the list, preserving its order.

Probabilistic expressions Additionally, EasyCrypt defines some standard types
and operators to work with probabilistic expressions. The type «’a distr» represents
discrete sub-distributions over types. The operator «mu» represents the probability
of some event in a sub-distribution:

op mu : ’a distr −> (’a −> bool) −> real

For example, the uniform distribution over booleans is defined in the EasyCrypt’s
standard library as follows:

Code listing 2.3: Uniform distribution over bool
op dbool : bool distr.
axiom mu_def : forall (p : bool −> bool),
mu dbool p =
(1/2) * charfun p true +
(1/2) * charfun p false.

pWhile language

Expression languages are usually not adequate to define games and other data struc-
tures as cryptographic schemes and oracles, due to the stateful nature of sequential
algorithms. That’s why EasyCrypt uses a different language called pWhile [5]
(probabilistic while) to define them:

Grammar 2.1: pWhile language
C ::= skip

| V ← E
| V $← DE
| i f E then C else C
| while E do C
| V ← P(E , ..., E)
| C ; C

10



2.4.2. Proof languages

Judgments

Whenever there is some statement that we want to prove, it must be written as a
judgment in some logic. Apart from the first order logic expressions, EasyCrypt
supports judgments in some logics derived from Hoare logic:

• Hoare Logic (HL). These judgments have the following shape:

c : P =⇒ Q

where P and Q are assertions (predicates) and c is a statement or program. P
is the precondition and Q is the postcondition. The validity of this kind
of Hoare judgment implies that if P holds before the execution of c and it
terminates, then Q must also hold.

• Probabilistic Hoare Logic (pHL). This is the logic resulting from assigning
some probability to the validity of the previously seen Hoare judgments. The
probability can be a number or an upper/lower bound:

[c : P =⇒ Q] ≤ δ

[c : P =⇒ Q] = δ

[c : P =⇒ Q] ≥ δ

• Probabilistic Relational Hoare Logic (pRHL). These have the following shape:

c1 ∼ c2 : Ψ =⇒ Φ

In this case, the pre and postconditions are not standalone predicates, but
relationships between the memories of the two programs c1 and c2. This
judgment means that if the precondition Ψ holds before the execution of c1
and c2, the postcondition Φ will also hold after finishing its execution.

This logic is the most complete and useful when developing game-based reduc-
tion proofs, because it allows to encode each game transition as a judgment.
Twe two games are c1 and c2 respectively, and the pre/postconditions refer to
the probability of the adversary winning the games.

11



Tactics

If the judgment is declared as an axiom, it is taken as a fact and does not need to
be proven. Lemmas, however, will make EasyCrypt enter in “proof mode”, where
it stops reading declarations, takes the current judgment as a goal and and starts
accepting tactics until the current goal is trivially true. Tactics are indications on
what rules EasyCrypt must apply to transform the current goal.

This is a simplified example of proof from the EasyCrypt’s library, where we can see
the tactics applied between the «proof» and «qed» keywords:

Code listing 2.4: Tactics usage
lemma cons_hd_tl :

forall (xs:’a list),
xs <> [] => (hd xs)::(tl xs) = xs.

proof.
intros xs.
elim / list_ind xs.
simplify.
intros x xs’ IH h {h}.
rewrite hd_cons.
rewrite tl_cons.
reflexivity.

qed.

12



3. TERM REWRITING

3.1. Introduction

In computing and programming languages it is common to encounter scenarios where
objects (e.g., code) get transformed gradually for simplification, to perform a com-
putation, etc. The transformations must obey some rules that relate “input” and
“output” objects, that is, how to make the transition from one object to the other.
When we take both the objects and the rules and study them as a whole, the result
is an abstract reduction system [6].

This is a very general framework, but for what this work is concerned, we are
specially interested in reasoning about rewriting of (λ-)terms. In the end we will
want to improve how EasyCrypt is able to reduce terms in its expression language,
so we will start by understanding Lambda Calculus and how it is reduced, because
it is very similar to how EasyCrypt represents its own terms.

3.2. Lambda Calculus

The Lambda Calculus [7] is a formal system developed by Alonzo Church in
the decade of 1930 as part of his research on the foundations of mathematics and
computation (it was later proven to be equivalent to the Turing Machine). In its
essence, the Lambda Calculus is a simple term rewriting system that represents
computation through function application.

Following is the grammar representing λ-terms (lambda-terms, T ):

Grammar 3.2: Lambda Calculus
T ::= x v a r i a b l e

| (λx.T ) a b s t r a c t i o n
| (T1 T2) a p p l i c a t i o n

x ::= v1, v2, v3, ... ( i n f i n i t e v a r i a b l e s a v a i l a b l e )

13



Intuitively, the abstraction rule represents function creation: take an existing term
(T ) and parameterize it with an argument (x). The variable x binds every instance of
the same variable on the body, which we say are bound instances. The application
rule represents function evaluation (T1) with an actual argument (T2).

Seen as a term rewriting system, the Lambda Calculus has some reduction rules
that can be applied over terms in order to perform the computation.

3.2.1. Reduction rules

The most prominent reduction rule in Lambda Calculus is the beta reduction, or
β-reduction. This rule represents function evaluation, and can be outlined in the
following way:

β-red
((λx.T1) T2) 

β
T1[x := T2]

An application with an abstraction in the left-hand side is called a redex, short
for “reducible expression”, because it can be β-reduced following the rule1 . The
semantics of the rule match with the intuition of function application: the result is
the body of the function with the formal parameter replaced by the actual argument.
It has to be noted that even when a term is not a redex, it can contain some other
sub-expression that indeed is; the problem of knowing where to apply each reduction
will be addressed in section 3.4.

The substitution operation T1[x := T2] replaces x by T2 in the body of T1, but we
have to be careful in its definition, because the “obvious/naïve” substitution process
can lead to unexpected results. For example, (λx.y)[y := x] would β-reduce to
(λx.x), which is not the expected result: the new x in the body has been captured
by the argument and the function behavior is now different.

The solution to this problem comes from the intuitive idea that “the exact choice
of names for bound variables is not really important”. The functions (λx.x) and
(λy.y) behave in the same way and thus should be considered equal. The alpha
equivalence (α-equivalence) is the equivalence relationship that expresses this idea
through another rule: the alpha conversion (α-conversion). The basic definition
of this rule is the following:

1The « » symbol means “reduces to”, and « ?
 » is its symmetric and transitive closure (“reduces

in 0 or more steps to”)

14



α-conv
y /∈ T

(λx.T ) 
α

(λy.T [x := y])

So, to correctly apply a β-reduction, we will do capture-avoiding substitutions:
if there is the danger of capturing variables during a substitution, we will first apply
α-conversions to change the problematic variables by fresh ones.

Another equivalence relation over lambda terms is the one defined by the eta con-
version (η-conversion), and follows by the extensional equivalence of functions in
the calculus:

η-conv
x /∈ FV (T )

(λx.T x)!
η
T

In general, we will treat α-equivalent and η-equivalent functions as interchange-
able.

3.3. Normal forms

In abstract rewriting systems, a term a is in normal form whenever it can not
be reduced any further. That is, there does not exist any other term b such that
a b.

When a λ-term has no subexpressions that can be reduced, it is already in normal
form. There are also three additional notions of normal form in Lambda Calculus:

• Weak normal form: λ-terms with form (λx.T ) are not reduced

• Head normal form: λ-terms with form (x T ) are not reduced

• Weak head normal form: neither λ-terms in weak or head normal form are
not reduced

The Lambda Calculus is not normalising, so there is not any guarantee that any
normal form exists for a given term.

15



3.4. Reduction Strategies

When reducing λ-terms, a reduction strategy [8] is also needed to remove the
ambiguity about which sub-expression on a given term should be reduced next.
This is usually an algorithm that given some reducible term (redex), points to the
redex inside it that sould be reduced next.

Each reduction strategy knows when to stop searching based on some normal form
(of the four we’ve already seen).

Two of the most common reduction strategies, and the ones we will be more con-
cerned with in this work, are the following:

• Call-by-name reduces the leftmost outermost redex, unless it is in weak head
normal form. Due to the head normal form, the evaluation is non-strict.

• Call-by-value reduces the leftmost innermost redex, unless it is in weak nor-
mal form. The evaluation is strict.

• Applicative order reduces the leftmost innermost redex, unless it is in nor-
mal form. The evaluation is strict.

The Lambda Calculus has an interesting property called confluence, that means
that whenever some term has more than one possible reduction, there exists another
term to which both branches will converge in the end:

Confluence
a

? b1 a
? b2

∃c.(b1
? c ∧ b2

? c)

What this means is that the reduction order does not really matter unless one of
them leads to non-termination (an infinite chain). Non-strict strategies, such as
call-by-name, helps avoiding non-terminating reductions thanks to its head normal
form (which does not evaluate function arguments until needed).

16



3.5. Abstract Machines

In order to actually implement the reduction over λ-terms, there are some differ-
ent ways with different advantages and drawbacks, the most “extreme” being direct
interpretation of source code and compilation to native instructions of a real ma-
chine.

An intermediate point is simulating an abstract machine to which we can feed a
sequence of instructions (requiring a previous compilation process) or the original
language itself if it is simple enough. This approach is useful because it is more
portable than native code generation while being more efficient than plain interpre-
tation.

There can be different abstracts machine for the same language, differing not only in
their implementation details but in the reduction strategies they implement, so the
output can also be different, with some machines implementing stronger reductions
than others (i.e., to normal form).

In the next part of the thesis we will study and implement two widely-known ab-
stract machines to reduce λ-terms, and improve the EasyCrypt current reduction
machinery by applying the same concepts.
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Part II.

IMPLEMENTATION
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4. KRIVINE MACHINE

To begin our study of the implementation of abstract machines, we will start with
the Krivine Machine. It is a relatively simple and well-known model that will help
us see the steps that we need to take in order to implement a real abstract machine.
We will be using the OCaml language from now on (not only in this section but
also in the next ones), and while snippets of code will be presented to illustrate the
concepts, the full code is available in the annex 8.1 for reference.

The Krivine Machine [9] is an implementation of the weak-head call-by-name reduc-
tion strategy for pure lambda terms. What that means is that:

• The Krivine Machine reduces pure (untyped) terms in the Lambda Calculus

• The reduction strategy it implements is call-by-name, reducing first the left-
most outermost term in the formula

• It stops reducing whenever the formula is in weak-head normal form, that is:

– does not further reduce abstractions: (λx.T )

– does not reduce arguments before substitution (x T )

4.1. Target language

The first thing we need to have is an encoding of the language we will be reducing,
in this case the Lambda Calculus. We will define a module, Lambda, containing
the data structure and basic operations over it:
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type symbol = string * int
let show_symbol (s, _) = s

module Lambda = struct
type t = Var of symbol | App of t * t | Abs of symbol * t
let rec show = match m with

| Var x -> show_symbol x
| App (m1, m2) -> "(" ^ show m1 ^ " " ^ show m2 ^ ")"
| Abs (x, m) -> "(λ" ^ show_symbol x ^ "." ^ show m ^ ")"

end

(From now on, the auxiliar (e.g., pretty-printing) functions will be ommited for
brevity.)

The module Lambda encodes the pure Lambda Calculus with its main type «t» 1.
Variables are just symbols (strings tagged with an integer so that they’re unique),
Applications are pairs of terms and Abstractions are pairs of symbols (the binding
variable) and terms (the body). As the Krivine Machine usually works with expres-
sions in de Bruijn notation2, we’ll need to write an algorithm to do the conversion
of variables. To be sure we do not accidentally build terms mixing the two notatios,
we’ll create another module, DBILambda, with a different data type to represent
them:

let rec find_idx_exn x = function
| [] -> raise Not_found
| (y::ys) -> if x = y then 0 else 1 + find_idx_exn x ys

module DBILambda = struct
type dbi_symbol = int * symbol
type t = Var of dbi_symbol | App of t * t | Abs of symbol * t

let dbi dbis x = (find_idx_exn x dbis, x)

let of_lambda =
let rec of_lambda dbis = function
| Lambda.Var x -> let (n, x) = dbi dbis x in Var (n, x)
| Lambda.App (m1, m2) -> App (of_lambda dbis m1, of_lambda dbis m2)
| Lambda.Abs (x, m) -> Abs (x, of_lambda (x :: dbis) m)

in of_lambda []
end

The new variables, of type «dbi_symbol», store the de Bruijn number together
with the previous value of the symbol, to help debugging and pretty-printing. The
function «of_lambda» accepts traditional lambda terms (Lambda.t) and returns
its representation as a term using de Bruijn notation (DBILambda.t). Now we are
ready to implement the actual reduction.

1Naming the main type of a module «t» is an idiom when using modules in OCaml
2The de Bruijn’s notation gets rid of variable names by replacing them by the number of “lambdas”

between it and the lambda that is binding the variable. For example, (λx.(λy.(x y))) will be
written in de Bruijn notation as (λ.(λ.(1 0)))
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4.2. Reduction

The Krivine Machine has a state (C, S, E) consisting on the code it is evaluating
(C), an auxiliar stack (S) and the current environment (E). The code is just
the current Lambda expression, the stack holds closures (not yet evaluated code
+ the environment at the time the closure was created), and an environment that
associates variables (de Bruijn indices) to values (closures).

The typical description of the Krivine Machine [10] is given by the following set of
rules:

(MN, S, E)  (M, (N, E) :: S, E)

(λM, N :: S, E)  (M, S, N :: E)

(i + 1, S, N :: E)  (i, S, E)

(0, S, (M, E1) :: E2)  (M, S, E1)

In the previous diagram, S and E are both described as lists, with the syntax (H
:: T) meaning “list whose head is H and tail is T”. The stack S is a list of closures
that implements the push/pop operations over its head. The environment is a list
whose i-th position stores the variable with de Bruijn index i.

• In the first rule, to evaluate an application MN , the machine builds a closure
from the argument N and the current environment E, pushes it into the stack,
and keeps on reducing the function M .

• To reduce an abstraction λM , the top of the stack is moved to the environment
and proceeds with the reduction of the body M . What this means is that the
last closure in the stack (the function argument) is now going to be the variable
in position (de Bruijn index) 0.

• The last two rules rearch through the environment to find the closure corre-
sponding to the current variable. Once it is found, the closure’s code M and
environment E1 replace the current ones.
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From this specification we can write a third module, KM, to define the data struc-
tures (state, closure, stack) and implement the symbolic reduction rules of the Kriv-
ine Machine:

module KM = struct
open DBILambda

type st_elm = Clos of DBILambda.t * stack
and stack = st_elm list

type state = DBILambda.t * stack * stack

let reduce m =
let rec reduce (st : state) : DBILambda.t =
match st with
(* Pure lambda calculus *)
| (Var (0, _), s, Clos (m, e') :: e) -> reduce (m, s, e')
| (Var (n, x), s, _ :: e) -> reduce (Var (n-1, x), s, e)
| (App (m1, m2), s, e) -> reduce (m1, Clos (m2, e) :: s, e)
| (Abs (_, m), c :: s, e) -> reduce (m, s, c :: e)
(* Termination checks *)
| (m, [], []) -> m
| (_, _, _) -> m in

reduce (m, [], [])
end

At this point, we have a working implementation of the Krivine Machine and can
execute some tests to see that everything works as expected. We’ll write some
example λ-terms:

let ex_m1 = (* (λx.((λy.y) x)) *)
let x = symbol "x" in
let y = symbol "y" in
Abs (x, App (Abs (y, Var y), Var x))

let ex_m2 = (* (((λx.(λy.(y x))) (λz.z)) (λy.y)) *)
let x = symbol "x" in
let y = symbol "y" in
let z = symbol "z" in
App (App (Abs (x, Abs (y, App (Var y, Var x))), Abs (z, Var z)), Abs (y, Var y))

And lastly, a helper function that accepts a λ-term, translates it to de Bruijn nota-
tion and reduces it, outputting the results:

let dbi_and_red m =
let dbi_m = DBILambda.of_lambda m in
print_endline ("# Lambda term:\n " ^ DBILambda.show dbi_m);
let red_m = KM.reduce dbi_m in
print_endline ("# Reduced term:\n " ^ DBILambda.show red_m);
print_endline "-----------------------------------------------\n"
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The results:

ocaml> List.iter dbi_and_red [ex_m1; ex_m2];;

# Lambda term:
(λx.((λy.y) x))

# Reduced term:
(λx.((λy.y) x))

----------------------------------------------------------

# Lambda term:
(((λx.(λy.(y x))) (λz.z)) (λy.y))

# Reduced term:
(λz.z)

----------------------------------------------------------

As we can see, the first term is not reduced because it is already in weak head normal
form (abstraction). The second term reduces as we would expect. As a sidenote, we
can easily tweak the DBILambda module to show the real de Bruijn variables:

ocaml> List.iter dbi_and_red [ex_m1; ex_m2];;

# Lambda term:
(λ.((λ.0) 0))

# Reduced term:
(λ.((λ.0) 0))

----------------------------------------------------------

# Lambda term:
(((λ.(λ.(0 1))) (λ.0)) (λ.0))

# Reduced term:
(λ.0)

----------------------------------------------------------

4.3. Extended version

Now that we have a working Krivine Machine over basic Lambda Terms, we want
to extend it to work with some extensions: case expressions and fixpoints.
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4.3.1. Case expressions

First, we will need to extend our definition of the Lambda Calculus to support con-
structors and case expressions, both in Lambda and DBILambda. Constructors are
just atomic symbols, optionally parameterized by some arguments, used to encode
arbitrary data. Case expressions are used to “destructure” constructors and extract
the value of their parameters:

module Lambda = struct
type t = Var of symbol | App of t * t | Abs of symbol * t

(* constructors / case expressions *)
| Constr of t constr
| Case of t * (symbol constr * t) list

and 'a constr = symbol * 'a list

(* ... *)
end

module DBILambda = struct
type t = Var of dbi_symbol | App of t * t | Abs of symbol * t

(* constructors / case expressions *)
| Constr of t constr
| Case of t * (symbol constr * t) list

and 'a constr = symbol * 'a list

let of_lambda =
let rec of_lambda dbis = function
(* ... *)
| Lambda.Constr (x, ms) -> Constr (x, List.map (of_lambda dbis) ms)
| Lambda.Case (m, bs) -> Case (of_lambda dbis m,

List.map (trans_br dbis) bs)
in of_lambda []

(* ... *)
end

The basic approach to implement the reduction will be the same as when reduc-
ing applications in λ-terms: when encountering a case expression, create a custom
closure “CaseCont” containing the branches and push it into the stack. When a
constructor is encountered, if there is a CaseCont closure in the stack, the machine
will iterate over the branches in the closure until it finds one whose symbol matches
with the constructor, and evaluate the body:
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module KM = struct
(* ... *)
type st_elm = Clos of DBILambda.t * stack

(* Specific closure for case expressions *)
| CaseCont of (symbol DBILambda.constr * DBILambda.t) list * stack

let reduce m =
let rec reduce (st : state) : DBILambda.t =
match st with
(* ... *)
(* Case expressions (+ constructors) *)
| (Case (m, bs), s, e) -> reduce (m, CaseCont (bs, e) :: s, e)
| (Constr (x, ms), CaseCont (((x', args), m) :: bs, e') :: s, e)

when x == x' && List.length ms == List.length args ->
reduce (List.fold_left (fun m x -> Abs (x, m)) m args,

map_rev (fun m -> Clos (m, e)) ms @ s, e')
| (Constr (x, ms), CaseCont (_ :: bs, e') :: s, e) ->

reduce (Constr (x, ms), CaseCont (bs, e') :: s, e)
| (Constr (x, ms), s, e) ->

Constr (x, List.map (fun m -> reduce (m, s, e)) ms)
reduce (m, [], [])

end

Note that te last rule reduces the terms inside a constructor even when it is not
being pattern matched. It can be deleted to more closely resemble a weak-head
normal form behavior.

With this new functionality we can encode Peano arithmetic by using the construc-
tors «z» and «s», and try some examples of pattern matching:

(* Peano arithmetic helpers *)
let z = symbol "z"
let s = symbol "s"

let rec peano_add n x =
if n == 0 then x else peano_add (n-1) (Constr (s, [x]))

let peano_of_int ?(base=Constr (z, [])) n = peano_add n base
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# Lambda term:
((λc.(case c of (Some(x) → x)

(None() → c)))
Some(s(z())))

# Reduced term:
s(z())

----------------------------------------------------------

# Lambda term:
((λc.(case c of (triple(x,y,z) → y)))
triple(s(z()), s(s(z())), s(s(s(z())))))

# Reduced term:
s(s(z()))

----------------------------------------------------------

4.3.2. Fixpoints

The second extension we are going to implement in our Krivine Machine is the
ability to support fixpoints, that is, recursion. Again, we extend the data structures
of the Lambda Calculus. As the extension to DBILambda follows trivially, we will
omit it here:

module Lambda = struct
type t = Var of symbol | App of t * t | Abs of symbol * t

| Constr of t constr
| Case of t * (symbol constr * t) list
(* fixpoints *)
| Fix of symbol * t

(* ... *)
end

The “Fix” constructor is parameterized by a symbol and another lambda term. The
symbol is the name of the fixpoint, and will expand to itself when referenced inside
the term. Let’s see an example:

fix(λf.λc. case c of (s(x) → s(s(f x)))
(z → z))

s(s(s(z)))

Here, the name of the fixpoint is «f», and is an implicitly-passed argument that
references to the term itself («fix(...)»). So, in this case, «f» will be bound to
«fix(λf. λc. case c of ... )» and «c» will be bound to «s(s(s(z)))» initially.
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The reduction itself is simpler than the previous case:

module KM = struct
(* ... *)
type st_elm = Clos of DBILambda.t * stack

| CaseCont of (symbol DBILambda.constr * DBILambda.t) list * stack
(* Specific closure for fixpoints *)
| FixClos of symbol * DBILambda.t * stack

let reduce m =
let rec reduce (st : state) : DBILambda.t =
match st with
(* ... *)
(* Fixpoints *)
| (Var (0, _), s, FixClos (f, m, e') :: e) ->

reduce (m, s, FixClos (f, m, e') :: e')
| (Fix (x, m), s, e) -> reduce (m, s, FixClos (x, m, e) :: e)

reduce (m, [], [])
end

Again, here we create a new closure when reducing the Fix constructor. Then,
whenever some variable refers to a fixpoint closure, the result is its body, with the
side effect of keeping the closure it in the environment (so that it is automatically
bound to the first argument «f» of itself).

The fixpoint tests:

# Lambda term:
(fix(λf.(λc.(case c of (s(x) → s(s((f x))))

(z() → z()))))
s(s(s(z()))))

# Reduced term:
s(s(s(s(s(s(z()))))))

----------------------------------------------------------

# Lambda term:
((fix(λf.(λg.(λc.(case c of (s(x) → (g ((f g) x)))

(z() → z())))))
(λy.s(s(s(y)))))

s(s(s(z()))))
# Reduced term:

s(s(s(s(s(s(s(s(s(z())))))))))
----------------------------------------------------------

The first test is the example we have previously seen; the fixpoint receives a number
in Peano notation and multiplies it by two by iterating over its structure. The
second one generalizes it by accepting a function «g» that is applied once for each
iteration over the number: in this case, «g» adds 3 to its argument, so the whole
term is a “by 3” multiplier.
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5. ZAM

The ZAM (ZINC Abstract Machine) [11] is a call-by-value variant of the Krivine
Machine, and currently powers the bytecode interpreter of the Caml Light and
OCaml languages. We will implement the version introduced in [12] as a previous
step before tackling the implementation of EasyCrypt’s new reduction machinery.
Again, the full code is available in the annex 8.2.

As with the Krivine Machine before, it will be able to handle extended λ-terms
with case expressions and fixpoints, but this time the machine will interpret actual
abstract code instead of implementing symbolic reduction, so we will need an extra
step to compile the the λ-terms to machine code. Also, we will skip the progressive
exposition of the basic and extended machine, as it has already been done in the
previous section, and just implement the final version. To finish, we will show how
to use it to archieve strong reduction.

5.1. Target language

As the reference work [12] aimed to improve the performance of strong reduction in
proof assistants, this version of the ZAM works over type-erased terms of the Cal-
culus of Constructions [13], adding inductive types (for our purposes, equivalent
to the previously implemented algebraic data types) and fixpoints.

For this task, we will define a module called CCLambda with a type encoding the
terms of our language:

module CCLambda = struct
type t = Var of symbol | App of t * t | Abs of symbol * t

| Constr of t constr | Case of t * (symbol constr * t) list
| Fix of symbol * symbol list * symbol * t

and 'a constr = symbol * 'a list

(* ... *)
end

The only difference we can see here with respect to the encoding of terms in the
K-Machine (section 4.1) is the more elaborate fixpoints. Even though our λ-terms
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are not typed, the Calculus of Constructions’ fixpoints need an argument (“guard”)
to structurally to the recursion and prevent infinite unrolling. We will represent
fixpoints as «Fix (f, xs, c, m)», where «f» is the symbol (bound in «m») referring to
the fixpoint itself, «xs» is the argument list, «c» is the guard (a constructor), and
«m» is the λ-term.

5.2. Compilation

Unlike the previous implementation, in this case we are going to implement a more
efficient version. Instead of symbolically evaluating the λ-terms we need an extra
step to compile them to some intermediate code Now we need to be able to com-
pile λ-terms to instructions targeting the ZAM runtime, which will do the actual
reduction.

This is the type encoding the machine instructions:

module WeakRed = struct
open CCLambda

type dbi = symbol * int
type instr =
| ACCESS of dbi
| CLOSURE of instrs
| ACCLOSURE of symbol
| PUSHRETADDR of instrs
| APPLY of int
| GRAB of symbol
| RETURN
| MAKEBLOCK of symbol * int
| SWITCH of (symbol constr * instrs) list
| CLOSUREREC of (symbol * symbol list * symbol) * instrs
| GRABREC of symbol

and instrs = instr list
and mval =
| Cons of mval constr
| Clos of instrs * env
| Ret of instrs * env * int

and env = mval list
and stack = mval list
and state = {

st_c : instrs;
st_e : env;
st_s : stack;
st_n : int;

}

(* ... *)
end

The «WeakRed.compile» function in the code does the actual work of translating
λ-terms to a sequence of instructions.
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5.3. Reduction

The figure 5.1 details the reduction rules. The implementation is straightforward
(although contrived) and follows the same structure as the Krivine Machine. I refer
the reader to the annex in order to see how this rules are actually encoded in our
program.

Figure 5.1.: ZAM reduction rules (from [12])
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At this point, we can try some code examples to see the results:

WEAK REDUCTION TEST
Lambda term:

((λx.x) (λy.(((λz.z) y) (λt.t))))
Reduced term:

(λy.(((λz.z) y) (λt.t)))
----------------------------------------------------------

WEAK REDUCTION TEST
Lambda term:

(((λf.(λx.(f (f x)))) (λy.y)) (λz.z))
Reduced term:

(λz.z)
----------------------------------------------------------

WEAK REDUCTION TEST
Lambda term:

((λc.(case c of (Cons(x,xs) → x)
(Nil() → Nil())))

Cons((λm.m), Nil()))
Reduced term:

(λm.m)
----------------------------------------------------------

WEAK REDUCTION TEST
Lambda term:

(fix_0(λf.λc. (case c of (s(x) → s(s((f x))))
(z() → z())))

s(s(s(z()))))
Reduced term:

s(s(s(s(s(s(z()))))))
----------------------------------------------------------
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5.4. Strong reduction

Once we have the machinery to perform call-by-value reduction (that is, until it
reaches a weak normal form) we can use a callback procedure to apply it repeatedly
and archieve strong normalization. The actual implementation is in the module
«StrongRed» (annex 8.2).

The most interesting detail about using the readback procedure is the need to sup-
port accumulators as another case of λ-terms. Accumulators are just terms that
cannot get reduced, and are self-propagating: whenever a function is applied to an
accumulator, the result is an accumulator containing the application of the function
to the previous accumulator. The callback procedure needs it in order to reach the
previously-unreachable terms inside an abstraction. Here are the modifications to
the data structures:
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module CCLambda = struct
type t = Var of symbol | App of t * t | Abs of symbol * t

| Constr of t constr | Case of t * (symbol constr * t) list
| Fix of symbol * symbol list * symbol * t
| Acc of t (* Accumulators *)

and 'a constr = symbol * 'a list

(* ... *)
end

module WeakRed = struct
open CCLambda

type dbi = symbol * int
type instr =
| ACCESS of dbi
| CLOSURE of instrs
| ACCLOSURE of symbol
| PUSHRETADDR of instrs
| APPLY of int
| GRAB of symbol
| RETURN
| MAKEBLOCK of symbol * int
| SWITCH of (symbol constr * instrs) list
| CLOSUREREC of (symbol * symbol list * symbol) * instrs
| GRABREC of symbol

and instrs = instr list
and accum =
| NoVar of symbol
| NoApp of accum * mval list
| NoCase of accum * instrs * env
| NoFix of accum * instrs * env

and mval =
| Accu of accum
| Cons of mval constr
| Clos of instrs * env
| Ret of instrs * env * int

and env = mval list
and stack = mval list
and state = {

st_c : instrs;
st_e : env;
st_s : stack;
st_n : int;

}

(* ... *)
end
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And we pass the tests again:

STRONG REDUCTION TEST
Lambda term:

((λx.x) (λy.(((λz.z) y) (λt.t))))
Reduced term:

(λy.(y (λt.t)))
----------------------------------------------------------

STRONG REDUCTION TEST
Lambda term:

(((λf.(λx.(f (f x)))) (λy.y)) (λz.z))
Reduced term:

(λz.z)
----------------------------------------------------------

STRONG REDUCTION TEST
Lambda term:

((λc.(case c of (Cons(x,xs) → x)
(Nil() → Nil())))

Cons((λm.m), Nil()))
Reduced term:

(λm.m)
----------------------------------------------------------

STRONG REDUCTION TEST
Lambda term:

(fix_0(λf.λc. (case c of (s(x) → s(s((f x))))
(z() → z())))

s(s(s(z()))))
Reduced term:

s(s(s(s(s(s(z()))))))
----------------------------------------------------------

As we were expecting, the first term is now strongly reduced to normal form.
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6. REDUCTION IN EASYCRYPT

The current approach that EasyCrypt uses to reduce terms is the iteration over
the formula and application of ad-hoc transformations based on the information
provided by its type and global state.

To archieve strong reduction, EasyCrypt uses a similar “read-back” protocol to the
one we’ve already seen in the ZAM: repeatedly application of a function that iterates
the current formula and tries to reduce it in a call-by-value fashion. When there is
no other expression to be reduced, the read-back procedure stops and the normalized
formula is returned.

6.1. Target language

Each formula is composed by some metadata (type, free variables, unique tag) to-
gether with a node that holds the actual structure of the term:

type f_node =
| Fquant of quantif * bindings * form
| Fif of form * form * form
| Flet of lpattern * form * form
| Fint of BI.zint
| Flocal of EcIdent.t
| Fpvar of EcTypes.prog_var * memory
| Fglob of EcPath.mpath * memory
| Fop of EcPath.path * ty list
| Fapp of form * form list
| Ftuple of form list
| Fproj of form * int
| FhoareF of hoareF
| FhoareS of hoareS
| FbdHoareF of bdHoareF
| FbdHoareS of bdHoareS
| FequivF of equivF
| FequivS of equivS
| FeagerF of eagerF
| Fpr of pr

As there are so much types and corner cases, we will briefly explain what are the
most important constructors and what are they for:
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• FQuant: They serve both as universal/existential quantifiers (forall / exists)
and lambda abstractions, depending on the value of the «quantif» parameter
(Lforall, Lexists, Llambda, respectively).

• Fif: Conditionals.

• Fint: Literal integers.

• Flocal: Local variables.

• Fop: Operators: as explained in the introduction (section 2.4.1). The actual
code must be obtained by resolving its path.

• Fapp: Function application (to multiple arguments).

6.2. Reduction rules

As the term language of EasyCrypt is more complex than standard Lambda Calcu-
lus, it has some reduction rules we have not seen befone:

• δ-reduction (delta): used to unfold global definitions. Affects operators («Fop»).

• ζ-reduction (zeta): used to unfold a let expression in its body. Affects let
expressions («Flet»).

• ι-reduction (iota): used to unfold a case expression. Affects conditionals
(«Fif»), operators («Fop»).

• Logical reduction: used to evaluate logic expressions (And, Or, ...). Affects
operators («Fop»).

A structure containing information about which of this reductions must be done is
passed to every reduction procedure:

type reduction_info = {
beta : bool;
delta_p : (path -> bool);
delta_h : (ident -> bool);
zeta : bool;
iota : bool;
logic : bool;

}
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6.3. Reduction

The reduction machinery is implemented in an EasyCrypt module called EcRe-
duction. The main entry point is the function «h_red», which accepts the target
formula and a «reduction_info» structure (see previous section) and returns the
reduced formula according to it. An important point is that «h_red» only reduces
until weak normal form, and there is another callback procedure that calls it
repeatedly as we’ve already seen with the ZAM machine. So, we need to take that
function and replace it with a ZAM-like machine to do only the weak reduction.

This is a short fragment of the «h_red» function:

let rec h_red_old ri env hyps f =
match f.f_node with
(* β-reduction *)

| Fapp ({ f_node = Fquant (Llambda, _, _)}, _) when ri.beta ->
f_betared f

(* ζ-reduction *)
| Flocal x -> reduce_local ri hyps x

(* ζ-reduction *)
| Fapp ({ f_node = Flocal x }, args) ->

f_app_simpl (reduce_local ri hyps x) args f.f_ty

(* ... *)

Although it is actually a pretty long function (around 220 lines of code), the structure
is simple: a pattern matching over the structure of the current formula. We will
start by defining the state of the new abstract machine and replacing the pattern
matching by a recursive function over an initial state:

type st_elm =
| Clos of form * menv
| ClosCont of bindings
| IfCont of form * form

and stack = st_elm list
and menv = (EcIdent.t, form) Hashtbl.t

let rec h_red ri env hyps f =
let iter st =
match (st : EcFol.form * stack * menv) with

(* β-red *)
| ({ f_node = Fapp (f, fs) }, s, e) when ri.beta ->

iter (f, List.map (fun f -> Clos (f, e)) fs @ s, e)

in
iter (f, [], Hashtbl.create 100)

As we can see, the first block is very similar to what we did with the ZAM: define
a stack, the types of the closures and an environment (for efficiency, this time it is
implemented as a hash map from variables «EcIdent.t» to formulas).
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The new «h_red» function creates an initial state composed by the formula to be
reduced, an empty stack and an empty environment, and begins the reduction by
evaluating the auxiliar «iter» function in a tail-recursive manner. In this example
it is included the evaluation of an application: iterate over the arguments, putting
in the stack a new closure for every one of them.

Here we have the new code that performs the full β-reduction:

let rec h_red ri env hyps f =
let iter st =
match (st : EcFol.form * stack * menv) with

(* β-red *)
| ({ f_node = Fapp (f, fs) }, s, e) when ri.beta ->

iter (f, List.map (fun f -> Clos (f, e)) fs @ s, e)
| ({ f_node = Fquant (Llambda, [], f) }, s, e) ->

iter (f, s, e)
| ({ f_node = Fquant (Llambda, (x,_)::bds, f) }, Clos (cf, _) :: s, e) ->

let e' = Hashtbl.copy e in
Hashtbl.add e' x cf;
iter (f_quant Llambda bds f, s, e')

(* ... *)

The second and third cases handle the evaluation of a λ-abstraction: if it has no
arguments, just keep going with the function body; if there are arguments and a
function closure is present in the stack, bind the function to the closure in the envi-
ronment and evaluate the function body with one parameter less. (The «f_quant»
and «f_lambda» functions are just helpers to build formulas)

In order to do some of the other reductions, as they have nothing to do with the
abstract machine but with global state, we simply have to call standard EasyCrypt’s
functions. For example, to δ-reduce operators and resolve local variables:

let rec h_red ri env hyps f =
let iter st =
match (st : EcFol.form * stack * menv) with
(* ... *)

| ({ f_node = Fop (p, tys) }, s, e) when ri.delta_p p ->
iter (reduce_op ri env p tys, s, e)

| ({ f_node = Flocal x }, s, e) -> let f' = if Hashtbl.mem e x
then Hashtbl.find e x
else reduce_local ri hyps x in

iter (f', s, e)

(* ... *)
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Once we are done replacing one by one the standard EasyCrypt operations by tran-
sitions in the abstract machine, we can see that it works (the formula being reduced
appears in the upper right of the screen):

Figure 6.1.: After entering proof mode

Figure 6.2.: Reduced ((λx.x + x) 5) 
β

10
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Figure 6.3.: The proof is finished (“no more goals” at bottom right)
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Part III.

EPILOGUE
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7. CONCLUSIONS

In this work we began by exposing the need to verify cryptographic protocols and the
role that the EasyCrypt framework plays in the field. Then we moved on to abstract
rewriting systems and how the current machinery that EasyCrypt uses to reduce
its formulas could be improved. In order to do that, we implemented two abstract
machines with multiple variations (extended lambda terms, strong reduction) and
exposed the differences between them: evaluation strategies, symbolic evaluation,
bytecode compilation, and so on. Lastly, we continued to the source language and
current inner workings of EasyCrypt and proceeded to replace it in a way that
closely resembles the work previously done with the abstract machines.

In my opinion, the development of this thesis has resulted in two main contributions
belonging to different scopes.

The first one is, obviously, the technical improvement of an existing tool. Although
it is not a contribution on features, but the replacing of an existing module for an
improved one, we believe it is an important step that had to be taken in order to
be able to further expand the system in the future.

The second contribution is the insight given by the actual implementation of two
different abstract machines. While none of these by itself was really needed for the
task of replacing the EasyCrypt’s engine, the research needed to understand the
concepts of the abstract machines and correctly implement them has proven crucial
when facing a complex system such as EasyCrypt. It might prove to be valuable to
some of the interested readers as well, as having the source code of both the abstract
machines is a nice way to experiment and compare their behaviors.

Of course, this work can be improved in many ways. The engine is still evaluating
code symbolically, which is slower than producing instructions (bytecode) for the
machine to evaluate. Some EasyCrypt features make this a feature not trivial to
implement (i.e., it would need to decompile bytecode to recover the original terms),
but worth keeping it in mind as a possibility for future work.
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8. ANNEX

8.1. Krivine Machine source code

1 (*********************************************)
2 (* (Extended) Krivine Machine implementation *)
3 (* *)
4 (* Guillermo Ramos Gutiérrez (2015) *)
5 (*********************************************)
6
7
8 (*********)
9 (* Utils *)

10 (*********)
11 let print_with f x = print_endline (f x)
12 let concat_with sep f xs = String.concat sep (List.map f xs)
13
14 let rec find_idx_exn x = function
15 | [] -> raise Not_found
16 | (y::ys) -> if x = y then 0 else 1 + find_idx_exn x ys
17
18 let rec map_rev f xs =
19 let rec iter acc = function
20 | [] -> acc
21 | (x::xs) -> iter (f x :: acc) xs in
22 iter [] xs
23
24 type symbol = string * int
25 let show_symbol (s, _) = s
26 let symbol : string -> symbol =
27 let id = ref 0 in
28 let gensym c : symbol =
29 let newid = !id in
30 id := !id + 1;
31 (c, newid)
32 in
33 gensym
34
35
36 (**************************************)
37 (* (Extended) Untyped Lambda Calculus *)
38 (**************************************)
39 module Lambda = struct
40 type t = Var of symbol | App of t * t | Abs of symbol * t
41 | If of t * t * t | True | False
42 | Constr of t constr | Case of t * (symbol constr * t) list
43 | Fix of symbol * t
44 and 'a constr = symbol * 'a list
45
46 let rec show m =
47 let show_branch ((x, args), m) =
48 "(" ^ show_symbol x ^ "(" ^ concat_with "," show_symbol args ^ ") → "
49 ^ show m ^ ")" in
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50 match m with
51 | Var x -> show_symbol x
52 | App (m1, m2) -> "(" ^ show m1 ^ " " ^ show m2 ^ ")"
53 | Abs (x, m) -> "(λ" ^ show_symbol x ^ "." ^ show m ^ ")"
54 | If (m1, m2, m3) -> "if " ^ show m1
55 ^ " then " ^ show m2
56 ^ " else " ^ show m3
57 | True -> "True" | False -> "False"
58 | Constr (x, ms) -> show_symbol x ^ "(" ^ concat_with ", " show ms ^ ")"
59 | Case (m, bs) -> "(case " ^ show m ^ " of "
60 ^ concat_with " " show_branch bs ^ ")"
61 | Fix (x, m) -> "fix(λ" ^ show_symbol x ^ "." ^ show m ^ ")"
62 let print = print_with show
63
64 (* Constants *)
65 let none = symbol "None"
66 let some = symbol "Some"
67
68 (* Peano arithmetic helpers *)
69 let z = symbol "z"
70 let s = symbol "s"
71
72 let rec peano_add n x =
73 if n == 0 then x else peano_add (n-1) (Constr (s, [x]))
74
75 let peano_of_int ?(base=Constr (z, [])) n = peano_add n base
76
77 (* Examples *)
78
79 (* (λx.((λy.y) x)) *)
80 let ex_m1 =
81 let x = symbol "x" in
82 let y = symbol "y" in
83 Abs (x, App (Abs (y, Var y), Var x))
84
85 (* (((λx.(λy.(y x))) (λz.z)) (λy.y)) *)
86 let ex_m2 =
87 let x = symbol "x" in
88 let y = symbol "y" in
89 let z = symbol "z" in
90 App (App (Abs (x, Abs (y, App (Var y, Var x))), Abs (z, Var z)), Abs (y, Var y))
91
92 (* (λc. case c of (Some(x) → x) (None → c)) Some(s(z))) *)
93 let ex_case_some =
94 let c = symbol "c" in
95 let x = symbol "x" in
96 App (Abs (c, Case (Var c, [((some, [x]), Var x); ((none, []), Var c)])),
97 Constr (some, [peano_of_int 1]))
98
99 (* (λc. case c of (Triple(x,y,z) → y)) Triple(1,2,3)) *)

100 let ex_case_tuple =
101 let c = symbol "c" in
102 let x = symbol "x" in
103 let y = symbol "y" in
104 let z = symbol "z" in
105 let triple = symbol "triple" in
106 App (Abs (c, Case (Var c, [((triple, [x;y;z]), Var y)])),
107 Constr (triple, List.map peano_of_int [1;2;3]))
108
109 (* fix(λf.λc. case c of (s(x) → s(s(f x))) (z → z)) s(s(s(z))) *)
110 let ex_fixpt_mul2 =
111 let f = symbol "f" in
112 let c = symbol "c" in
113 let x = symbol "x" in
114 App (Fix (f, Abs (c, Case (Var c,
115 [((s, [x]), peano_add 2 (App (Var f, Var x)));
116 ((z, []), peano_of_int 0)]))),
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117 peano_of_int 3)
118
119 (* fix(λf.λg.λc. case c of (s(x) → g (f g x)) (z → z)) (λy.s(s(s(y)))) s(s(s(z))) *)
120 let ex_fix_scale =
121 let f = symbol "f" in
122 let g = symbol "g" in
123 let c = symbol "c" in
124 let x = symbol "x" in
125 let y = symbol "y" in
126 App (App (Fix (f, Abs (g, Abs (c, Case (Var c,
127 [((s, [x]), App (Var g, (App (App (Var f, Var g), Var x))));
128 ((z, []), peano_of_int 0)])))),
129 Abs (y, peano_add 3 (Var y))),
130 peano_of_int 3)
131 end
132
133
134 (**************************************************)
135 (* Untyped lambda calculus with De Bruijn indices *)
136 (**************************************************)
137 module DBILambda = struct
138 type dbi_symbol = int * symbol
139 type t = Var of dbi_symbol | App of t * t | Abs of symbol * t
140 | If of t * t * t | True | False
141 | Constr of t constr | Case of t * (symbol constr * t) list
142 | Fix of symbol * t
143 and 'a constr = symbol * 'a list
144
145 let dbi dbis x = (find_idx_exn x dbis, x)
146
147 let output_dbi = false
148 let show_dbi_symbol (n, x) =
149 if output_dbi then string_of_int n else show_symbol x
150 let show_dbi_param x =
151 if output_dbi then "" else show_symbol x
152
153 let rec show m =
154 match m with
155 | Var x -> show_dbi_symbol x
156 | App (m1, m2) -> "(" ^ show m1 ^ " " ^ show m2 ^ ")"
157 | Abs (x, m) -> "(λ" ^ show_dbi_param x ^ "." ^ show m ^ ")"
158 | If (m1, m2, m3) -> "if " ^ show m1
159 ^ " then " ^ show m2
160 ^ " else " ^ show m3
161 | True -> "True" | False -> "False"
162 | Constr (x, ms) -> show_symbol x ^ "(" ^ concat_with ", " show ms ^ ")"
163 | Case (m, bs) -> "(case " ^ show m ^ " of "
164 ^ concat_with " " show_branch bs ^ ")"
165 | Fix (x, m) -> "fix(λ" ^ show_symbol x ^ "." ^ show m ^ ")"
166 and show_branch ((x, args), m) =
167 "(" ^ show_symbol x ^ "(" ^ concat_with "," show_symbol args ^ ") → "
168 ^ show m ^ ")"
169 let print = print_with show
170
171 let of_lambda =
172 let rec of_lambda dbis = function
173 | Lambda.Var x -> let (n, x) = dbi dbis x in Var (n, x)
174 | Lambda.App (m1, m2) -> App (of_lambda dbis m1, of_lambda dbis m2)
175 | Lambda.Abs (x, m) -> Abs (x, of_lambda (x :: dbis) m)
176 | Lambda.If (m1, m2, m3) -> If (of_lambda dbis m1,
177 of_lambda dbis m2, of_lambda dbis m3)
178 | Lambda.True -> True | Lambda.False -> False
179 | Lambda.Constr (x, ms) -> Constr (x, List.map (of_lambda dbis) ms)
180 | Lambda.Case (m, bs) -> Case (of_lambda dbis m,
181 List.map (trans_br dbis) bs)
182 | Lambda.Fix (x, m) -> Fix (x, of_lambda (x :: dbis) m)
183 and trans_br dbis ((x, args), m) =

45



184 let dbis = List.rev args @ dbis in
185 ((x, args), of_lambda dbis m) in
186 of_lambda []
187 end
188
189
190 (*******************)
191 (* Krivine Machine *)
192 (*******************)
193 module KM = struct
194 open DBILambda
195
196 type st_elm = Clos of DBILambda.t * stack
197 | IfCont of DBILambda.t * DBILambda.t
198 | CaseCont of (symbol DBILambda.constr * DBILambda.t) list * stack
199 | FixClos of symbol * DBILambda.t * stack
200 and stack = st_elm list
201
202 type state = DBILambda.t * stack * stack
203
204 let reduce m =
205 let rec reduce (st : state) : DBILambda.t =
206 match st with
207 (* Pure lambda calculus *)
208 | (Var (0, _), s, Clos (m, e') :: e) -> reduce (m, s, e')
209 | (Var (0, _), s, FixClos (f, m, e') :: e) ->
210 reduce (m, s, FixClos (f, m, e') :: e')
211 | (Var (n, x), s, _ :: e) -> reduce (Var (n-1, x), s, e)
212 | (App (m1, m2), s, e) -> reduce (m1, Clos (m2, e) :: s, e)
213 | (Abs (_, m), c :: s, e) -> reduce (m, s, c :: e)
214 (* Conditionals *)
215 | (If (m1, m2, m3), s, e) -> reduce (m1, IfCont (m2, m3) :: s, e)
216 | (True, IfCont (m2, m3) :: s, e) -> reduce (m2, s, e)
217 | (False, IfCont (m2, m3) :: s, e) -> reduce (m3, s, e)
218 (* Case expressions (+ constructors) *)
219 | (Case (m, bs), s, e) -> reduce (m, CaseCont (bs, e) :: s, e)
220 | (Constr (x, ms), CaseCont (((x', args), m) :: bs, e') :: s, e)
221 when x == x' && List.length ms == List.length args ->
222 reduce (List.fold_left (fun m x -> Abs (x, m)) m args,
223 map_rev (fun m -> Clos (m, e)) ms @ s, e')
224 | (Constr (x, ms), CaseCont (_ :: bs, e') :: s, e) ->
225 reduce (Constr (x, ms), CaseCont (bs, e') :: s, e)
226 | (Constr (x, ms), s, e) ->
227 Constr (x, List.map (fun m -> reduce (m, s, e)) ms)
228 (* Fixpoints *)
229 | (Fix (x, m), s, e) -> reduce (m, s, FixClos (x, m, e) :: e)
230 (* Termination checks *)
231 | (m, [], []) -> m
232 | (_, _, _) -> m in
233 reduce (m, [], [])
234 end
235
236
237 let dbi_and_red m =
238 let dbi_m = DBILambda.of_lambda m in
239 print_endline ("# Lambda term:\n " ^ DBILambda.show dbi_m);
240 let red_m = KM.reduce dbi_m in
241 print_endline ("# Reduced term:\n " ^ DBILambda.show red_m);
242 print_endline "----------------------------------------------------------\n"
243
244 let () =
245 let open Lambda in
246 List.iter dbi_and_red [ex_m1; ex_m2; ex_case_some;
247 ex_case_tuple; ex_fixpt_mul2; ex_fix_scale]
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8.2. ZAM source code

1 (************************************)
2 (* (Extended) ZAM implementation *)
3 (* *)
4 (* Guillermo Ramos Gutiérrez (2015) *)
5 (************************************)
6
7
8 (*********)
9 (* Utils *)

10 (*********)
11 let print_with f x = print_endline (f x)
12 let concat_with sep f xs = String.concat sep (List.map f xs)
13 let split n xs =
14 let rec split_acc n xs ys = match (n, ys) with
15 | (0, _) | (_, []) -> (List.rev xs, ys)
16 | (n, y :: ys) -> split_acc (n-1) (y::xs) ys in
17 split_acc n [] xs
18 let find_idx a =
19 let rec find_acc n = function
20 | [] -> raise Not_found
21 | (x :: xs) -> if a == x then n else find_acc (n+1) xs in
22 find_acc 0
23 let rec repeat n x = if n == 0 then [] else x :: repeat (n-1) x
24 let fold_left1 f = function
25 | [] -> raise (Invalid_argument "empty string")
26 | (x::xs) -> List.fold_left f x xs
27
28 type symbol = string * int
29 let symbol : string -> symbol =
30 let id = ref 0 in
31 let gensym c : symbol =
32 let newid = !id in
33 id := !id + 1;
34 (c, newid)
35 in
36 gensym
37
38 let dbg_lev = 1
39 let debug lev spaces s =
40 if dbg_lev >= lev
41 then print_endline (" -- " ^ String.concat "" (repeat spaces " ") ^ s)
42
43
44 (* Compile, decompile and reduce errors *)
45 exception CpErr of string
46 exception DcErr of string
47 exception RdErr of string
48
49
50 (************************************)
51 (* Calculus of Constructions terms *)
52 (************************************)
53 module CCLambda = struct
54 type t = Var of symbol | App of t * t | Abs of symbol * t
55 | Constr of t constr | Case of t * (symbol constr * t) list
56 | Fix of symbol * symbol list * symbol * t
57 | Acc of t
58 and 'a constr = symbol * 'a list
59
60 let show_symbol (s, n) =
61 if dbg_lev > 2 then s ^ "/" ^ string_of_int n else s
62 let rec show m =
63 let show_branch ((x, vs), m) =
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64 "(" ^ show_symbol x ^ "(" ^ concat_with "," show_symbol vs ^ ") → "
65 ^ show m ^ ")" in
66 match m with
67 | Var x -> show_symbol x
68 | App (m1, m2) -> "(" ^ show m1 ^ " " ^ show m2 ^ ")"
69 | Abs (x, m) -> "(λ" ^ show_symbol x ^ "." ^ show m ^ ")"
70 | Constr (x, ms) -> show_symbol x ^ "(" ^ concat_with ", " show ms ^ ")"
71 | Case (m, bs) -> "(case " ^ show m ^ " of "
72 ^ concat_with " " show_branch bs ^ ")"
73 | Fix (f, xs, c, m) ->
74 "fix_" ^ string_of_int (List.length xs)
75 ^ "(λ" ^ concat_with ".λ" show_symbol (f::xs@[c])
76 ^ ". " ^ show m ^ ")"
77 | Acc m -> "[" ^ show m ^ "]"
78 let print = print_with show
79
80 (* Auxiliar term-generating functions *)
81 let identity s =
82 let x = symbol s in
83 Abs (x, Var x)
84
85 let apps = fold_left1 (fun m n -> App (m, n))
86
87 let none = symbol "None"
88 let some = symbol "Some"
89 let cons = symbol "Cons"
90 let nil = symbol "Nil"
91
92 (* Peano arithmetic helpers *)
93 let z = symbol "z"
94 let s = symbol "s"
95
96 let rec peano_add n x =
97 if n == 0 then x else peano_add (n-1) (Constr (s, [x]))
98
99 let peano_of_int ?(base=Constr (z, [])) n = peano_add n base

100
101 (* Examples *)
102
103 (* (λx.x) (λy. ((λz.z) y) (λt.t) *)
104 let ex_m1 =
105 let y = symbol "y" in
106 App (identity "x",
107 Abs (y, App (App (identity "z",
108 Var y),
109 identity "t")))
110
111 (* (λf.λx. f (f x)) (λy.y) (λz.z) *)
112 let ex_id_id =
113 let f = symbol "f" in
114 let x = symbol "x" in
115 App (App (Abs (f, Abs (x, App (Var f, App (Var f, Var x)))),
116 identity "y"),
117 identity "z")
118
119 (* (λc. case c of (Cons(x, xs) → x) (Nil → Nil)) Cons(λx.x, Nil) *)
120 let ex_case_head =
121 let c = symbol "c" in
122 let x = symbol "x" in
123 let xs = symbol "xs" in
124 App (Abs (c, Case (Var c, [((cons, [x;xs]), Var x);
125 ((nil, []), Constr (nil, []))])),
126 Constr (cons, [identity "m"; Constr (nil, [])]))
127
128 (* fix_0(λf.λc. case c of (s(x) → s(s(f x))) (z → z)) s(s(s(z))) *)
129 let ex_fixpt_dup =
130 let f = symbol "f" in
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131 let c = symbol "c" in
132 let x = symbol "x" in
133 App (Fix (f, [], c, Case (Var c,
134 [((s, [x]), peano_add 2 (App (Var f, Var x)));
135 ((z, []), peano_of_int 0)])),
136 peano_of_int 3)
137 end
138
139 (************************************)
140 (* (Extended) ZAM - Weak Reduction *)
141 (************************************)
142 module WeakRed : sig
143 type instrs
144 type mval
145
146 val show_instrs : instrs -> string
147 val show_mval : mval -> string
148
149 val compile : CCLambda.t -> instrs
150 val decompile : instrs -> CCLambda.t
151
152 val am_reduce : instrs -> mval
153 val extract : mval -> CCLambda.t
154
155 val reduce : CCLambda.t -> CCLambda.t
156 end = struct
157 open CCLambda
158
159 type dbi = symbol * int
160 type instr =
161 | ACCESS of dbi
162 | CLOSURE of instrs
163 | ACCLOSURE of symbol
164 | PUSHRETADDR of instrs
165 | APPLY of int
166 | GRAB of symbol
167 | RETURN
168 | MAKEBLOCK of symbol * int
169 | SWITCH of (symbol constr * instrs) list
170 | CLOSUREREC of (symbol * symbol list * symbol) * instrs
171 | GRABREC of symbol
172 and instrs = instr list
173 and accum =
174 | NoVar of symbol
175 | NoApp of accum * mval list
176 | NoCase of accum * instrs * env
177 | NoFix of accum * instrs * env
178 and mval =
179 | Accu of accum
180 | Cons of mval constr
181 | Clos of instrs * env
182 | Ret of instrs * env * int
183 and env = mval list
184 and stack = mval list
185 and state = {
186 st_c : instrs;
187 st_e : env;
188 st_s : stack;
189 st_n : int;
190 }
191
192 let show_dbi (x, i) =
193 string_of_int i ^
194 if dbg_lev > 2 then " (" ^ show_symbol x ^ ")" else ""
195 let rec show_instr = function
196 | ACCESS dbi -> "ACCESS(" ^ show_dbi dbi ^ ")"
197 | CLOSURE is -> "CLOSURE(" ^ show_instrs is ^ ")"
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198 | ACCLOSURE x -> "ACCLOSURE([" ^ show_symbol x ^ "])"
199 | PUSHRETADDR is -> "PUSHRETADDR(" ^ show_instrs is ^ ")"
200 | APPLY i -> "APPLY(" ^ string_of_int i ^ ")"
201 | GRAB x -> "GRAB(" ^ show_symbol x ^ ")"
202 | RETURN -> "RETURN"
203 | MAKEBLOCK (x, n) -> "MAKEBLOCK(#" ^ show_symbol x ^ ", " ^
204 string_of_int n ^ ")"
205 | SWITCH bs -> "SWITCH(" ^ concat_with ", " show_branch bs ^ ")"
206 | CLOSUREREC (_, is) -> "CLOSUREREC(" ^ show_instrs is ^ ")"
207 | GRABREC x -> "GRABREC(" ^ show_symbol x ^ ")"
208 and show_branch (((c, _), _), is) = c ^ " → " ^ show_instrs is
209 and show_accum = function
210 | NoVar x -> "{NoVar: " ^ show_symbol x ^ "}"
211 | NoApp (k, mvs) -> "{NoApp: " ^ show_accum k ^ ", "
212 ^ concat_with ", " show_mval mvs ^ "}"
213 | NoCase (k, is, e) -> "{NoCase: " ^ show_accum k ^ ", "
214 ^ show_instrs is ^ ", " ^ show_env e ^ "}"
215 | NoFix (k, is, e) -> "{NoFix: " ^ show_accum k ^ ", "
216 ^ show_instrs is ^ ", " ^ show_env e ^ "}"
217 and show_mval mval = match mval with
218 | Accu k -> show_accum k
219 | Cons ((s, _), mvs) ->
220 "{#" ^ s ^ if List.length mvs == 0 then "}"
221 else ": " ^ concat_with ", " show_mval mvs ^ "}"
222 | Clos (is, e) -> "{Tλ: (" ^ show_instrs is ^ "), "
223 ^ (if List.length e > 0 && List.hd e == mval
224 then "{Tλ <fix>}::" ^ show_env (List.tl e)
225 else show_env e)
226 ^ "}"
227 | Ret (is, e, n) -> "{<RET>: (" ^ show_instrs is ^ "), " ^ show_env e ^ ", "
228 ^ string_of_int n ^ "}"
229 and show_env e = "[" ^ concat_with ", " show_mval e ^ "]"
230 and show_instrs is = concat_with "; " show_instr is
231
232 let show_stk stk = "| " ^ concat_with "\n | " show_mval stk
233 let show_st {st_c; st_e; st_s; st_n} =
234 "\n/---------------------------------------------------\n"
235 ^ " C: " ^ show_instrs st_c ^ "\n"
236 ^ " E: " ^ show_env st_e ^ "\n"
237 ^ " S: " ^ show_stk st_s ^ "\n"
238 ^ " N: " ^ string_of_int st_n ^ "\n"
239 ^ "\\---------------------------------------------------"
240
241 let ret = [RETURN]
242
243 let compile (m : CCLambda.t) : instrs =
244 let e = [] in
245 let rec compile' e (is : instrs) m =
246 debug 3 3 ("COMPILING: " ^ show m);
247 debug 3 3 (" IN ENV: " ^ concat_with ", " show_symbol e);
248 match m with
249 | Var x -> begin
250 try ACCESS(x, find_idx x e) :: is
251 with Not_found -> raise (CpErr ("Var " ^ fst x ^ " not found"))
252 end
253 | Abs (x, m) -> CLOSURE(GRAB x :: compile' (x :: e) ret m) :: is
254 | App (m1, m2) -> let cont = compile' e [APPLY(1)] m1 in
255 PUSHRETADDR(is) :: compile' e cont m2
256 | Constr (x, args) -> let f arg cont = compile' e cont arg in
257 let cont = [MAKEBLOCK (x, List.length args)] in
258 List.fold_right f (List.rev args) (cont @ is)
259 | Case (m, bs) ->
260 let compile_branch ((c, args), m) =
261 let dbi' = List.rev args @ e in
262 ((c, args), compile' dbi' ret m) in
263 let bs' = List.map compile_branch bs in
264 PUSHRETADDR(is) :: compile' e [SWITCH(bs')] m
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265 | Fix (f, xs, c, m) ->
266 let cont = compile' (c :: List.rev xs @ f :: e) ret m in
267 CLOSUREREC((f, xs, c),
268 List.map (fun x -> GRAB x) xs @ GRABREC c :: cont) :: is
269 | Acc (Var x) -> ACCLOSURE x :: is
270 | Acc _ -> raise (CpErr "Trying to compile non-var accumulator") in
271 compile' e ret m
272
273 let rec decompile' e s is =
274 debug 3 3 ("DECOMPILING: " ^ show_instrs is);
275 debug 3 3 (" IN ENV: " ^ concat_with ", " CCLambda.show e);
276 debug 3 3 (" IN STK: " ^ concat_with ", " CCLambda.show s);
277 match is with
278 | [] -> List.hd s
279 | [RETURN] -> List.hd s
280 | (ACCESS (_, i) :: is') -> decompile' e (List.nth e i :: s) is'
281 | (CLOSURE c_is :: is') -> decompile' e (decompile' e s c_is :: s) is'
282 | (PUSHRETADDR r_is :: is') -> decompile' e (decompile' e s is' :: s) r_is
283 | (APPLY i :: is) -> begin
284 match (i, s) with
285 | (1, a::b::_) -> App (a, b)
286 | (n, a::s') -> App (a, decompile' e s' [APPLY (n-1)])
287 | _ -> raise (DcErr "Unable to decompile APPLY")
288 end
289 | (GRAB x :: is') -> Abs (x, decompile' (Var x :: e) s is')
290 | (MAKEBLOCK (x, n) :: is') -> let (args, st') = split n s in
291 decompile' e (Constr (x, args) :: s) is'
292 | (SWITCH brs :: is') -> begin
293 let decompile_br ((c, parms), is) =
294 let parms_m = List.map (fun x -> Var x) parms in
295 ((c, parms), decompile' (List.rev parms_m @ e) s is) in
296 match s with
297 | [] -> Case (Var (symbol "_"), List.map decompile_br brs)
298 | (a::s') -> Case (a, List.map decompile_br brs)
299 end
300 | (CLOSUREREC ((f, xs, c), is') :: is) ->
301 let m = decompile' (e) s is' in
302 decompile' e (Fix (f, xs, c, m) :: s) is
303 | (GRABREC x :: is') -> Abs (x, decompile' (Var x :: e) s is')
304 | _ -> raise (DcErr "Unable to decompile (unknown instruction)")
305 let decompile = decompile' [] []
306
307 let rec extract mv =
308 debug 3 3 ("EXTRACTING: " ^ show_mval mv);
309 match mv with
310 | Clos (is, _) -> decompile is
311 | Cons (x, mvs) -> Constr (x, List.map extract mvs)
312 | Accu k ->
313 let rec extract_accu = function
314 | (NoVar x) -> Acc (Var x)
315 | (NoApp (k, mvs)) ->
316 Acc (apps (extract_accu k :: List.map extract mvs))
317 | (NoCase (k, is, e)) -> begin
318 match decompile' (List.map extract e) [] is with
319 | Case (m, bs) ->
320 let accu = extract_accu k in
321 Acc (Case (accu, bs))
322 | _ -> raise (DcErr "Invalid decompilation of CASE accum.")
323 end
324 | (NoFix (k, is, e)) -> begin
325 match decompile' (List.map extract e) [] is with
326 | Fix (f, xs, c, m) ->
327 Acc (Fix (f, xs, c, App (m, extract_accu k)))
328 | _ -> raise (DcErr "Invalid decompilation of fixpt accum.")
329 end in
330 extract_accu k
331 | _ -> raise (DcErr "Unable to extract")
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332
333 let am_reduce is =
334 debug 3 3 ("REDUCING: " ^ show_instrs is);
335 let rec eval st =
336 debug 4 4 (show_st st);
337 let {st_c=c; st_e=e; st_s=s; st_n=n} = st in
338 match c with
339 | [] -> raise (RdErr "Empty code section")
340 | (instr :: c) -> begin
341 match instr with
342 | ACCESS ((x, _), i) -> begin
343 try eval {st with st_c=c; st_s=(List.nth e i :: s)}
344 with Not_found -> raise (RdErr ("Var " ^ x ^ " not found"))
345 end
346 | CLOSURE c' -> eval {st with st_c=c; st_s=(Clos(c', e) :: s)}
347 | ACCLOSURE x -> eval {st with st_c=c; st_s=(Accu(NoVar x) :: s)}
348 | PUSHRETADDR c' -> eval {st with st_c=c; st_s=(Ret(c', e, n) :: s)}
349 | APPLY i -> begin
350 match s with
351 | (Clos (c', e') :: s) ->
352 eval {st_c=c'; st_e=e'; st_s=s; st_n=i}
353 | (Accu k :: s) -> begin
354 let (args, s') = split i s in
355 match s' with
356 | (Ret (c', e', n') :: s'') ->
357 eval {st_c=c'; st_e=e';
358 st_s=(Accu(NoApp(k,args)))::s''; st_n=n'}
359 | _ -> raise (RdErr "APPLY over accu with invalid stack")
360 end
361 | _ -> raise (RdErr "APPLY over non-closure mval")
362 end
363 | GRAB _ -> begin
364 if n == 0 then
365 match s with
366 | (Ret (c', e', n') :: s) ->
367 let clos = Clos (instr :: c, e) in
368 eval {st_c=c'; st_e=e'; st_s=clos::s; st_n=n'}
369 | [] -> Clos (instr :: c, e)
370 | _ -> raise (RdErr "GRAB (n=0) over non-retval")
371 else
372 match s with
373 | (v :: s) -> eval {st_c=c; st_e=v::e; st_s=s; st_n=n-1}
374 | _ -> raise (RdErr "GRAB (n>0) over empty stack")
375 end
376 | RETURN -> begin
377 if n == 0 then
378 match s with
379 | (v :: Ret (c', e', n') :: s) ->
380 eval {st_c=c'; st_e=e'; st_s=v::s; st_n=n'}
381 | [v] -> v
382 | _ -> raise (RdErr "RETURN over empty stack or non-retval")
383 else
384 match s with
385 | (Clos (c', e') :: s) ->
386 eval {st_c=c'; st_e=e'; st_s=s; st_n=n}
387 | _ -> raise (RdErr "RETURN over empty stack or non-retval")
388 end
389 | MAKEBLOCK (x, m) -> let (vs, s') = split m s in
390 eval {st_c=c; st_e=e;
391 st_s=(Cons (x, vs)::s'); st_n=n}
392 | SWITCH bs -> begin
393 match s with
394 | (Cons (x, vs) :: s) ->
395 let (_, c') = try List.find (fun ((y, _), _) -> y == x) bs
396 with Not_found ->
397 raise (RdErr "SWITCH constr id not found") in
398 let e' = List.rev vs @ e in
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399 eval {st_c=c'; st_e=e'; st_s=s; st_n=0}
400 | (Accu k :: s) ->
401 let accu = Accu (NoCase (k, instr :: c, e)) in
402 eval {st_c=ret; st_e=e; st_s=accu::s; st_n=0}
403 | _ -> raise (RdErr "SWITCH over empty stack or non-constr")
404 end
405 | CLOSUREREC (_, c') -> let rec v = Clos (c', v::e) in
406 eval {st with st_c=c; st_s=v::s}
407 | GRABREC _ -> begin
408 match (s, n) with
409 | ([Accu k], 1) -> Accu (NoFix (k, c, e))
410 | (Accu k :: s, n) ->
411 let accu = Accu (NoFix (k, instr :: c, e)) in
412 eval {st_c=ret; st_e=e; st_s=accu::s; st_n=n-1}
413 | (Ret (c', e', n') :: s, n) ->
414 let clos = Clos (instr :: c, e) in
415 eval {st_c=c'; st_e=e'; st_s=clos::s; st_n=n'}
416 | (mval :: s, n) ->
417 eval {st_c=c; st_e=mval::e; st_s=s; st_n=n-1}
418 | ([], 0) -> Clos (instr :: c, e)
419 | _ -> raise (RdErr "GRABREC over empty stack or invalid mval")
420 end
421 end in
422 let st = {st_c = is; st_e = []; st_s = []; st_n = 0} in
423 eval st
424
425 let reduce m = debug 2 1 ("V( " ^ show m ^ " )");
426 match m with
427 | App (m1, m2) -> m |> compile |> am_reduce |> extract
428 | _ -> m
429 end
430
431 (**************************************)
432 (* (Extended) ZAM - Strong Reduction *)
433 (**************************************)
434 module StrongRed = struct
435 open CCLambda
436
437 let rec extract_unique = function
438 | Var x -> x
439 | Acc x -> extract_unique x
440 | _ -> raise (RdErr "Trying to extract invalid value")
441
442 let unique x = symbol (fst x)
443
444 let rec reduce m =
445 debug 2 0 ("N( " ^ show m ^ " )");
446 match m with
447 | Fix (f, xs, c, m) ->
448 let xs' = List.map unique xs in
449 let f' = unique f in
450 let c' = unique c in
451 let accs = List.map (fun x -> Acc (Var x)) (f' :: xs' @ [c']) in
452 let m' = reduce (apps (m :: accs)) in
453 Fix (f', xs', c', m')
454 | _ -> readback (WeakRed.reduce m)
455 and readback m =
456 debug 2 1 ("R( " ^ show m ^ " )");
457 match m with
458 | Abs (x, m) -> let u = unique x in
459 Abs (u, reduce (App (Abs (x, m), Acc (Var u))))
460 | Constr (x, vs) -> Constr (x, List.map readback vs)
461 | Acc k -> readback_acc k
462 | App (Fix (f, xs, c, m), p) ->
463 App (reduce (Fix (f, xs, c, m)), readback p)
464 | _ -> raise (RdErr "Readback of invalid value")
465 and readback_acc m =
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466 debug 2 2 ("R'( " ^ show m ^ " )");
467 match m with
468 | Var x -> Var x
469 | App (k, v) -> App (readback_acc k, readback v)
470 | Acc (Var x) -> Var x
471 | Case (k, bs) -> let x = extract_unique k in
472 let b = Abs (x, Case (Var x, bs)) in
473 let rb_branch ((c, xs), m) =
474 let us = List.map unique xs in
475 let acc_us = List.map (fun x -> Acc (Var x)) us in
476 ((c, us), reduce (App (b, Constr (c, acc_us)))) in
477 Case (readback_acc k, List.map rb_branch bs)
478 | _ -> raise (RdErr "Readback of invalid accumulator")
479 end
480
481 let weakred m =
482 print_endline "WEAK REDUCTION TEST";
483 print_endline ("Lambda term:\n " ^ CCLambda.show m);
484 let compiled = WeakRed.compile m in
485 let reduced = WeakRed.am_reduce compiled in
486 print_endline ("Reduced term:\n " ^ CCLambda.show (WeakRed.extract reduced));
487 print_endline "----------------------------------------------------------\n"
488
489 let strongred m =
490 print_endline "STRONG REDUCTION TEST";
491 print_endline ("Lambda term:\n " ^ CCLambda.show m);
492 print_endline ("Reduced term:\n " ^ CCLambda.show (StrongRed.reduce m));
493 print_endline "----------------------------------------------------------\n"
494
495 let () =
496 let open CCLambda in
497 let examples = [ex_m1; ex_id_id; ex_case_head; ex_fixpt_dup] in
498 List.iter weakred examples;
499 List.iter strongred examples
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