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「無限の彼方へさあ行くぞ!」

—トイ・ストーリー





A B S T R A C T

We consider in this thesis the problem of information reconciliation in
the context of secret key distillation between two legitimate parties.

In some scenarios of interest this problem can be advantageously
solved with low density parity check (LDPC) codes optimized for
the binary symmetric channel. In particular, we demonstrate that our
method leads to a significant efficiency improvement, with respect to
earlier interactive reconciliation methods. We propose a protocol based
on LDPC codes that can be adapted to changes in the communication
channel extending the original source. The efficiency of our protocol is
only limited by the quality of the code and, while transmitting more
information than needed to reconcile Alice’s and Bob’s sequences, it
does not reveal any more information on the original source than an
ad-hoc code would have revealed.

Keywords: information theoretic security, secret key distribution,
private communications, quantum key distribution, information the-
ory, quantum information theory, coding theory, error correcting code,
low density parity check codes, rate adaptation.
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R E S U M E N

En esta tesis estudiamos el problema de la reconciliación de informa-
ción en el contexto de la destilación de secreto entre dos partes.

En algunos escenarios de interés, códigos de baja densidad de
ecuaciones de paridad (LDPC) adaptados al canal binario simétrico
ofrecen una buena solución al problema estudiado. Demostramos que
nuestro método mejora significativamente la eficiencia de la reconcil-
iación. Proponemos un protocolo basado en códigos LDPC que puede
ser adaptado a cambios en el canal de comunicaciones mediante una
extensión de la fuente original. La eficiencia de nuestro protocolo está
limitada exclusivamente por el código utilizado y no revela informa-
ción adicional sobre la fuente original que la que un código con la tasa
de información adaptada habría revelado.

Palabras clave: seguridad informacional, distribución de claves
secretas, distribución cuántica de claves, teoría de la información,
teoría cuántica de la información , teoría de códigos, códigos de
baja densidad de ecuaciones de paridad, adaptación de la tasa de
información.
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Part I

L D P C C O D E S D E S I G N





1
I N T R O D U C T I O N

The key to perfect secrecy [...] is to modify Shannon’s model
such that the enemy cannot receive precisely the same information

as the legitimate receiver.

— Ueli M. Maurer [82]

1.1 motivation

Claude Shannon published his seminal "A mathematical theory of com-
munications" [107] in 1948 after eight years of intermittent work [40].
The paper meant the birth of communications and coding theory.
Shannon did not only establish the frame under which communica-
tions systems could be studied and compared, he also proved their
fundamental limits, i.e. the limiting rates for data compression and
reliable transmission through noisy channels. This second result is
specially surprising because at the time of the publication there was
no certainty that reliable transmission with a positive rate was even
possible [71].

A year later, in 1949, Shannon’s "Communication theory of secrecy
systems" [108] came to light. In words of Robert Gallager "Shannon’s
cryptography work can be viewed as changing cryptography from
an art to a science" [40]. Shannon successfully applied the tools that
he had developed in [107] to the problem of transmitting confidential
messages through public channels. His main conclusion is that a
message from a set of messages sent through a public channel can be
obfuscated into a cypher-text with the help of a secret key in such a
way that the number of possible originating messages is the whole set
of messages, that is, the cypher-text leaks no information to a possible
eavesdropper. The condition for this to happen is that the number
of secret keys is equal or greater than the number of messages. This
condition only applies to eavesdroppers with unbounded resources,
if we limit the storage or computing capability of the eavesdropper
secret communications are possible without fulfilling the condition.
It is evident that computing power resources that today might be
considered as out of reach might become available in the near future.
There is an implicit risk in assuming that an eavesdropper is limited
in any way beyond the fundamental limits that physics impose her,
therefore the interest in establishing the scenarios in which some kind
of security can be achieved without any assumption is self-evident.

The distribution of secret keys or Secret Key Distribution (SKD) is
a problem closely related to confidential communications. Two parties

3



4 introduction

sharing a secret key can communicate privately through a channel in
the conditions discussed in the previous paragraph. We can then study
the problem of secret key sharing as a way to achieve confidential
communications, though shared secret keys have other uses such as
message authentication [126, 114]. The main idea is that two distant
parties can agree in a secret key if they have access to a shared source
of randomness [5]. The randomness source can take many incarnations,
e.g. in the form of a source received from a trusted party or in the form
of a noisy channel [5, 82]. It should be stressed that these mathematical
models can have a real, i.e. physical correspondence. One such a model
is a physical fiber carrying single photons randomly polarized in one
of two non-orthogonal basis [7].

In most of the SKD scenarios the legitimate parties obtain in-
stances of correlated sources which means that they obtain similar
but not identical strings. It is then assumed that there is an authentic
though otherwise public channel available to all parties —including
the eavesdropper—. The legitimate parties can exchange additional
information through this channel in order to reconcile their strings.
They can do so revealing some information about them, for instance
the parities of carefully chosen positions. This process is known as
information reconciliation [14]. It is not hard to see that the informa-
tion exchanged through the public channel reduces the uncertainty
that the eavesdropper has on the strings of the legitimate parties. A
second step known as privacy amplification is then needed [11]. In
the privacy amplification step the legitimate parties agree on a secret
but shorter key of which the eavesdropper has a negligible amount of
information.

Paraphrasing the famous "Experimental quantum cryptography" [10]
of Bennett et al. every bit used for information reconciliation has to
be sacrificed "in the altar" of privacy. The motivation of this thesis is
to study the information reconciliation process and develop efficient,
though practical, protocols that allow to optimize the distillation pro-
cess. We regard optimization from a broader perspective; that is, we
aim not only to reduce the messages exchanged during information
reconciliation but also to take into account the efficient use of physical
resources.

1.2 contributions

We consider in this thesis the problem of information reconciliation
in the context of secret key agreement between two legitimate parties:
Alice and Bob. We discuss in Chap. 3 the design and optimization
of LDPC codes and design specific codes for the Binary Symmetric
Channel (BSC) over a wide range of rates with thresholds close to the
channel capacity. In Chap. 5 we show that LDPC codes optimized for
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the BSC can efficiently be used for information reconciliation in some
SKD scenarios.

We understand by efficient that a protocol is close to the theoret-
ical limits. We shall see that real SKD scenarios are time variant, the
randomness sources differ over time and an efficient method for a
specific kind of source might be useless for another. Thus, a good
protocol should also tackle this behavior and offer a high efficiency
for a wide range of scenarios. We introduce in Chap. 6 an adaptive
protocol based in punctured and shortened LDPC codes. The efficiency
of the reconciliation is only limited by the quality of the code and,
while transmitting more information than needed to reconcile Alice’s
and Bob’s sequences, we prove that it does not reduce any more the
uncertainty on the original source than an ad-hoc code would have
done.

Puncturing is a well-known coding technique used for construct-
ing rate-compatible families of codes. In Chap. 3 we consider the
problem of puncturing LDPC codes and propose a new algorithm
for intentional puncturing, where an order within the set of punc-
turable symbols is defined. This algorithm is shown to improve on the
performance of previous proposals.

1.3 structure of the thesis

The thesis has been divided in two main parts: LDPC codes design and
optimization of information reconciliation.

Chap. 2 and Chap. 3 compose the first part.
In Chap. 2 we introduce basic information theoretic ideas. We

begin the chapter deriving the Shannon entropy function from a
set of requirements and show its relation with data compression of
individual and joint sources. In the second part of the chapter, we
consider channel coding and prove the capacity of some families of
communications channels that are used later in the thesis.

The objective of Chap. 3 is to introduce coding theory and describe
some specific topics related with LDPC codes. After reviewing the basic
concepts of linear error correcting codes we describe LDPC codes. The
next topic is puncturing techniques for LDPC codes. We conclude the
chapter showing that linear codes can be used in the problem of source
coding with side information.

In the second part we discuss secret key distillation in Chap. 4 and
several information reconciliation methods in Chap. 5. We propose a
rate adaptive information reconciliation protocol in Chap. 6.

In Chap. 4 we first compare the computational and information
theoretic security paradigms, and then formally define SKD and study
the capacity of some of the better known models.

In Chap. 5, we compare several practical information reconciliation
protocols. The objective is to show that, although there are several
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ad-hoc protocols proposed for the task, error correction codes are an
ideal solution from the efficiency point of view. In order to compare
the different reconciliation methods we concentrate on reconciliation
methods for correlated discrete random variables even if the ideas
presented here can be easily extrapolated to other scenarios.

Although linear codes are a good solution for the reconciliation
problem, since they can be tailored to a given error rate, their effi-
ciency degrades when it is not known beforehand. This is the case
in Quantum Key Distribution (QKD), where the error rate is an a pri-
ori unknown that is estimated for every exchange. We introduce in
Chap. 6 a rate adaptive protocol. This protocol adapts pre-built codes
in real time while maintaining an efficiency close to the optimal value.

We close the text in Chap. 7 with a quick review of the results and
a discussion about possible future work.

This thesis is meant to be, to a great extent, self-contained. Even
though some chapters of this thesis review known results, the ideas
are described in a linear fashion and the results are proved whenever
possible. We hope that this effort does not hinder the readability of
the text but, on the contrary, clarifies the discussion and even becomes
a useful reference.



2
I N F O R M AT I O N T H E O RY

It may be no exaggeration to say that man’s progress in peace, and security
in war, depend more on fruitful applications of information theory than on

physical demonstrations [...]

— Fortune (Magazine) [1]

In this chapter we review several basic information theoretic ideas.
The chapter follows the standard texts [19, 6, 45, 39, 90, 100, 71, 133]
focusing only on the concepts relevant for this thesis. We begin the
chapter introducing the Shannon entropy function and show its re-
lation with data compression of individual and joint sources. In the
second part of the chapter, we consider channel coding and prove the
capacity of some families of communications channels that are used
later in the thesis.

2.1 preliminaries and notation

The collection of all possible outcomes s in an experiment is called
the sample space S. We limit our interest to experiments with a finite
number of outcomes. Any subset of the sample space is called an
event. Let a and b be two events in S, we define a ∪ b and a ∩ b as
the union and intersection of a and b. a∪ b is the event that contains
all outcomes belonging to a, to b and to both. a∩ b is the event that
contains all outcomes belonging to both a and b. Two events are
disjoint if their intersection is null.

We can define a function p : S → [0, 1] that associates every
outcome s ∈ S with p(s). The extension of p to any A ⊆ S is straight-
forward:

p(A) =
∑
a∈A

p(a) (2.1)

We say that p is a probability distribution if ∀s ∈ S,p(s) > 0 and
p(S) = 1. Following Gallager’s notation in [39] we call an ensemble U
the tuple of a sample space S together with a probability distribution
p defined on S.

We call a discrete random variable X over alphabet X a mapping
X : X→ S such that:

pX(x) =
∑

s:X(s)=x

p(s) (2.2)

7
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We will write p(x) for pX(x). That is, we will drop the subscript
that identifies the ensemble or the random variable whenever there is
no possible confusion.

Let us consider a second experiment with two outcomes x and y.
The joint sample space of the experiment is the direct product of the
sample space associated with the individual outcomes: S = X× Y. We
can associate, as well, a probability distribution function to map all
tuples (x,y) to [0, 1]. The probability of an event in the joint experiment
is equally defined as the sum of the probability of the individual
outcomes. In particular we can define for every x ∈ X the probability
of p(x) as the sum of p(x,y) for all y ∈ Y:

p(x) =
∑
y

p(x,y) (2.3)

and equivalently p(y):

p(y) =
∑
x

p(x,y) (2.4)

Let a and b be two events with non zero probability. We call
p(a|b) the conditional probability of a given that b occurs. If we
repeat the experiment many times it is easy to see that p(a|b) is given
by the ratio of p(a∩ b) and p(b). a and b are said to be independent
if p(a ∩ b) = p(a)p(b). It follows that if and only if a and b are
independent p(a|b) = p(a).

We define the variational distance δ between two ensembles X and
Y defined on the same alphabet A as:

δ(X, Y) =
1

2

∑
a∈A

|pX(a) − pY(a)| (2.5)

δ is a proper metric for ensembles defined on the same alphabet.
It is easy to show that it verifies:

δ(X, Y) = 0 ⇐⇒ X = Y (2.6)

δ(X, Y) = δ(Y, X) (2.7)

δ(X, Y) 6 δ(X, Z) + δ(Z, Y) (2.8)

Given the joint distribution PSZ we define the distance from uni-
form by:

d(S|Z) =
1

2
δ(PSZ,PU × PZ) (2.9)
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where PU is the uniform distribution.
Random variables and ensembles are denoted with boldface capi-

tal letters A, B, C... taking values in sets with calligraphic font A, B,
C... while the elements in a set are denoted with lower case letters a,
b, c...

We denote the set of natural, integer, real and complex num-
bers with the American Mathematical Society (AMS) blackboard bold
alphabet letters N, Z, R and C respectively.

Arrays and vectors are denoted with boldface lower case letters
a, b, c. We write the element of an array in position n0 as a[n0],
b[n0], c[n0]... and we denote the subarray expanding from the element
in position n1 to the element in position n2 as a[n1,n2], b[n1,n2],
c[n1,n2]... We denote the length of an array or vector as | · |, for example
|a| = n.

2.2 source coding

2.2.1 A Measure of Information

We proceed to introduce a measure of the information that the oc-
currence of an event x in a sample space X provides to an observer.
This measure is related to certainty about the events. If an observer is
completely certain that an event is about to happen, the observation
that the event indeed happens provides the observer with no addi-
tional information, whereas observing an unlikely event yields new
information. More formally let X be an ensemble. Below we list some
intuitive properties that an information measure should possess.

• The occurrence of two independent events should yield the
same information that the occurrence of the single events would
provide an observer. If we let h be an information measuring
function

p(a∩ b) = p(a)p(b)⇒ h(a∩ b) = h(a) + h(b) (2.10)

and more generally the information that n independent identical
events provide:

h(an) = nh(a) (2.11)

• The measure should be non-negative, that is, an event gives
either none or some information, but it can not give negative
information:

h(a) > 0 (2.12)

• Less probable events provide more information than more prob-
able events. For example, if we think of a coin and a die, an
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outcome of the die is more informative than an outcome of the
coin:

p(a) < p(b)⇒ h(a) > h(b) (2.13)

• h should be a continuous function.

We now informally derive a family of functions complying with
these basic properties following Shannon’s original paper [107]. Sev-
eral authors have shown that this family is the only one complying
with these or related sets of requirements. For a complete discus-
sion on axiomatic derivations of entropy and information please refer
to [4, 3, 21, 36]. The following derivation allows us to gain some
intuition in the appropriateness of the information measure. However,
as the axioms have no inherent validity, this approach "lends a certain
plausibility" to the information definitions, "the real justification" of
these definitions "resides in their implications" [107].

Let an event with probability 1/r be independently repeated m
times, we can always define an event with probability 1/t indepen-
dently repeated n times such that r, m, t and n verify:

rm 6 tn < rm+1 (2.14)

which applying logarithms and operating becomes:

m

n
6

log t
log r

<
m+ 1

n
(2.15)

Given Eq. 2.14 and Eq. 2.13, we can write the following relation
between the information that rm, tn and rm+1 yield:

h(rm) 6 h(tn) < h(rm+1) (2.16)

and applying Eq. 2.11:

mh(r) 6 nh(t) < (m+ 1)h(r) (2.17)

Finally we obtain the form of the information measure by com-
bining Eq. 2.15 with Eq. 2.17 and taking into account that n can take
arbitrarily large values:

h(t) = λ log t (2.18)

with λ < 0 for the measure to be positive. Choosing different values
of λ allows us to measure information with different units.
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2.2.2 Entropy

Let Xn be an ensemble that represents a source with n outcomes
x1, x2, ..., xn. Every outcome xi is independently and identically dis-
tributed by the ensemble X. Then, the probability of an event in the
joint sample space is given by:

p(x1, x2, ..., xn) =
n∏
i=1

p(xi) (2.19)

Note that we will use the same notation for an ensemble X and
for the Independent Identically Distributed (iid) source that it spans.

Definition 1. The average information a symbol in X yields is called the
entropy of a source:

H(X) = −
∑
x

p(x) logp(x) (2.20)

where we take the convention that 0 log 0 = 0, i.e. adding a zero-
probability event to a source does not affect its entropy.

The definition that we have just provided reads as the average
or mean information that the individual symbols in X yield; we can
then naturally identify the entropy of X with the expected value of the
random variable − logp(X).

H(X) = −
∑
x

p(x) logp(x) = E(− logp(X)) (2.21)

We prove some basic properties of entropy that we will use
through this thesis.

Lemma 1. The entropy is non-negative.

H(X) > 0

Proof.

0 6 p(x) 6 1⇒ − logp(x) > 0⇒ H(X) > 0 (2.22)

Lemma 2. The distribution that maximizes entropy for any alphabet is the
uniform distribution.

H(p1, ...,pn) 6 logn
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Proof.

H(p1, ...,pn) − logn =

n∑
i=1

pi log
1

pi
−

n∑
i=1

1

n
logn

=

n∑
i=1

pi log
1

pi
− logn

n∑
i=1

1

n

=

n∑
i=1

pi log
1

pi
− logn

n∑
i=1

pi

=

n∑
i=1

pi log
1

pi
−

n∑
i=1

pi logn

=

n∑
i=1

pi log
1

npi

6 log
n∑
i=1

1

n
= 0

(2.23)

where the second equality follows from the fact that a probability
distribution adds up to one and the last inequality holds from log
being a concave function and applying Jensen’s inequality.

2.2.3 Conditional Entropy, Joint Entropy and Mutual Information

The conditional entropy of a source X given a second source Y can be
regarded as the average uncertainty that the events in X provide given
that we know the outcomes of another possibly correlated variable
Y. Following the reasoning in Sec. 2.2.1, we begin by defining the
conditional information of one event a given a second event b:

h(a|b) = − logp(a|b) (2.24)

where the conditional information allows us to define the entropy of a
source given one event:

H(X|y) =
∑
x

p(x|y)h(x|y) (2.25)

where at the left hand of the equation, we write H(X|y) as a proxy for
H(X|Y = y).

The entropy of one source given another is just the weighed
average of H(X|y) for all y.

H(X|Y) =
∑
y

p(y)
∑
x

p(x|y)h(x|y) =
∑
y

p(y)H(X|y) (2.26)

We prove some basic properties of the conditional entropy.
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Lemma 3. The conditional entropy is non-negative.

H(X|Y) > 0

Proof. H(X|Y) is a sum of entropies, which are positive by Lem. 1,
weighed by the probabilities of each event which are also positive.

Lemma 4. The entropy of the random variable X given any random variable
Y is not greater than the entropy of X.

H(X|Y) 6 H(X)

Proof.

H(X|Y) −H(X) =
∑
y

p(y)
∑
x

p(x|y) log
1

p(x|y)
−
∑
x

p(x) log
1

p(x)

=
∑
y

∑
x

p(x,y) log
1

p(x|y)
+
∑
x,y

p(x,y) logp(x)

=
∑
x,y

p(x,y) log
p(x)

p(x|y)

=
∑
x,y

p(x,y) log
p(x)p(y)

p(x,y)

6 log
∑
x,y

p(x)p(y) = 0 (2.27)

Lemma 5. Given random variables X and Y if X = f(Y):

H(X|Y) = 0

Proof. If X = f(Y), then given Y we know X with absolute certainty, in
other words, given Y there is just one possible outcome.

H(X|Y) =
∑
y

p(y)H(X|y)

= 0 (2.28)

Definition 2. Given two discrete random variables X and Y taking values
in sets X and Y with joint probability p(x,y) we define the joint entropy as:

H(XY) = −
∑
x,y

p(x,y) logp(x,y) (2.29)
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H(X|Y) H(Y|X)H(X) H(Y)

H(XY) I(X; Y)

Figure 2.1: Graphical representation of the information measures.

This definition does not introduce a new concept: we can de-
rive a random variable Z taking values in set X× Y with probability
p(Z = (x,y)) = p(x,y). It is evident that H(Z) = H(XY) and, the non
negativity and maximization by the uniform distribution of H(XY)
directly follow.

The joint and conditional entropy definitions can be also naturally
extended to multiple variables.

Let X and Y be two discrete random variables. The mutual infor-
mation I(X; Y) is a measure of the information shared between the
two variables X and Y. Fig. 2.1 shows the relationship between the
four measures that we have defined: entropy, joint entropy, conditional
entropy and mutual information.

I(X; Y) = H(Y) −H(Y|X)

= H(X) −H(X|Y)

= I(Y; X) (2.30)

2.2.4 Other Entropy Measures

The entropy as defined by Eq. 2.20 is but one useful measure associated
with a random variable or ensemble X. In particular it gives the
average uncertainty associated with the outcomes of an experiment.
We introduce two related measures; collision entropy, min-entropy
and max-entropy [99]. The collision entropy measures the likelihood
of two independent outcomes of the same experiment taking the same
value:

H2(X) = − log
∑
x

p2X(x) (2.31)
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Min-entropy is defined as the negative logarithm of the maximum
value that pX takes:

H∞(X) = − log max
x
pX(x) (2.32)

Max-entropy is defined as the logarithm of the support set of pX:

H0(X) = log |x : pX(x) > 0| (2.33)

Generally H∞(X) 6 H2(X) 6 H(X) 6 H0(X), the equality standing
if the outcomes in X are given by a uniform distribution. We further
define the conditional collision entropy, min-entropy and max-entropy
as:

H2(X|Y) =
∑
y

pY(y)H2(X|y) (2.34)

H∞(X|Y) = min
y
H∞(X|y) (2.35)

H0(X|Y) = max
y
H0(X|y) (2.36)

These quantities are generalized by their smooth versions, the
smooth collision entropy, smooth min-entropy and smooth max-entropy,
though we are only interested in the second and the third [96, 97]. By
smoothing we understand that for a certain ε > 0 they are respectively
minimized and maximized over all events Ω such that p(Ω) > 1− ε.

Hε∞(X|Y) = max
Ω

min
y

min
x

(− logpXΩ|Y(x|y)) (2.37)

Hε0(X|Y) = min
Ω

max
y

log
∣∣x : pXΩ|Y(x|y) > 0

∣∣ (2.38)

where pXΩ|Y(x|y) is the probability that the event Ω takes place and
given a specific y X takes the value x. The min (max) smooth entropy
can be identically defined as the maximization (minimization) for all
the distributions with variational distance smaller than ε [16, 96].
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X̂X f(X|Y)

Y

Encoder Decoder

Figure 2.2: Source coding with side information.

2.2.5 Source Coding with Side Information

Assume that two distant parties, Alice and Bob, have access two
sources X and Y and they want to communicate them to a third
party Eve. Then, the minimum rate needed to encode both sources
independently is R > H(X) + H(Y) is needed. This seems a very
intuitive result over which not much can be improved, however, in
their seminal paper, Slepian and Wolf [113] demonstrated that it is
possible to jointly encode both sources at a rate of R > H(XY). This
holds even if X and Y are encoded separately.

Now consider a particular case of the scenario described above.
Concretely, assume that Bob and Eve are the same party, or in other
words Y is available at the decoder. Then, in the same paper Slepian
and Wolf [113] showed that only a rate of R > H(X|Y) is needed to
encode X (see Fig. 2.2). This corollary, which is but a corner point in
the achievable rate region, is of special interest in this thesis and we
shall concentrate on it.

We introduce the concept of the typicality of a sequence and the
joint typicality of two sequences to sketch the proof of the Slepian-Wolf
bound. Given a sequence x = (x1, x2, ..., xn) drawn from sampling n
times variable X, we can distinguish between two kinds of sequences.
Sequences whose entropy is close to the entropy of the source and
sequences whose entropy is not close to the entropy of the source.
The former we call typical sequences, the latter we call non-typical
sequences. We define the typical set Anε as follows:

Anε = {x :

∣∣∣∣H(X) + 1

n
logp(x)

∣∣∣∣ 6 ε} (2.39)

We say that two sequences x, y identically drawn from p(x,y) are
jointly typical if 1) x and y are typical and 2) also the sequence x, y
seen as an instance of the joint source XY is typical:

∣∣∣∣H(XY) +
1

n
logp(x, y)

∣∣∣∣ 6 ε (2.40)

The encoding we use to sketch the proof (following the lines of the
proof in [19]) is known as random binning [129]. The encoder creates
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2nR indexed bins and distributes uniformly at random all the typical
sequences in the bins. In consequence, the probability that any x is in
a specific bin is 2−nR because the sequences are uniformly distributed
in the bins.

Let us begin with an informal discussion on the random binning
encoding method. There are approximately 2nR encodings indexing
an equal number of bins and 2nH(X|Y) jointly typical sequences for a
specific typical sequence y. How should a good encoding look like?
A good encoding should permit the decoder to distinguish between
different input sequences. So if we restrict only to typical sequences,
we pay a prize, in the sense that all non-typical sequences are always
going to lead to an error. However, if the number of bins is much larger
than the number of jointly typical sequences then the probability that
two jointly typical sequences are in the same bin is very small. In other
words, with high probability all the sequences jointly typical with y,
which account for almost the whole probability of the source, have a
different encoding.

The encoding is very simple, the encoder just needs to send the
index of the bin i(x). The decoder exploits joint typicality, it chooses
x ′ belonging to bin i(x) such that x’ and y are jointly typical. There
is an error if (x, y) /∈ Anε but also if there exists x’ 6= x which is jointly
typical with y and shares the same bin index. Both sources of error
can be bounded, first pe1 = p ((x, y) /∈ Anε ) = 1− p ((x, y) ∈ Anε ) and:

p ((x, y) ∈ Anε ) > 1− p

(∣∣∣∣H(XY) +
1

n
logp(x, y)

∣∣∣∣ > ε)
−p

(∣∣∣∣H(X) + 1

n
logp(x)

∣∣∣∣ > ε)
−p

(∣∣∣∣H(Y) + 1

n
logp(y)

∣∣∣∣ > ε)
= 1− p

(∣∣∣∣∣−E(logp(XY)) +
1

n

n∑
i=1

logp(xi,yi)

∣∣∣∣∣ > ε
)

−p

(∣∣∣∣∣−E(logp(X)) +
1

n

n∑
i=1

logp(xi)

∣∣∣∣∣ > ε
)

−p

(∣∣∣∣∣−E(logp(Y)) +
1

n

n∑
i=1

logp(yi)

∣∣∣∣∣ > ε
)

> 1− 3δ (2.41)

where the second equality comes from rewriting the entropy of a
random variable as an expectation (see Eq. 2.21), then the inequality
holds by the weak law of large numbers and we can choose δ, ε > 0
such that for large enough n each of the three differences is greater
than ε with probability δ.
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Let p(x|y) be the probability that given y, x is jointly typical with
y, and let Anε (X|y) be the set of sequences jointly typical with y. The
cardinal of Anε (X|y) is upper bounded by 2n[H(X|Y)+2δ]:

1 >
∑

x∈Anε (X|y)

p(x|y)

=
∑

x∈Anε (X|y)

p(x, y)
p(y)

>
∑

x∈Anε (X|y)

2−n[H(XY)+δ]

2−n[H(Y)−δ]

= |Anε (X|y)|2
−n[H(X|Y)+2δ] (2.42)

Let pe2 be the second source of error. We can bound pe2 as follows:

pe2 = p
(
x ′ 6= x|i(x) = i(x ′), (x ′, y) ∈ Anε

)
6 |Anε (X|y)| 2

−nR

6 2−n[R−H(X|Y)−2δ] (2.43)

the probability of having x ′ different than x is lower bounded by
the number of sequences jointly typical with y multiplied by the
probability that a sequence is in a specific bin.

We have roughly shown that we can encode X with rate R >
H(X|Y) and make the sources of error as small as desired. The con-
verse [19] also holds, if the probability of error can be made as small
as desired, then R > H(X|Y).

2.3 channel coding

2.3.1 Communications Channel

Information Source Transmitter Receiver Destination

Message Message

Signal Received
Signal

Noise Source

Figure 2.3: This figure reproduces the communications system diagram in-
troduced by Shannon [107].

In this section we address channel coding, but first let us schemat-
ically model the communications problem. Fig. 2.3 shows the classical
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schema proposed by Shannon [107]. This figure shows five entities:
an information source, a transmitter, a noise source, a receiver, and a
destination. The communications scheme works as follows:

First the information source generates a message m from a set of
possible messages M. Then, the transmitter takes m and encodes it
into n channel symbols. We define the coding rate R as:

R =
logM
n

(2.44)

The channel is a physical medium of transmission. Mathematically,
we can model it as a system taking symbols from input alphabet X
to symbols of output alphabet Y and characterized by a transition
probability matrix that maps the probability of every symbol y if
symbol x is sent. The receiver tries to undo the encoding given the
noisy received signal and at the end of the scheme the destination
receives the m̂ possibly identical to m.

We define C, the capacity of a channel, as the maximum mutual
information for all possible input distributions:

C = max
p(x)

I(X; Y) (2.45)

2.3.2 Channel Capacity

The capacity of a channel specifies the maximum rate at which a
source can be reliably sent through a channel. On the other hand, no
source with a rate over the capacity of the channel can be sent with a
vanishing error probability.

The proof is quite similar to the achievability proof of the Slepian-
Wolf bound that we sketched in Sec. 2.2.5. Encoder and decoder
share a code-book of 2nR codewords chosen within the 2nH(X) typical
sequences [77]. The encoder sends a codeword x drawn with uniform
probability. The decoder outputs a word x̂ jointly typical with the
received word y. It declares an error if x, y are not jointly typical and
a decoding error can occur if there exists x ′ 6= x jointly typical with
y. We know by Eq. 2.41 that the probability of non-joint typicality for
long enough n can be made as small as desired.

The intuition behind the achievability proof is simple. The decoder
has access to two sets: the set of sequences jointly typical with y, and
the set of codewords. If the intersection is to be a single word, every
codeword has to be jointly typical with a disjoint set of typical output
words.

Approximately, every codeword is jointly typical with 2nH(Y|X)

words. Then the number of jointly typical output words with input
codewords is upper bounded by 2nR+nH(Y|X), where R is the coding
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2nH(Y)
2nH(X)

2nH(Y|X)

Figure 2.4: Graphical representation of the input and output typical se-
quences. A good encoding chooses as codewords a subset of
the input typical sequences that produces disjoint sets of output
typical sequences.

rate. This number should be much smaller than the total number of
typical sequences 2nH(Y):

2nR+nH(Y|X) < 2nH(Y)

which operating returns the expected result:

R < I(X; Y)

In conclusion, as long as the coding rate is below the mutual infor-
mation between input and output for n long enough we can construct
a code that allows the decoder to distinguish between codewords with
a vanishing probability of error.

The converse statement follows from Fano’s inequality [35]. The
intuition behind this part is that if we think of an encoding that
achieves a vanishing error probability, then necessarily R < I(X; Y) [19].
Again the proof is very similar to the converse result in the Slepian-
Wolf bound.

2.3.3 The capacity of some basic channels

2.3.3.1 Binary Symmetric Channel

In the BSC the binary elements or bits are either perfectly transmitted
with probability 1− p or flipped with probability p.

Let us first find the mutual information between the input X and
the output Y [19]::
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0

1 1

0

X Y

1-p

p

p

1-p

Figure 2.5: Binary Symmetric Channel.

I(X; Y) = H(Y) −H(Y|X) (2.46)

= H(Y) −
∑
x

p(x)H(Y|x) (2.47)

= H(Y) −
∑
x

p(x)H(p, 1− p) (2.48)

= H(Y) −H(p, 1− p)
∑
x

p(x) (2.49)

6 1−H(p, 1− p) (2.50)

We obtain the capacity by finding the maximum of the mutual
information for all possible input distributions. It can be easily verified
that the the uniform distribution reaches the upper bound in Eq. 2.50

and the capacity of the BSC is one minus the binary entropy of p.

2.3.3.2 Binary Erasure Channel

The Binary Erasure Channel (BEC) was introduced by Elias in his
famous paper "Coding for Two Noisy Channels" [27]. The BEC has
two input elements while the output alphabet is composed of three
elements: 0, 1, and e, which stands for an erasure in the channel. In
this channel the bits are either correctly transmitted with probability
1− p, or are erased with probability p.

We can first find H(X|Y):

H(X|Y) = π(1− p)H(X|Y = 0)

+ (πp+ (1− π)p)H(X|Y = e)

+(1− π)(1− p)H(X|Y = 1) (2.51)

= p (2.52)
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Figure 2.6: Binary Erasure Channel.

where p(X = 0) = π.The second equality holds from H(X|Y = 1) =

H(X|Y = 0) = 0 and H(X|Y = e) = 1. We can now plug Eq. 2.51 in
Eq. 2.30 and bound from above the mutual information:

I(X; Y) = H(X) −H(X|Y) (2.53)

= H(π, 1− π) − p (2.54)

6 1− p (2.55)

equality in Eq. 2.55 is achieved again by the uniform distribution. That
is, for π = 1

2 .
It might seem that the capacity of a BSC that flips bits with prob-

ability p is greater than the capacity of a BEC that erases bits with
probability p. Fig. 2.7 shows that it is the opposite situation. On the
range p ∈ (0, 0.5), the capacity of the BEC is greater than the capacity
of the BSC. Bits on the BEC are either perfectly known or perfectly
unknown, however, it is not possible to distinguished flipped bits
from correct bits in the BSC.

2.3.4 Degraded channels

The two families of noisy channels just discussed, the BEC and the BSC,
are parametrized by p. It is intuitive that p is a measure of the amount
of noise in the channel. If we fix the type of channel, then we say that
the channel characterized by p1 > p2 is a degraded version of the
channel characterized by p2 [19, 101]. We formally define a channel
C(ε ′) a (physically) degraded version of C(ε) if:

p(yy ′|x) = p(y|x)p(y ′|y) (2.56)

We show graphically in Fig. 2.8 and Fig. 2.9 that if p1 > p2 both
the BEC(p1) and the BSC(p1) are respectively degraded versions of
BEC(p2) and the BSC(p2).
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L O W D E N S I T Y PA R I T Y C H E C K C O D E S

Claude Shannon
Born on the planet Earth (Sol III) in the year 1916 A.D. Generally regarded

as the father of the Information Age, he formulated the notion of channel
capacity in 1948 A.D. Within several decades, mathematicians and

engineers had devised practical ways to communicate reliably at data rates
within 1% of the Shannon limit...

— Encyclopedia Galactica, 166th ed. [83]

The objective of this chapter is to introduce coding theory and
describe some specific topics related to LDPC codes. We first introduce
basic notation and concepts of linear error correcting codes. We then
describe LDPC codes, their decoding as well as some techniques for
the design and optimization of LDPC codes.

The next topic is puncturing techniques for LDPC codes that we
use later in the thesis to adapt the coding rate of an information recon-
ciliation protocol. These code construction, design and rate-adaption
techniques were presented in [28, 75, 32].

We conclude the chapter with syndrome coding, a very useful
technique that allows the use of channel codes for source coding.

3.1 introduction to coding

3.1.1 Block Codes

A code C(n,k) is called a block code if it maps a source message of
k symbols into a codeword of n symbols. We say that it is a code
of length n that transmits k symbols from the source, also known
as information symbols, with every codeword. We restrict our study
to binary codes, and in consequence we may safely replace symbols
with bits. A block code is used to transmit codewords through noisy
channels, the remaining n− k bits add redundancy to the information
bits and help the decoder recover the transmitted codeword. In a dis-
cussion regarding a code C(n,k) we will drop the dimension indexes
n and k whenever they are unnecessary. We can already define some
properties for binary block codes; the rate of a code is the proportion
of information bits in a codeword:

R =
k

n
(3.1)

25
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· 0 1

0 0 0

1 0 1

+ 0 1

0 0 1

1 1 0

Table 3.1: Arithmetic in F2.

The Hamming distance separating two codewords, which can be
represented as row vectors, x = (x1, ..., xi, ..., xn), y = (y1, ...,yi, ...,yn)
is defined as:

d(x, y) = |{i|xi 6= yi}| (3.2)

The n− k redundancy bits are used to place words far from each
other distance wise, such that they can be easily differentiated even
if slightly corrupted. The minimum distance of a code dmin is the
minimum distance separating two codewords.

dmin = min{d(x, y)|∀x, y ∈ C} (3.3)

If a codeword is corrupted by a BSC as long as less than dmin

bits are flipped we can detect that the word is erroneous. On the
other hand, if dmin or more bits are flipped then the codeword can be
transformed into another correct codeword and the corrupted word
could pass as a correct one.

A measure related to the distance of two codewords is the weight
of a codeword w(x). It is defined as the distance of x to the word all
zeros:

w(x) = d(x, 0) = |{i|xi = 1}| (3.4)

3.1.2 Linear Codes

Linear codes are block codes with a specific algebraic structure. A
(binary) block code is a (binary) linear code C if it forms a vector space
of dimension k over F2, the finite field containing two elements. F2

has two elements which we can label 0, 1 and the arithmetic operations
are performed modulo 2:

A generator matrix G is a matrix of dimension k× n. The rows
of G form a basis of the space induced by C, it defines a linear trans-
formation from 2k into 2n, in other words G maps k bits information
into a codeword:

C = {aG|a ∈ Fk2} (3.5)
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Figure 3.1: This figure depicts the Tanner graph of the repetition code in
Ex. 1. The graph has four edges joining bits 1 and 2 with check 1,
and bits 2 and 3 with check 2 following H.

Please note the difference between a code C, which defines a set
of codewords, from an encoder, which defines a specific map from
blocks of k bits to codewords. There can be many possible encoders
for a code C.

The generator matrix is said to be in standard form if we can write
it as G = (P|Ik), that is the concatenation of P a n− k× k matrix and
the identity matrix of size k× k. If G is in standard form the code is
said to be in systematic form and the code maps the k information
bits into the last k bits of the codeword. In general a code is said to be
systematic if the k information bits are embedded in known positions
of the codeword, and a permutation of the bit positions would allow
to write all the codewords of C as c(x) = x|r, i.e. the codeword can be
seen as as the original word and some redundancy.

H, an (n− k)×n matrix, is a parity matrix for code C if it is full
rank and it verifies GHT = 0. This relation implies that the product of
any codeword with the transposed of the parity matrix is also the zero
vector of size n− k. It can be easily shown that it works both ways,
that is, if a word multiplied by H transposed is the zero vector then it
is a codeword because necessarily it is spanned by G.

x ∈ C⇔ xHT = 0 (3.6)

Each of the n− k independent rows in H conforms a linear equa-
tion. These equations are called parity check equations because an
equation is verified only if the bits involved add up to an even number
or equivalently to 0 mod 2. We call the syndrome of a word x ∈ Fn2 ,
s(x) the map s : Fn2 → Fk2 defined by Eq. 3.6.

Linear codes can be represented by bipartite graphs known in this
context as Tanner graphs [118]. The two disjoint sets are the check
nodes and the variable nodes. A set of n− k check nodes represent the
set of parity-check equations which define the code; a set of n variable
nodes represent the bits. If we number the checks from 1 to n− k

and the variable nodes from 1 to n, the graph is formed by drawing
an edge between check i and bit j if H[i, j] = 1 (see Fig. 3.1). There
is a one to one correspondence between both representations as the
process can be easily inverted.
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Example 1. We consider one of the most simple examples, the so called
repetition code which maps a single bit into a codeword that repeats its value
three times. It is a code of rate one third with G and H given by:

G =
(
1 1 1

)
H =

(
1 1 0

0 1 1

)

The code has just two codewords (000) and (111) that map 0 and 1 respec-
tively.

3.1.3 Decoding

After briefly discussing the issues of encoding information symbols
into codewords, we regard the opposite operation. A decoder receives
y and tries to recover the original source message. If yHT = 0 then
y is a codeword and the receiver performs the inverse map from
codewords into information symbols to obtain the source message.
However if yHT 6= 0 the receiver first needs to choose a candidate
codeword given that he received y.

The first decoder that we shall consider is called the Maximum
Likelihood (ML) decoder. It behaves in the following way; given y the
decoder chooses ĉ the codeword that maximizes the a priori probability
p(y|c):

ĉML = argmax
c

p(y|c) (3.7)

In order to maximize p(y|c) in Eq. 3.7 the decoder needs to com-
pare all the codewords in the code, this task can only be performed for
very short codes as the number of codewords explodes exponentially
with k as 2k. It was shown by Berlekamp et al. [12] that ML decoding is
an NP-complete problem for binary linear codes. In terms of complex-
ity classes the algorithms that can provide an answer in polynomial
time are called P, while a problem for which the correctness of an
answer can be checked in polynomial time are called NP problems. It
is thus, "unlikely that anyone will ever discover substantially faster
algorithms" than this exponential search, quoting the original paper.

The maximization performed by the ML decoder can be written
as a distance comparison in the case of the BSC(ε); in this case ML

decoding is equivalent to finding the codeword that minimizes the
hamming distance with the received vector:
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ĉML = argmax
c

p(y|c)

= argmax
c

n∏
i=1

p(yi|ci)

= argmax
c

εd(y,c)(1− ε)n−d(y,c)

= argmin
c

d(y, c) (3.8)

The ML decoder maximizes the a priori likelihood but it is not
perfect; note that if the number of errors exceeds a threshold the
closest codeword can be different to the codeword sent. For instance
in Ex. 1 if the codeword (000) is sent and (011) is received the ML

decoder outputs (111).
We now describe a second decoder, the Maximum a Posteriori

(MAP) decoder. This decoder maximizes the a posteriori probability
p(c|y):

ĉMAP = argmax
c

p(c|y) (3.9)

If the codewords are not all equiprobable both decoders might
render different results. However, for a uniform distribution on the
codewords, both decoders are identical:

ĉMAP = argmax
c

p(c|y)

= argmax
c

p(c, y)
p(c)

= argmax
c

p(y)
p(c)

p(y|c)

= argmax
c

∑
c̃

p(y|c̃)p(c̃)

p(c)
p(y|c)

(3.10)

of course if all the words are equiprobable p(c) cancels out, and we
get:

ĉMAP = argmax
c

(∑
c̃

p(y|c̃)

)
︸ ︷︷ ︸

constant

p(y|c)

= argmax
c

p(y|c) = ĉML (3.11)

which means that both decoders are output the same codeword.
The two decoders that we have defined operate on the whole

codeword. We can also define symbol-wise versions of the ML and
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MAP decoders. That is, decoders that maximize respectively the a
priori or the a posteriori likelihood of a symbol:

ĉiML = argmax
ci∈{0,1}

p(y|ci) (3.12)

ĉiMAP = argmax
ci∈{0,1}

p(ci|y) (3.13)

We can show that the symbol-wise decoders are also equivalent if
the codeword source is uniform:

ĉiMAP = argmax
ci∈{0,1}

p(ci|y)

= argmax
ci∈{0,1}

p(ci)

p(y)
p(y|ci)

= argmax
ci∈{0,1}

p(ci)∑
c

p(c)p(y|c)︸ ︷︷ ︸
constant

p(y|ci)

= argmax
ci∈{0,1}

p(y|ci) = ĉiML (3.14)

The MAP decoder outputs the symbol that maximizes p(ci|y). This
quantity can be simplified to the multiplication of the individual bit a
priori probabilities if the channel is memoryless:

p(ci|y) =
p(y, ci)
p(y)

=
1

p(y)

∑
c∈C

Ci=ci

p(c, y)

=
p(c)
p(y)

∑
c∈C

Ci=ci

p(y|c)

=
p(c)
p(y)

∑
c∈C

Ci=ci

n∏
j=1

p(yj|cj)

(3.15)

Whatever value Ci takes, if the source is uniform, α = p(c)/p(y) is
a constant value multiplying the sum of products. The argument that
maximizes the symbol-wise MAP decoder is independent of α and the
Sum Product Algorithm (SPA) that we introduce for decoding LDPC

codes in the next section takes its name from the sum-product form of
Eq. 3.15.
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In general, we are not considering zero error coding [109]. Even
if an ML or MAP decoder were available, there is always a non-zero
probability of decoding error if words are transmitted through a noisy
channel. The Frame Error Rate (FER) measures the ratio of wrong
codewords for a given channel and decoder. A related measure is the
Binary Error Rate (BER), which measures the ratio of wrong bits for a
given channel and decoder. The BER is usually much lower than the
FER, and in any case BER 6 FER, because even if a wrong codeword
is output, the wrong output will be probably close in terms of the
the hamming distance, to the right codeword. Depending on the
application it is more interesting to consider one or the other figure of
merit.

3.1.4 Coset codes

We call the set spanned by adding a vector a ∈ Fn2 to the codewords in
C, i.e. {x+a|x ∈ C} a coset of a code C or simply a coset code. All vectors
a ∈ Fn2 are in some coset of C, in effect, a = a + 0 ∈ a + C. Cosets have
some interesting properties, we will only show the equivalence one to
one between syndromes and cosets (see [52]).

Figure 3.2: For graphical representation of the coset codes, we have chosen
a different color for each coset. A fixed vector addition moves
vectors from the black coset to the blue coset.

Lemma 6. If x ∈ y + C then x + C = y + C
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Proof. If x ∈ y + C then ∃c1 ∈ C|x = y + c1. Now let c2 + x ∈ x + C and
c3 + y ∈ y + C, with {c2, c3} ∈ C.

c2 + x = c2 + (y + c1) = (c1 + c2) + y ∈ y + C (3.16)

c3 + y = c3 + (x − c1) = (c3 − c1) + x ∈ x + C (3.17)

We have by Eq. 3.16 that x + C ⊂ y + C and by Eq. 3.17 that y + C ⊂
x + C, hence x + C = y + C.

Lemma 7.

s(x) = s(y)⇔ x + C = y + C

Proof. By the definition of syndrome we know that Hx = Hy. This is
equivalent of saying that x − y ∈ C. Then x = y + (x − y) ∈ y + C and
by Lem. 6 x + C = y + C. The arguments can be followed backwards
to prove the other direction of the relation.

We call the minimum weight word in a coset code the coset leader.
Let f be a function Fn−k2 → Fn2 that given a syndrome outputs the
coset leader, f can be used to implement a decoding procedure known
as syndrome decoding. If y = x + z are the output, input and noise
vectors in a BSC, the receiver can choose ẑ = f(Hy), which is the vector
closest to z in the same coset, as his estimation for z and compute his
estimate for x as x̂ = y+ ẑ.

3.2 ldpc codes

3.2.1 Introduction

LDPC codes are linear codes with a sparse parity check matrix, sparse
in the sense that the density of non zero coefficients is low. The interest
in LDPC codes arises from the fact that low complexity, suboptimal
algorithms are available for codes with a low density parity check
matrix.

Regular LDPC codes where first proposed by Gallager in 1963 in
his PhD thesis [38]. However due to their resource requirements, but
also because other types of codes were thought to be better for real
applications [70], little attention was given to them for almost 30 years
until the work of MacKay and Neal [72, 73], Luby et al. [67, 68] and
Wiberg [128, 127] among others drew back interest on LDPC codes.

We call an LDPC code regular (dv,dc) if every bit is in dv parity
check equations and dc bits form each parity equation. The parity
check matrix in Ex. 1 is not regular as bits 1 and 3 are in one parity
check equation while bit 2 is in two equations. Fig. 3.3 shows the
parity check matrix and the Tanner graph of a regular code.
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Figure 3.3: The figure depicts the Tanner graph of a regular (2, 4) code.

The number of non zero entries, that is the number of edges
joining bits and checks can be computed from the bit and the check
point of view.

ndv = (n− k)dc (3.18)

This relation and Eq. 3.1 allow us to write the rate of the code as
a function of dc and dv:

R = 1−
dv

dc
(3.19)

In an irregular LDPC code not all bits belong to the same number
of equations and/or not all parity check equations, are formed with
the same number of bits. We say that a bit is of degree dv if it belongs
to dv parity check equations while we say that a check is of degree dc
if dc bits form the parity equation. Let δv be the maximum variable
degree and δc the maximum check degree, we can define λ ′(x) and
ρ ′(x) two polynomials that represent the degree distributions of bits
and checks:

λ ′(x) :=

δv∑
i=2

λ ′ix
i−1 0 6 λi 6 1

ρ ′(x) :=

δc∑
i=2

ρ ′ix
i−1 0 6 ρi 6 1

(3.20)

where we denote by λ ′i (ρ ′i) the fraction of bit (check) nodes of degree
i. We can extend Eq. 3.18 to incorporate codes with irregular degree
distributions:

n

δv∑
i=2

λ ′ii = (n− k)

δc∑
i=2

ρ ′ii (3.21)

And we can get a similar equation for the rate:

R = 1−

∑δv
i=2 λ

′
ii∑δc

i=2 ρ
′
ii

(3.22)
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3.2.2 Sum Product Algorithm

We saw in Sec. 3.1 that the problem of ML decoding for binary linear
codes is an NP-complete problem. Instead of computing the posterior
probability of all codewords the SPA exploits the graph structure of
linear codes and locally computes the MAP symbol-wise.

This algorithm is an instance of a Message Passing Algorithm
(MPA). MPAs are algorithms that can be described as passing messages
through the edges of the Tanner graph.

The SPA exchanges soft values. In contrast with other algorithms
such as the Bit Flipping Algorithm [55] that exchange messages taking
values in a discrete alphabet the SPA sends messages representing
probabilities or in some versions the Log Likelihood Ratio (LLR) of
probabilities.

Log Likelihood Ratio

The concept of LLR in the coding context was reviewed by Hagenauer
et al. in 1996 [50]. Let X be a binary random variable taking the values
{0, 1} with p(X = 0) = ε we define the LLR of X as:

l(X) = log
ε

1− ε
(3.23)

We can think of the sign of l(X) as the hard decision on X, that is,
if we think that X is more likely to be a 0 or a 1. While we can regard
|L(X)| as the reliability of the hard decision. A simple manipulation of
Eq. 3.23 gives the following useful relation:

p =
el(X)

1+ el(X) (3.24)

It might seem that the LLR fails to keep all the relevant information
for decoding. However it is a sufficient statistic for both the MAP and
the bit-wise MAP decoder. More formally we say that given a channel
p(Y|X) and a random variable Z characterized as a function of the
output Z = f(Y), Z is a sufficient statistic if p(Y|X) = a(X, Z)b(Y) [102];
the reason being that the maximization of the MAP decoder does not
depend on Y (see Eq. 3.9). L = f(Y) is a sufficient statistic for the
bit-wise decoder:

Lemma 8.

p(y|xi) = a(xi, l)b(y)
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Proof.

p(y|xi) =
p(x)
p(xi)

∑
c∈C
Ci=xi

n∏
j=1

p(yj|xj)

p(y|xi)∏n
j=1 p(yj|Xj = 1)

=
p(x)
p(xi)

∑
c∈C

Ci=xi

e
∑n
j=1 lj(1−xj)

where in the second equation we have divided both sides by
∏n
j=1 p(yj|Xj =

1) and lj = logp(yj|Xj = 0)/p(yj|Xj = 1).

p(y|xi) =

 p(x)
p(xi)

∑
c∈C

Ci=xi

e
∑n
j=1−ljxj


·

e∑nj=1 lj n∏
j=1

p(yj|Xj = 1)


p(y|xi) = a(xi, L = l)b(y) (3.25)

The variable to check update messages

In the SPA, messages are iteratively exchanged from bits to checks and
from checks to bits. The decoding is performed locally. We can draw a
graph from a variable node perspective as Fig. 3.4 shows. We have a
set of incoming messages, in the first instantiation of the algorirthm
they take the form of probabilities on the bit value. These messages
arrive from the neighboring check nodes or from an observation in
the channel. Using the sum product formula from Eq.3.15 we get the
a posteriori probabilities of bit i taking value 0 and 1:

p0i = p(Ci = 0|y)

=
p(c)
p(y)

∑
c∈C

Ci=0

n∏
j=1

p(yj|Cj = cj)

= α
∑
c∈C

Ci=0

n∏
j=1

p(yj|Cj = cj) (3.26)

p1i = p(Ci = 1|y)

=
p(c)
p(y)

∑
c∈C

Ci=1

n∏
j=1

p(yj|Cj = cj)

= α
∑
c∈C

Ci=1

n∏
j=1

p(yj|Cj = cj) (3.27)
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ri
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cj

mij

cj
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Figure 3.4: The diagram on the left shows the messages from variable nodes
to check nodes. The diagram on the right shows the messages
from check nodes to variable nodes.

where we can avoid explicitly computing p(c)/p(y) by choosing α
such that:

p0i + p
1
i = 1 (3.28)

An alternative description of the variable node is as a repetition
code [57]. The only possible correct configuration for a variable node
is that all of the incoming messages agree on the value of bit i, either
0 or 1. Thus the variable node can be regarded as a code with just two
codewords the all zero codeword and the all one codeword, that is,
the repetition code. We can rewrite Eq. 3.26 taking this into account:

p0i = α
∑
c∈C

Ci=0

n∏
j=1

p(yj|Cj = cj)

= α

n∏
j=1

p(yj|Cj = 0) (3.29)

p1i = α
∑
c∈C
Ci=1

n∏
j=1

p(yj|Cj = cj)

= α

n∏
j=1

p(yj|Cj = 1) (3.30)

This relationship can be further simplified if we change the mes-
sages exchanged between checks and nodes and we allow them to
exchange LLR values. The associated LLR with posteriori probabilities
of bit i can be written as:
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li = log
p0i
p1i

= log
α
∏n
j=1 p(yj|Cj = 0)

α
∏n
j=1 p(yj|Cj = 1)

= log
n∏
j=1

p(yj|Cj = 0)

p(yj|Cj = 1)

=

n∑
j=1

log
p(yj|Cj = 0)
p(yj|Cj = 1)

=

n∑
j=1

eji (3.31)

where eji is the incoming LLR value sent from the neighboring check
node j to bit i (see Fig. 3.4). The main benefit of the LLR representation
is that instead of multiplying probabilities we can add LLR values. We
can rewrite 3.31 to match the tanner graph description, let r be the
LLR of the channel input and eji for j ∈ {1, dv} the LLR associated with
check j. We can describe the total LLR and the LLR sent to check j as:

li = r+

dv∑
j=1

eji (3.32)

mij = r+

dv∑
j ′=1
j ′ 6=j

ej ′i (3.33)

The check to variable update messages

The update messages are sent from checks to their neighbouring bits.
They compute, independently of the message received from the bit
involved, the probability pext

j,i that the parity check equation j is verified
if bit i takes the value 1. Since they transport extrinsic information,
they are sometimes called extrinsic messages. The probability of the
equation being verified if bit i takes the value 1 is the same as the
probability that an odd number of the remaining bits take the value 1.
We prove by induction in the next lemma that pext

j,i follows:

pext
j,i =

1

2
−
1

2

dc∏
t=1
t 6=i

(1− 2pt) (3.34)

where dc is the degree of the check j.
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Lemma 9. Let pi for i ∈ [1,w] be the probability that the bit i in a block of
size w is 1. The probability of having an odd number of ones is given by:

podd =
1−
∏w
i=1(1− 2pi)

2

Proof. The equality holds for w = 1:

podd =
1− (1− 2p1)

1

2
= p1 (3.35)

Let us assume that it holds for w = n. The probability of having an
odd number of errors in a block of size n+ q is the probability of the
union of two events: having an odd number of errors in the first n bits
and no error in n+ 1 and having an even number of errors in the first
n bits and an error in the bit n+ 1. We can check that the equality is
also verified for w = n+ 1:

podd =
1−
∏n
i=1(1− 2pi)

2
(1− pn+1)

+(1−
1−
∏n
i=1(1− 2pi)

2
)pn+1

=
1−
∏n+1
i=1 (1− 2pi)

2
(3.36)

Again, the LLR representation offers an advantage with respect to
the exchange of probabilistic messages:

eji = log
1+
∏dc−1
i=1 (1− 2pi)

1−
∏dc−1
i=1 (1− 2pi)

= {directly from Lem. 10}

= log
1+
∏dc−1
i=1 tanhmi

2

1−
∏dc−1
i=1 tanhmi

2

= {directly from Lem. 11}

= 2tanh−1
dc−1∏
i=1

tanh
mi
2

(3.37)

where we have used two relationships that we proceed to prove.

Lemma 10.

tanh
(
1

2
log

1− p

p

)
= 1− 2p
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Proof.

tanh
(
1

2
log

1− p

p

)
=

e−m/2 − em/2

e−m/2 + em/2

=
1− em

1+ em

= 1− 2
em

1+ em

= 1− 2p (3.38)

where m is the LLR associated with p and we have expanded the
hyperbolic tangent in the first equality and used Eq. 3.24 in the last
equality.

Lemma 11.

tanh
(
1

2
log

1+ p

1− p

)
= p

Proof.

tanh
(
1

2
log

1+ p

1− p

)
=

et/2 − e−t/2

et/2 + e−t/2

=
et − 1

et + 1

=

1+p
1−p − 1

1+p
1−p + 1

= p (3.39)

where t is defined as:

t = log
1+ p

1− p
(3.40)

We can further simplify the check to bit update message from
Eq. 3.37 with the following map [103]:

γ : [−∞,∞]→ F2 × [0,∞]

γ(x) = (sgn(x),− log tanh
|x|

2
) (3.41)

with the special case of − log(0) := +∞ and sgn(x) defined as:

sgn(x) =


0 if x < 0

0 with probability 0.5 if x = 0

1 with probability 0.5 if x = 0

1 if x > 0

(3.42)



40 low density parity check codes

the function sgn(x) has a particular interpretation, if x is an LLR

associated with a bit, the output of sgn(x) is the hard decision on the
bit. Now taking into account that the tanh is an odd function:

eji = 2tanh−1
dc−1∏
i=1

tanh
mi
2

=

(
dc−1∏
i=1

sgn (mi)

)
2tanh−1

dc−1∏
i=1

tanh
|mi|

2

=

(
dc−1∏
i=1

sgn (mi)

)
2tanh−1 log−1 log

dc−1∏
i=1

tanh
|mi|

2

=

(
dc−1∏
i=1

sgn (mi)

)
2tanh−1 log−1

dc−1∑
i=1

log tanh
|mi|

2

= γ−1

(
dc−1∑
i=1

γ (mi)

)
(3.43)

3.2.2.1 Output

The sum-product decoder continues the iteration process from variable
to check nodes and from check to variable nodes until a limit of
iterations is reached or a valid codeword is found.

3.2.3 Density Evolution

No good technique is known to study the behavior of specific instances
of LDPC codes so instead we are going to focus on ensembles of
codes defined by their variable and check edge distributions (λ(x) =∑
i λix

i−1 and ρ(x) =
∑
i ρix

i−1). These distributions are closely
related to the node distributions λ ′(x) and ρ ′(x) that we previously
described and it is possible to change from one to another description
following:

λ(x) =
1∑
i iλ
′
i

∑
i

iλ ′ix
i−1 (3.44)

ρ(x) =
1∑
i iρ
′
i

∑
i

iρ ′ix
i−1 (3.45)

using these relations, we can express the code rate from Eq. 3.22 as a
function of the coefficients of λ(x) and ρ(x):

Rate = 1−

∑
i ρi/i∑
i λi/i

(3.46)
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In this section we study the evolution of messages as variables
and checks exchange them over iterations. We are going to track the
evolution of messages regarding the probability density functions of
variable and check nodes (fv and fc) and their related cumulative
functions.

We assume that all the messages are independent, which implies
that the channel has no memory and that there are no cycles of length
2t in the code graph. Regarding the channel, we require it to be
output symmetric. Under this condition the probability of error of
all codewords is the same [101]. We choose to track the all zeros
codeword, which implies that the tracked density is the LLR assuming
tha every variable node takes the value 0.

In particular for any message on iteration t:

Ftc(z) = P[E
t
ji 6 z] =

∫z
−∞ ftc(x)dx (3.47)

Ftv(z) = P[M
t
ij 6 z] =

∫z
−∞ ftv(x)dx (3.48)

we will drop the superscript t wherever there is no ambiguity. The
probability of error is just the probability that mtij < 0 averaged over
all nodes. We could write it as the integral from −∞ to 0 of mtij but
we should include only half of the mass at 0. The following definition
allows for a more compact representation of the probability of error:

Perr(f
t
v) =

∫∞
−∞ fvc(x)e−

|x|+x
2 dx (3.49)

Let us examine when on iteration t variable i receives dv messages
and outputs to check j mij = r+

∑dv
j ′=1
j ′ 6=j

ej ′ as we derived in Eq. 3.33.

Now, we have that the sum of two independent random contin-
uous variables X and Y defined over an additive group G is also a
random variable V [110], and the density function of V is the convolu-
tion of the addend density functions.

We can rewrite the variable update equation for densities as:

fvi = fr ⊗ f
⊗dv−1
c (3.50)

where f⊗dv−1c denotes the convolution of fc with itself dv− 1 times. fr
takes the place of r in Eq. 3.33 and stands for the density distribution
associated with the channel output.
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Example 2. Let us consider the BEC, let l(y) = log(p(y|X = 0)/p(y|X =

1)), then we have:

l(y) =


l(0) = log 1−p0 =∞
l(1) = log 0

1−p = −∞
l(ε) = log pp = 0

Let δz(x) be the Dirac delta of density one at point z. We can write the
density of the output of the BEC as:

frBEC(p) = pδ0(x) + (1− p)δ∞(x) (3.51)

We can derive the density of the BSC in the same way:

frBSC(p) = pδlog p
1−p

(x) + (1− p)δlog 1−pp
(x) (3.52)

If we average fvi taking into account the edge degree distribution
we obtain the general update rule:

fv = fr ⊗
∑
i

λif
⊗i−1
c (3.53)

The check node density function is a little more complicated. We
have a relation that is a product of random variables in Eq. 3.37 and
we have a sum of random variables transformed by γ in Eq. 3.43.
There is no simple way of computing the product of random variables.
However it is possible to describe the density of the random variables
transformed by γ [102]. We write the distribution function of random
variable γ(Z) Γ(FZ) the transformation of the random variable Z by γ
as a function F2 × [0,∞)→ [0, 1]:

Γ(Fz)(s, x) = χ{s=0}Γ0(FZ)(x) + χ{s=1}Γ1(FZ)(x) (3.54)

where χ{} takes the value 1 if the condition under the brackets is
verified and takes value 0 otherwise. Recalling Eq. 3.42 if z > 0 we
have Γ(Fz)(s, x) = Γ0(FZ)(x) and if z < 0 Γ(Fz)(s, x) = Γ1(FZ)(x). We
define the pseudo distributions Γ0(FZ)(x) and Γ1(FZ)(x) as:

Γ0(FZ)(x) = P[γ1(Z) = 0,γ2(Z) 6 x]

= 1− P[γ2(Z) > x]

= 1− P[− log tanh(
Z
2
) > x]

= 1− P[Z < − log tanh(
x

2
)]

= 1− FZ(− log tanh(
x

2
)) (3.55)
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Γ1(FZ)(x) = P[γ1(Z) = 1,γ2(Z) 6 x]

= P[− log tanh(
−Z
2

) > x]

= FZ(log tanh(
x

2
)) (3.56)

and we can verify that Γ−1 performs the inverse map:

Γ−1(x) = χ{x>0}Γ0(− log tanh(
x

2
))

+χ{x<0}Γ1(− log tanh(
−x

2
)) (3.57)

We call the distributions transformed by Γ G-distributions and
the associated densities g-densities [102]. The density of Γ(Fz)(s, x) is
defined as usual:

d

dx
Γ(Fz)(s, x) = χ{s=0}

fz(− log tanh(x2 ))
sinhx

+χ{s=1}
fz(log tanh(x2 ))

sinhx
(3.58)

G-distributions and g-densities have a well defined convolution
over their domain, the group F2 × [0,∞) → [0, 1]. Let ga(s, x) =

χ{s=0}g
0
a(x)+χ{s=1}g

1
a(x) and gb = χ{s=0}g

0
b(x)+χ{s=1}g

1
b(x) be two

g-densities, their convolution is a random variable C with g-density
given by:

gc(s, x) = χ{s=0}(g
0
a(x) ∗ g0b(x) + g1a(x) ∗ g1b(x))

+χ{s=1}(g
0
a(x) ∗ g1b(x) + g1a(x) ∗ g0b(x)) (3.59)

which is just a two-dimensional convolution. In one dimension it is
the cyclic convolution over F2 while in the other dimension it is the
one sided convolution over the real numbers (operation represented
by ∗).

We have described messages from and to the variable nodes as
densities of LLRs. Then, the density of the update message from check
j of degree dc to nodes can be written as a convolution of the incoming
densities transformed into g-densities and transformed back into LLR

densities.

fcj = Γ
−1
(
Γ(fv)

�dc−1
)

(3.60)

A variable node in the graph is connected to a check of degree i
with probability ρi, then the average density equals:

fc = Γ
−1

(∑
i

ρiΓ(fv)
�i−1

)
(3.61)
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Combining the variable and checks densities allows us to describe
the relation that tracks the density evolution of the messages:

ft+1v = fr ⊗ λ(Γ−1(ρ(Γ(ftv)))) (3.62)

where we have made explicit that the density at iteration t+ 1 is given
by the density at iteration t.

We call the asymptotic threshold of a degree distribution the
maximum level of noise for which Perr(ftv) converges to 0. We have
not discussed the evolution of the Perr on the SPA as the number
of iterations increase or the channel becomes noisier, but it can be
proved that the SPA is monotonic with respect to both parameters; the
performance improves if we increase the iterations and also improves
if the noise is reduced (see [102]). The threshold determines the limit
of the error-free region as the block length tends to infinity, in practice
it allows to choose between different ensembles.

In this thesis we have implemented a discretized version of the
density evolution algorithm [17]. This version guarantees that the
predicted threshold is a lower bound of the real threshold while
offering an easy implementation. This allows us to trade precision for
speed while being able to discriminate between two codes.

The Discretized Density Evolution (DDE) quantizes the LLR mes-
sages exchanged in the SPA with the quantizing operator Q defined
as:

Q(w) =


bw∆ + 1

2c if w > ∆
2

dw∆ − 1
2e if w 6 −∆2

0 otherwise

where ∆ is the quantization interval.
If the exchanged messages are quantized with Q(w) Eq. 3.33

becomes:

m̂ij = r̂+

dv∑
j ′=1
j ′ 6=j

êj ′i (3.63)

where m̂, r̂ and êj ′i are quantized versions of m, r and ej ′i. If we track
the density of the associated discrete random variable, the density of
the sum is given by the (discrete) convolution of the addends:

fv̂ = fr̂ ⊗
∑
i

λif
⊗i−1
ĉ (3.64)

Let i be a check with dc > 4, we can rewrite the check update
equation as follows:
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eji = 2tanh−1

(
dc−1∏
i=1

tanh
mi
2

)

= 2tanh−1

(
tanh

m1
2

tanh

(
1

2
2tanh−1

dc−1∏
i=2

tanh
mi
2

))
= etc. (3.65)

Now it is easy to verify that we can write the following quantized
version of the check update formula:

êji = R(m̂1,R(m̂2,R(..., m̂dc−1))) (3.66)

where the operator R is defined as:

R(m̂1, m̂2) = Q(2tanh−1(tanh
m̂1
2

tanh
m̂2
2

)) (3.67)

The density of the check messages cannot be computed by convo-
lution and we have to describe it by inspection.

R(fĉa , fĉb)[k] =
∑

(i,j)|k∆=R(i∆,j∆)

fĉa [i]fĉb [j] (3.68)

We can write a quantized version of Eq. 3.61 as:

fĉ =
∑
i

ρiR
i−1(fv̂) (3.69)

where R2(fv̂) = R(fv̂, fv̂) and Ri(fv̂) = R(fv̂,Ri−1fv̂).
Combining Eq. 3.64 and Eq. 3.69 gives us the DDE update formula:

ft+1v̂ =
∑
j

ρjR
j−1

(
fr̂ ⊗

∑
i

λif
⊗i−1
ĉ

)
(3.70)

This quantized version of density evolution is extremely conve-
nient. In this version, the convolution at the variable nodes can be
efficiently implemented using the Fourier transform. The R operation
also has a fast realization in the form of a look up table.

3.3 optimization of ldpc code distributions

DDE is a good technique to compute the threshold of a given family of
LDPC codes. The threshold can be regarded as a figure of merit and it
can be used to compare families of codes. However DDE does not help
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Initialization Mutation Crossover Selection

Figure 3.5: Activity diagram of DiffE

in finding a specific family. Finding codes with high thresholds implies
searching through the space of possible degree distributions. This is
equivalent to finding a maximum value in a real valued non-linear
function with real valued parameters, this is a non trivial task.

There have been several proposals for designing LDPC codes.
In [120] codes are optimized by curve fitting on extrinsic informa-
tion transfer charts [119], which provides an approximation to the
threshold. In [69] the solution space is highly reduced by optimizing
only λ(x), with this simplification it is possible to use tools like linear
programming.

Another tool that does not simplify neither the threshold compu-
tation neither the solution space are non-linear optimization heuristics.
In particular Differential Evolution (DiffE) [116], a genetic algorithm,
has been used for designing LDPC codes. This solution was success-
fully applied for the BEC in [111] and for the Additive White Gaussian
Noise (AWGN) channel in [103].

3.3.1 Differential Evolution

DiffE is a stochastic real parameter optimization algorithm. It was first
proposed in 1995 by Storn and Price [115, 23] and draw rapidly atten-
tion after getting top positions in several evolutionary optimization
contests [23]. The algorithm is, as implied, an evolutionary algorithm
which basically means that it works with a population of solutions
that evolves through iterations in a random though directed fashion.

The algorithm is used to optimize functions with real parameters
and real values; given an objective function f : X ⊆ RD → R searches
a solution x̂ such that f(x̂) 6 f(x),∀x ∈ X. Fig. 3.5 shows the work-flow
of the algorithm. DiffE works with a population of D-dimensional
vectors or chromosomes:

xi,G = [x1,i,G, x2,i,G, ..., xD,i,G] (3.71)

where G indicates the generation number. The population of the first
generation is created randomly in the initialization step. In every gen-
eration the chromosomes are perturbed with scaled differences of the
vectors producing donors vi,G. This process is called mutation. Every
vector from the current generation or target incorporates a random set
of parameters from a donor to produce a trial vector ui,G. The mixing
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xr1,G

xr2,G

xr1,G − xr2,G

xr3,G

vi,G

F(xr1,G − xr2,G)

x1

x2

Figure 3.6: Constructing donor vectors with mutation

process is called crossover or recombination. Trial vectors are selected
to replace the targets if f(ui,G) 6 f(xi,G). The process is repeated until
a limit of iterations is reached or some acceptable candidate is found.
We proceed to describe in more detail the algorithm.

In the initialization step N D-dimensional vectors are created. The
D parameters are real but they are allowed to have a minimum and a
maximum value; we can define xmin = [xmin,1, xmin,2, ..., xmin,D] and
xmax = [xmax,1, xmax,2, ..., xmax,D] two vectors holding the bounds for
all parameters. In the most general situation there is no knowledge on
the solution, in consequence the initial population should cover the
solution space as uniformly as possible, let rand(a,b) be a function
with uniformly random output in the interval [a,b]:

xi,G,j = rand(xmin,j, xmax,j) (3.72)

Mutation is performed by adding the weighted difference of two
population vectors xr1,G and xr2,G to a third one xr3,G. r1, r2 and r3
should be different from each other and also different to i which
limits the minimum number of parameters to 4. The donor vectors are
constructed as follows:

vi,G = xr3,G + F · (xr1,G − xr2,G) (3.73)

where the scale factor F is used to control how quickly the population
evolves, typical values are in the range [0.8, 1]. Fig. 3.6 shows the effect
of the mutation step.
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vi,G

x1

x2

u1i,G

u2i,G

xi,G

Figure 3.7: Recombination of the donor with the target.

Recombination also known as crossover is used to increase the
diversity of the trial population: donor vectors are modified incorporat-
ing a small set of parameter values from the target vector. This avoids
limiting the search to linear combinations of the current population:

uj,i,G =

{
vj,i,G if rand(0, 1) 6 CR

xj,i,G if rand(0, 1) > CR
(3.74)

where the crossover ratio CR is a second control parameter. Fig. 3.6
shows the effect of the crossover step.

A trial vector replaces its target if f(ui,G) 6 f(xi,G), otherwise it is
discarded.

3.3.2 Design of LDPC codes

The functions λ(x) and ρ(x) have δv + δc − 2 non zero coefficients.
However not all these coefficients are independent: λ(x) and ρ(x)

define degree distributions and must therefore be normalized, addi-
tionally we want all codes to be of the same rate in order to compare
their thresholds.

In particular, to ensure that λ(x) and ρ(x) define a degree distribu-
tion we fix the coefficients corresponding to variable and check nodes
of degree 2:

λ2 = 1−

δv∑
i=3

λi (3.75)
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ρ2 = 1−

δc∑
i=3

ρi (3.76)

We can set the code rate using a third coefficient, we use λδc . From
(Eq. 3.46) and (Eq. 3.75), one gets:

λδc =
1−β
2 +

∑δc
i=3 ρi(

1
i −

1
2) −β

∑δv−1
i=3 λi(

1
i −

1
2)

β( 1δv −
1
2)

(3.77)

where β = 1− Rate.
These three constraints leave a final number of D = δv + δc − 5

parameters each one associated with one of the non fixed coefficients
of λ(x) and ρ(x). Finally we require the codes to be stable for ev-
ery crossover probability ε below their threshold [103], the stability
condition particularized for the BSC is:

λ2 6
1

2
∑
i(i− 1)ρi

√
ε(1− ε)

(3.78)

We define an initial population of N vectors of D = δv + δc − 5

parameters each one associated with one of the non fixed coefficients of
λ(x) and ρ(x). The initial population is not taken completely randomly
as this would lead to very complex codes with few zero coefficients.
We instead allow only a small random amount of coefficients to be
non zero.

We have found that the process of finding good codes could be
speeded up if a large initial number of codes was taken. The initial
random codes were poor and improved slowly with the number of
generations. Taking a population size N1 = 2000 for the first genera-
tion, and quickly reducing it: N2 = 200 for the second generation and
N>3 = 20 from the third generation, lead to better results.

3.3.3 Codes

The results we have obtained with this set of constraints are shown
in Table 3.2. For all rates the thresholds are very close to the Shannon
limit.

3.4 rate modulation

3.4.1 Introduction

Let us consider two common techniques used to manipulate the
information rate of a code: shortening and puncturing. Shortening
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Table 3.2: Thresholds and degree distributions found for a representative set
of rates.

Code rate Threshold λ(x) & ρ(x)

0.70 0.0510 λ(x) = 0.1146x+ 0.1440x2 + 0.0536x3

+0.0360x4 + 0.0700x6 + 0.1128x7

+0.0558x8 + 0.4132x29

ρ(x) = 0.39210x18 + 0.59116x19 + 0.01674x20

0.65 0.0633 λ(x) = 0.1162x+ 0.2046x2 + 0.0188x3

+0.0215x4 + 0.0462x6 + 0.0552x7

+0.0873x8 + 0.0710x9 + 0.0286x10

+0.3506x29

ρ(x) = 0.46020x13 + 0.03061x16 + 0.50919x17

0.60 0.0766 λ(x) = 0.11040x+ 0.20804x2 + 0.14163x7

+0.14858x8 + 0.14438x25 + 0.08909x26

+0.00748x45 + 0.15038x70

ρ(x) = 0.00036x+ 0.13063x9 + 0.31068x12

+0.49341x17 + 0.064915x18

0.55 0.0904 λ(x) = 0.1524x+ 0.1938x2 + 0.0676x3

+0.0195x4 + 0.0518x6 + 0.0552x7

+0.0846x8 + 0.561x10 + 0.0648x23

+0.2542x29

ρ(x) = 0.98355x10 + 0.00452x11

+0.01193x12

0.50 0.1071 λ(x) = 0.14438x+ 0.19026x2 + 0.01836x3

+0.00233x4 + 0.04697x5 + 0.053943x7

+0.05590x8 + 0.01290x9 + 0.00162x10

+0.06159x13 + 0.13115x14 + 0.01481x16

+0.00879x46 + 0.00650x48 + 0.00210x54

+0.00099x55 + 0.11178x56 + 0.06238x57

+0.05094x58 + 0.02230x65

ρ(x) = 0.47575x9 + 0.46847x11 + 0.02952x12

+0.02626x13
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Figure 3.8: Examples of puncturing and shortening strategies applied to a
linear code represented by its Tanner graph. In the puncturing
example (left) one symbol is deleted from the word and a C(8, 4)
code, with rate R = 1/2, is converted to a C(7, 4), increasing its
rate to R = 4/7. In the shortening example (right), one symbol is
deleted from the encoding and the same C(8, 4) code is converted
to a C(7, 3) code, the rate now decreases to R = 3/7.

is a technique used to reduce the coding rate. The codewords that
have a 0 in s fixed positions are kept, the rest are discarded, only half
of the codewords have a zero at any position. Then the codewords
are shrinked by deleting those s positions. The number of codewords
is reduced to 2k−s while the word space is also reduced to 2n−s. In
consequence an C(n,k) code is converted into a C(n− s,k− s) code.

Puncturing is a technique used to increase the coding rate by
reducing the codeword length. A set of p bits in fixed positions are
deleted from all codewords, i.e. the number of codewords remains
unchanged but the space of words is reduced converting a C(n,k) into
a C(n− p,k) code (see Refs. [47, 91]). A graphical representation, on
a Tanner graph, of the procedures just described for puncturing and
shortening and its effects on the rate of the sample code is shown in
Fig. 3.8.

3.4.2 Puncturing

We continue the discussion analyzing a specific puncturing technique.
A linear code C is punctured by deleting a defined set of symbol nodes
with positions known both to the encoder and decoder. Therefore,
the punctured symbols allow to modulate the relation between the
codeword length and the length of the information symbols. In the
most general setting, if we consider maximum likelihood decoding,
capacity achieving codes can be constructed through puncturing [53].

In order to puncture finite-length codes we differentiate random
puncturing and intentional puncturing. In the former, symbol nodes
to be punctured are randomly chosen, while in the latter it is defined
an ordered set of puncturable symbols. The asymptotic performance
of random and intentional punctured LDPC codes is studied in [47],
and puncturing thresholds have been identified in [91]. Some other
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methods delve in the code structure to identify puncturing patterns
[48, 123, 31], or examine the graph construction for short-length codes
[132, 59].

3.4.3 Local Intentional Puncturing

The set of symbols to puncture can be chosen in a random fashion or
conforming an established procedure. As commented in the previous
section we call them random and intentional puncturing respectively.
We can further differentiate intentional puncturing methods between:
methods that optimize the asymptotic behavior of families of punc-
tured LDPC codes, and finite length methods that focus in minimizing
the impact of puncturing in the decoding of finite length codes. In
this section we introduce some notation and describe a finite length
method.

3.4.3.1 Basic Notation and Previous Definitions

Let N(zj) denote the set of symbol nodes adjacent to the check node
zj, such that N(zj) = {xk : Hj,k = 1, 1 6 k 6 n} is the set of symbol
nodes that participates in the parity-check equation Hj, and let M(xk)

be the corresponding set of check nodes adjacent to the symbol node
xk, M(xk) = {zj : Hj,k = 1, 1 6 j 6 m}.

Definition 1: Two symbol nodes are said to be neighbors if both
are directly connected through a common check node, and thus they
participate in the same parity-check equation Hj. Graphically it is de-
picted by a 2-length path consisting of two edges joined by a common
check node.

The neighboring set of a symbol node xk is then given by G(xk) =

{xi : xi ∈ N(zj), zj ∈M(xk)}. Fig. 3.9 shows an example of this concept.
In [48] it is defined the concept of one-step recoverable (1-SR) for a

symbol node when there is at least one survived node within the set
of adjacent check nodes and can, in consequence, be recovered in one
step. A check node is considered survived if there are no punctured
nodes within the set of adjacent symbol nodes. The definition can be
extended to consider nodes that can be recovered in k steps or k-step
recoverable (k-SR) symbol nodes. The recovery tree of a punctured node
is defined as the graph spanning from a punctured note through a
survived check node and unfolding the symbols for every check and
the checks for every punctured symbols until all ramifications end in
an unpunctured symbol. The recovery error probability Pe(υ) is the
probability that a punctured symbol υ is recovered with the wrong
message from a survived check. Pe(υ) is shown to be an increasing
function of the number of symbols in the recovery tree of υ (see [48])
for several channels of interest. We introduce the concept of one-step
untainted, based on a similar definition of 1-SR, to propose a simple
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Figure 3.9: In this example, x5 is a symbol node selected to be punctured, and
{x4, x6, x7, x9, x11, x12, x14, x15} is the neighboring set of symbol
nodes that will be excluded in following selections. The neighbor-
ing set is computed from the set of check nodes adjacent to the
selected symbol, {z5, z6} in the current example.Note that the algo-
rithm could have selected as the first symbol to puncture equiprob-
ably any symbol in the set {x1, x2, x3, x4, x5, x6, x9, x12, x13, x15}.

finite length method that chooses symbols such that all the check
nodes of a selected symbol are survived nodes.

Definition 3: A symbol node xk is said to be one-step untainted
(1-SU) if there are no punctured symbols within its neighboring set
G(xk).

3.4.3.2 Proposed Algorithm

Let X∞ be a set of symbol nodes that are not affected by the puncturing
of a neighboring symbol, i.e. it is the ensemble including every 1-SU
symbol node. And let Z∞ be the set containing every check node
which is not adjacent to any punctured symbol. Initially, when there
are not punctured symbols, X∞ and Z∞ consist of every symbol and
check node, respectively.

Let p be the number of symbols to be punctured, the proposed
algorithm is described in Alg. 1.

The algorithm concludes when it chooses p∗ symbols to puncture,
and thus it obtains the set P = {xn1 , xn2 , ..., xnp} consisting of the
symbol nodes selected in the third step, and n1,n2, ...,np ∈ [1,n] the
list of symbol indexes to be punctured.

Notice that whenever the check node distribution is regular the
selection criterion that the algorithm uses may be simplified. Instead
of a symbol node with the smallest neighboring set it can select a
symbol xk with the lowest check node degree N(xk).

We have simulated the behavior of punctured codes over the BSC

using LDPC codes of 104 bits length and two coding rates: R = 0.5
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Rate 0.50 0.60

λ2 0.15967 0.11653

λ3 0.12187 0.12565

λ4 0.11261 0.10851

λ5 0.19087 0.05342

λ7 — 0.07272

λ8 — 0.03480

λ9 — 0.07300

λ10 0.07706 —

λ11 — —

λ14 — —

λ15 — —

λ18 — 0.07526

λ25 0.33791 —

λ32 — 0.11710

λ45 — 0.22301

εth 0.102592 0.0745261

p∗min
a

3444 2877

p∗max
a

3551 2978

p∗min
b

1916 1585

p∗max
b

1986 1643

Table 3.3: Generating Polynomials. aAlgorithm proposed in [48]. bAlgorithm
proposed here.
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Figure 3.10: FER over the BSC with crossover probability ε for different in-
tentional puncturing strategies. It was used an LDPC code with
coding rate R = 0.6, and four different proportions of punctured
symbols: π = 2.5%, π = 5%, π = 7.5%, and π = 10%.

and R = 0.6. These codes were constructed using the Progressive
Edge Growth (PEG) algorithm as proposed in [54]. The results were
computed under iterative decoding, using a sum-product algorithm
with serial scheduling and a maximum of 200 iterations.

In order to compare the algorithms we define p∗min and p∗max as the
minimum and maximum sizes of p∗ over all simulations. In Table 3.3 it
can be observed that both, p∗min and p∗max, are smaller in the proposed
algorithm than in [48], i.e. this algorithm allows for a smaller number
of punctured symbols which also implies a reduction in the achievable
rate through puncturing.

Fig. 3.11 shows the FER over the BSC for different intentional punc-
turing strategies. The use of puncturing patterns as proposed in [48]
is compared with the algorithm proposed here. Our algorithm is also
compared with the proposed in [123]. In Fig. 3.10 it is shown that
the criterion proposed here using the lowest symbol degree for the
selection of every punctured symbol is preferable.

3.5 syndrome coding

We finish the first part of the thesis reviewing a coding technique for
the problem of source coding with side information (see Sec. 2.2.5 and
[134]). We showed in Sec. 2.2.5 that a random binning encoding was
enough to achieve the Slepian-Wolf bound, however random binning
has no structure and it forces both parties to store the map between



56 low density parity check codes

Algorithm 1 Untainted intentional puncturing algorithm

Initialize
Z∞ = {1, ...,m}

X∞ = {1, ...,n}
j = 1.
while j 6 p and X∞ 6= ∅ do

Step 1.– Compute 1-SU under the current pattern
Construct the neighboring set G(xk) for all xk ∈ X∞, G(xk) = {xi :

xi 6= xk, xi ∈ N(zj),∀zj ∈M(xk)∩Z∞}.
Step 2.– Look for candidates
Make the set of candidates Ω ⊆ X∞, such that ∀xp ∈ Ω, |G(xp)| =
minxk∈X∞ |G(xk)|.
Step 3.– Selection for puncturing
Pick a symbol node xnj ∈ Ω (pick one randomly if there exist
more than one symbols in Ω).
Step 4.– Updating sets
X∞ = X∞\{xnj}
X∞ = X∞\{xi} for each xi ∈ G(xnj)

Z∞ = Z∞\M(xnj).
j = j+ 1

end while

sequences and bins which rapidly becomes unfeasible with the code
length.

Wyner proposed in [129] to use the s(x) = Hx the syndrome in a
linear code with an appropriate rate as the bin index. This encoding
adds a strong structure to the bins as we have seen in Sec. 3.1.4, but
also allows to use channel codes and in particular LDPC codes as we
will see later. The decoder outputs the word in the coset specified by s
with minimum hamming distance to y.

Once described the syndrome coding technique we prove that syn-
drome coding and typical decoding achieve the Slepian-Wolf bound,
that is, there is no fundamental loss in restricting the encoding of x
to the syndrome of a linear code. The technique used is similar to
the one MacKay [71] uses for proving that linear codes are (channel)
capacity achieving.

Let H be a full rank binary matrix of size n×m, an encoder sends
s(x), the syndrome of an n length sequence x through a noiseless
channel and the decoder, having access also to y, decodes x̂ if Hx̂ = s

and x̂ is jointly typical with y.
The syndrome size is m and the coding rate achieved is:

R =
m

n
(3.79)

There are two types of errors. We have an error if x is not jointly
typical with y, this error source is the same as in the random binning
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Figure 3.11: FER over the BSC with crossover probability ε. It was used one
LDPC code with coding rate R = 0.5, and two different propor-
tions of punctured symbols: π = 5% and π = 10%.

proof and we know from Eq. 2.41 that it can be made arbitrarily small
for n long enough.

In the random binning coding we said that there was an error if it
existed x̂ 6= x jointly typical with y which shared the same bin index
as x. We bounded this error by the size of the set of sequences jointly
typical with y times the probability that x̂ shares the same bin index
as x (see Eq. 2.43).

With syndrome coding there is an error if exists x̂ 6= x which
verifies Hx̂ = s and is jointly typical with y. We can bound it in a
similar way by the size of the set of sequences jointly typical with y
|Anε (X|y)|, times the probability that x̂ shares the same syndrome as x
P[Hx̂ = Hx]. The probability that a random sequence verifies a parity
equation on a random independently selected subset of bits is 1/2,
consequently the probability that the sequence verifies t parity check
equations is (1/2)t and:

Pe2 6 |Anε (X|y)|P[Hx̂ = Hx]

= |Anε (X|y)|P[H(x̂ − x) = 0]

= |Anε (X|y)|2
−m

6 2−n[R−H(X|Y)−2δ] (3.80)

which reproduces Eq. 2.43, in this case the interpretation is that as long
as m > nH(X|Y) for n long enough there exists a code with vanishing
error probability.

In a real scenario neither the minimum distance decoder nor the
typical decoder can be implemented. It was shown by Liveris et al.
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in [65] that LDPC codes can be used within Wyner’s coset scheme. The
SPA was modified to take into account decoding against syndromes
different than zero.

In a linear code all the codewords verify the parity check equations,
that is the bits in the equation must add up to 0 mod 2, and the checks
j sends to the bit i podd the probability that the equation is verified if
bit i takes the value 1 or the associated LLR. We proved in Lem. 9 that
this probability is equivalent to the probability that an odd number of
the bits take value 1.

In a coset code, all the words verify a syndrome s, that is if sj = 0
the bits in the equation add up to 0 mod 2 and if sj = 1 the bits in the
equation add up to 1 mod 2. In the first case the exchanged messages
don’t need to be modified, in the second case the probability that
the equation is verified if bit i takes the value 1 is equivalent to the
probability that an even number of bits take value 1: peven = 1− podd

and the associated LLR takes the form:

L(peven) =
peven

1− peven
=
1− podd

podd
= −L(podd) (3.81)
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4
S E C R E T K E Y D I S T I L L AT I O N

A channel with perfect authenticity but no privacy
can be used to repair the defects of a channel with

imperfect privacy but no authenticity.

— Charles H. Bennett et al [9]

4.1 introduction

4.1.1 Computational Security

Security has mattered to man since he was able to store information.
It is known that as soon as in ancient Egypt, around 1900 BC, scribes
used alternate hieroglyphics in order to make religious texts more
difficult to read [58]. The first true account of cyphered or hidden
information is thought to be circa 1500 BC, in Mesopotamia [58],
where an encrypted tablet was found hiding a recipe for pottery glazes.
Since these first attempts, not much more elaborate than ingenious
modifications of the text, until now, there has been an active interest
on security.

The objective of (information) security is to allow parties to interact
with data only as established by legitimate users. There are several
related concepts that can be required by different users or for different
goals. The objective pursued by the methods described in the previous
paragraph is data confidentiality; i.e. the Mesopotamians and to some
extent the Egyptian scribes meant to store information in such a
way that only a valid entity could understand it. There are other
security goals beyond confidentiality; two examples are integrity and
authenticity. That is, users might want to be sure that a message has
not been corrupted in any way or they might require a system or a
protocol to provide genuine, authentic data.

The general model to achieve confidentiality consists in altering
the raw message or plain-text so that an eavesdropper is unable to get
any meaningful information. Formally the plain-text m is chosen from
a discrete set of messages and altered or encrypted into a cypher-text
e with an encrypting function fenc and a secret key k such that

e = fenc(m,k) (4.1)

61
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The plain-text can be recovered from the cypher-text with a de-
coding function fdec and k:

m = fdec(e,k) (4.2)

If we leave out of our analysis real devices and implementations,
the security of a cryptographic system resides in the difficulty that an
eavesdropper faces for recovering the original message without having
access to the secret key. It is common to suppose the eavesdropper
to be limited in her computing resources and hence incapable of
solving some problems. In particular, most crypto-systems require the
existence of some one-way trapdoor functions.

A function f is said to be one-way if given x in the domain of f the
image can be computed by a polynomial time algorithm, while given
an image y in the range of f there is no algorithm that can compute
a preimage in polynomial time. A trapdoor one-way function is a
one-way function in the sense that there is no algorithm that can find
a preimage in polynomial time except if some additional information
k is known.

Rivest, Shamir and Adleman’s algorithm (RSA) [104], arguably
the most used encryption method relies on prime multiplication as
a trapdoor one-way function. Rabin’s crypto-system [93] as well as
ElGamal’s [26] are secure in the same sense as long as modular
square roots and discrete logarithms are difficult to compute. However
it remains to be proved if these functions are indeed one-way or not,
even the existence of any one-way function is unknown, as proving
their existence would imply that P 6= NP a well known open problem
in complexity theory [18].

On the other hand, it is known that a quantum computer can
solve the above mentioned problems in polynomial time. In particular,
Shor’s algorithm [112] can compute discrete logarithms and factorize
numbers in polynomial time. Quantum computers are in an embryonic
stage and the current prototypes are proofs of concept capable of
operating with just a few states. For instance, recently a team at the
University of Bristol [92] developed a chip that implemented Shor’s
algorithm and was able to factor the number 15.

The security paradigm which relies on the computational re-
sources available to the eavesdropper is known as computational
security. We have discussed its theoretical weaknesses which can be
summarized in the idea that it does not offer any theoretical guar-
antees on its security. However, computational security is very con-
venient: some crypto-systems are very easy to implement and some
security primitives are possible only if a possible eavesdropper has
limited resources. In fact, nowadays computational security based
crypto-systems are ubiquitous and can be found in most commercial
products. Even from the security point of view, algorithms such as
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RSA have been exposed many years to the attacks of theorists and no
critical flaw has been found other than implementation problems.

4.1.2 Information Theoretic Security

Security can also be studied without any assumption on the eavesdrop-
per capabilities. That is, Eve, an eavesdropper, is supposed to have
unlimited resources. This security paradigm is known as Information
Theoretic Security (ITS) and hereafter is the only one that we shall
consider.

Claude Shannon opens the field of ITS with his 1949 paper Com-
munication Theory of Secrecy Systems [108]. In his model, two parties
want to exchange a message m with the help of a shared key k

in the presence of an eavesdropper. Alice composes a cypher-text
e = fenc(m,k) and sends it to Bob. Shannon defines perfect secrecy
or as we call it ITS if an illegitimate party, having access to e, does not
see an increase in the probability of guessing the right m, i.e. e does
not leak any information about m, for this to happen the number of
cypher-texts should at least equal the number of messages. This infor-
mal definition implies that the messages are equally likely. Instead,
if we associate every message with a mass probability the concept of
entropy arises naturally.

Suppose that we have a discrete set of messages, m1, m2, ...,
mn with probabilities p(m1), p(m2), ..., p(mn). The function e =

fenc(k,m) transforms a message into cypher-text e with the use of
a key k selected from a discrete set of keys. The eavesdropper can
intercept e and compute the a posteriori probabilities of m, p(m|e). A
crypto-system is said to be information theoretically secure if for all
cypher-texts the a priori and a posteriori probabilities of all messages
remain unchanged. If it were not the case there would exist a cypher-
text for which the eavesdropper would gain some insight on which
was the message sent. More precisely, a crypto-system is said to be
perfectly secure if and only if p(e|m) = p(e) for all e and m, that is if e
and m are independent. If we think in the entropy associated with the
random variables E and M, representing the cypher-text and message
distributions respectively, this same condition can be more compactly
written as:

H(E|M) = H(E) (4.3)

The model described by Shannon is limited as it requires the
sender and the eavesdropper to share a key before securely com-
municating, which is not possible in many scenarios. However, it is
straightforward to generalize Eq. 4.3. We call a secret object —be it
a secret key or a secret message— information theoretically secure if
the information available to a possible eavesdropper does not reduce
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the entropy of the secret. Though many scenarios can be studied un-
der the prism of ITS, the two main objects of study are confidential
communications and SKD protocols. In the most basic ITS confidential
communications model, a legitimate sender is connected to a legit-
imate receiver and an eavesdropper through two different though
correlated noisy channels, secret transmission is possible in general
if the sender adds some randomness to his message such that only
the legitimate receiver can decode it. In a SKD protocol two legitimate
parties share some common randomness source and wish to distill a
secret key with ITS.

4.2 secret key distillation

The main ingredient needed for SKD is a source of correlated random-
ness. But beyond this requirement there are several assumptions and
hypotheses that model different scenarios under which SKD can be
studied.

One common assumption is that all the parties have access to
the outcomes of a specific experiment repeated many times. If this
assumption holds the parties can safely regard an average behavior
as the law of large numbers guarantees that the joint outcome will be
typical with high probability (see Sec. 2.2.5). However assuming an
iid scenario might be unrealistic in some situations, in these cases SKD

can be considered for a single outcome of a joint distribution. This
second, more restrictive, scenario is sometimes referred as one-shot
distillation [121].

A source of correlated randomness is, in many cases, not enough
to distill a random key. The output of the random source is a raw
key that is neither shared by the legitimate parties, neither secret to
the eavesdropper. In order to complete the distillation process the
legitimate parties need access to a public channel —if it were private
they would not need the randomness source—. Over a public channel
the parties can discuss and distill a secret key. The public channel is
some times supposed to be authentic or, similarly, it is supposed that
the legitimate parties have short common secret key that they can use
to authenticate their messages with ITS [126, 114]. It is not clear if the
legitimate parties can, in some scenarios, use non-ITS authentication
schemes and still distill a information theoretic secret key. However
there are strong indications in the form of explicit attacks that ITS

authentication schemes should always be used [87]. It should be noted
that even if the public channel is not authentic the legitimate parties
might be able, if the common randomness source verifies some criteria,
to distill a secret key [78, 79, 80].

Finally, the communications on the public channel might be one-
way or two-ways. We have chosen to focus on the one-way commu-
nications version of the different scenarios, the practical advantages
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Figure 4.1: The secret key distillation process is divided in two steps: infor-
mation reconciliation and privacy amplification.

of these models is evident if we think in the reduced distillation com-
plexity, network requirements, etc. our optimization of the distillation
process in Chap. 6 is of special interest if only one-way communica-
tions are available. However, it should be noted that two-way com-
munications can be used to distill a key in scenarios where one-way
secret key distillation is not possible [82] and, in general, the amount
of distillable secret key with two-way communications is equal or
greater than with one-way communications [124, 42, 43].

4.3 information reconciliation and privacy amplifica-
tion

There are two questions that allow to gain insight in the key distillation
process [97]. The first one is what would be the minimum length of
an encoding of variable X, Hεenc(X|Y) such that a decoder with access
to side information Y can recover X with success probability at least
1− ε.

The second question we can ask is the length of the longest ran-
dom key that can be extracted from X, Hεext(X|Y), such that the key is
uniformly distributed and independent of a random variable Y.

Protocols that distill a secret key usually divide the distillation
process in two different phases. In the first one, known as informa-
tion reconciliation or simply reconciliation, Alice and Bob exchange
redundant information over the public channel in order to eliminate
any discrepancy in their correlated sequences, X and Y respectively.
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At the end of the reconciliation phase both parties have agreed on a
shared string K, though in many cases K = X. It is easy to see that, by
definition, Hεenc(K|Y) represents a tight lower bound on the minimum
length of the messages exchanged to reconcile X and Y with error
probability smaller than ε.

On the second phase, known as privacy amplification, Alice and
Bob shrink their strings in order to wipe any information of the
previously shared key that the eavesdropper could have on K through
Z or through any communication C exchanged over the public channel
with information about the strings. In this case Hεext(K|Y) stands by
definition as the maximum number of random bits that a privacy
amplification procedure can extract.

This construction allows to split the secret key distillation process
into two easier problems. However artificial it might seem, the division
is not necessarily suboptimal. On the contrary, it is explicitly used to
reach the secret key bounds in all one-way scenarios [82, 81, 97, 98]

4.4 scenarios

4.4.1 One-Shot Secret Key Distillation

One-shot distillation, traditionally considered much more complex
than the repetition scenario, was studied in detail by Renner et al.
in [97]. The tight bounds for one-way key distillation presented here
are the main results of the paper. Two legitimate parties Alice and
Bob wish to distill a secret key in the presence of an eavesdropper
Eve. Alice, Bob and Eve hold a single outcome of the joint experiment
given by PXYZ, additionally Alice can send public messages to Bob
over a public, noiseless and authentic channel.

We say that Alice and Bob distill an ε-secure key if they run a
protocol that outputs the keys SA, SB to Alice and Bob respectively,
and these keys are identical, uniformly distributed and independent of
any knowledge the eavesdropper has. In particular if p(SA 6= SB) < ε1
and d(SA|Z) < ε2 Alice and Bob hold an (ε1 + ε2)-secure key. The
length of the longest ε-secure key that Alice and Bob can distill if they
limit to one-way communications from Alice to Bob is denoted by
Sε(X→ Y||Z).

It turns out, see [97] for a formal proof, thatHεenc(X|Y) andHεext(X|Y)
in the one-shot scenario are both tightly bounded by the smooth max-
entropy and min-entropy defined in Sec. 2.2.4:

Hε0(X|Y) 6 H
ε
enc(X|Y) 6 H

ε1
0 (X|Y) + log

1

ε2
(4.4)

Hε∞(X|Y) > Hεext(X|Y) > H
ε1∞ (X|Y) − 2 log

1

ε2
(4.5)
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where in both relations ε = ε1 + ε2.
The secret key rate in the one shot scenario directly follows from

the optimization of these two relations:

Mε(XY|Z) = sup
pUV|X

Hε∞(U|ZV) −Hε0(U|YV) (4.6)

that is, Alice is free to preprocess X and obtain random variables that
are specially prepared to maximize the final secret key via information
reconciliation and privacy amplification. The preprocessing can be
summarized by two random variables: U that she keeps and V that
she sends (publicly) to Bob. We can then bound Sε(X→ Y||Z) by:

Mε1(XY|Z) −O(log
1

ε2
) 6 Sε(X→ Y||Z) 6Mε(XY|Z) (4.7)

The lower bound holds because any ε1 and ε2 can be chosen such
that the key is ε-secure and by construction is a lower bound. The
upper bound follows because Mε(XY|Z) verifies a set of conditions
which imply that its value can not be increased by the execution of
any protocol [97].

If Alice and Bob hold identical keys X, by Eq. 4.5, the amount of
ε-secret key that can be extracted is lower bounded by:

Sε(X→ X||Z ′) > Hε1∞ (X|Z ′) − 2 log
1

ε2
(4.8)

We can further develop the relation to measure the effect of infor-
mation reconciliation [84]. The knowledge of the eavesdropper Z ′ can
be decomposed in Z her original knowledge and C an encoding of X
sent through the public channel

Hεa+εb∞ (X|ZC) > Hεa∞ (X|Z) −H0(C) − log(
1

εb
) (4.9)

where H0(C) can be regarded as the number of bits of the conversation
on the public channel. The encoding is lower bounded by Hε0(X|Y) but
essentially every extra bit used for information reconciliation reduces
one bit the length of the final secret key.

4.4.2 Source Type Model with Wiretapper

The source type model with wiretapper or simply model SW was first
introduced by Ahlswede and Csiszár in [5]. In this scenario the three
parties Alice, Bob and an eavesdropper Eve hold the outcomes of n
repetitions of an experiment given by PXYZ.
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Figure 4.2: Ahlswede and Csiszár’s model SW.

Fig. 4.2 shows that Alice can send additional information through
a public channel. After a given number of uses of the public channel,
we denote as C the set of messages that Alice sends over the public
channel to Bob, Alice and Bob estimate their shared keys to be SA and
SB respectively by using an agreed protocol.

Definition 3. A strong secret key rate Rs is achievable if for large enough
n and for every ε > 0 the legitimate parties can distill a key pair (SA and
SB) that meets simultaneously the following restrictions [62]:

Pr[SA 6= SB] < ε (4.10)

I(C, Zn; SA) < ε (4.11)

H(SA) > n ·Rs − ε (4.12)

H0(SA) < H(SA) + ε (4.13)

This definition of secret key rate is strong compared to previous
definitions in which the convergence of the conditions was asymptotic
and not absolute. In [81] it is shown that both sets of conditions share
the same bounds for secret key generation.

The largest achievable secret rate is called the secret key capacity.

Sn(X→ Y||Z) = sup
pUV|X

H(U|ZV) −H(U|YV) (4.14)

the main difference with respect to the one-shot scenario is that in the
asymptotic case the smooth min-entropy and max-entropy converge
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to the standard entropy measure. In fact if Alice and Bob’s outcomes
correspond to n independent outcomes of the same experiment we
have [97]:

lim
ε→0

lim
n→∞ H

ε
enc(Xn|Yn)

n
= lim
ε→0

lim
n→∞ H

ε
ext(Xn|Yn)

n
= H(X|Y) (4.15)

The achievability proof in [81] is based on universal families of
hash functions [126].

Definition 4. A family of functions H : A → B is called universal if
∀x,y ∈ A and a function h drawn uniformly from H, h(x) = h(y)|x 6= y

holds with probability less or equal than 1/|B|.

Now, if the knowledge of the eavesdropper can be bounded in the
sense that the conditional collision entropy (see Sec. 2.2.4) on the key
SA given Z ′ is at least c for any value that Z ′ takes, Bennett et al. [11]
show that the legitimate parties can extract approximately H2(SA|Z ′)
secret bits:

Theorem 1. Let X and Z ′ be two correlated random variables. IfH2(SA|Z ′) >
c , then the entropy of a key SA generated by the application of a function
hU uniformly chosen at random from a universal family of hash functions
H : X→ {0, 1}k is given by:

H(SA|UZ ′ = z ′) > k− 2k−c/log 2 (4.16)

which wipes all the information from the eavesdropper provided that
Alice and Bob can estimate H2(SA|Z ′).

The effects of the |C| redundancy bits shared on the conditional
Renyi entropy can be bounded using a security parameter t with
probability 1− 2−(t/2−1) [16]:

H2(X|Z ′ = zc) > H2(X|Z = z) − |C|− t (4.17)

measuring the interest of good information reconciliation. Every re-
dundancy bit used in the information reconciliation phase reduces the
final secret key.

4.4.3 Channel Type Model with Wiretapper

Let us consider now the channel-type model with wiretapper for secret
key agreement introduced by Ahlswede and Csiszár [5] as shown in
Fig. 4.3. In this model a legitimate party, Bob, and an eavesdropper,
Eve, are both connected to another legitimate party, Alice, through
a Discrete Memoryless Channel (DMC). Alice generates a discrete
sequence of n values, Xn, while Bob and Eve observe the correlated
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Figure 4.3: Ahlswede and Csiszár’s model CW.

outputs, Yn and Zn respectively, obtained after the transmission of
Xn over the DMC. Both outputs are characterized by the transition
probability PYZ|X, with each component of the sequences being the
outcome of an independent use of the channel. Alice and Bob have
also access to a public but authenticated channel used to distill a
shared secret key from their correlated sequences. The definition of a
secret key rate in this circumstances is identical to the source model
with wiretapper that we discussed in Sec. 4.4.2.

The largest achievable secret rate is called the secret key capacity
CS. It is first derived in by [5]:

CS(X→ Y||Z) = max
PUVX

[H(U|ZV) −H(U|YV)] (4.18)

where we see that with respect to Eq. 4.14 the key is maximized for all
random variables X.

Let us consider the effect of imperfect information reconciliation
in the channel model with wiretapper. As a first step we review the
privacy amplification result that allow to take into account the impact
of reconciliation in the final key. An extractor is a function that, with a
small amount of random bits acting as catalyst, obtains a number of
almost uniformly distributed random bits from a source.

Theorem 2. Given three constants δ,∆1,∆2 > 0, after n uses of a binary
symmetric channel ruled by PZ ′|X, if Eve’s min-entropy on X is known to be
bounded as H∞(X|Z ′ = z ′) > δn, there exists ([81]) an extractor function
E : Fn2 × Fu2 → Fk2 , with u 6 ∆1n and k > (δ−∆2)n, such that if Alice
and Bob agree on secret key SA = E(X, U), where U is a sequence of u
random uniform bits, the entropy of SA is given by:

H(SA|UZ ′ = z ′) > k− 2−n
1/2−o(1)

(4.19)
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The effects of the |C| redundancy bits shared on the conditional
min-entropy can also be bounded using a security parameter t with
probability 1− 2−t [81]:

H∞(X|Z ′ = zc) > H∞(X|Z = z) − |C|− t (4.20)

the effect is, as expected, identical to the source model with wiretapper:
every redundancy bit used for information reconciliation reduces the
length of the final key in one bit.

4.4.4 Quantum Key Distribution

QKD is probably the main practical application of SKD. In a QKD proto-
col [7, 41, 106], two legitimate parties, Alice and Bob, aim at sharing
an information theoretic secret key, even in the presence of an eaves-
dropper Eve. In the quantum part of such a protocol, Alice and Bob
exchange quantum signals, e.g. single photons, which carry classical
information. For instance, Alice encodes a classical bit onto the polar-
ization or the phase of a photon and sends this photon to Bob who
measures it. After repeating this step n times, Alice and Bob share
two strings, X and Y. Eve has access to a quantum system Z.

In any realistic implementation of a QKD protocol, X and Y suffer
discrepancies mainly due to losses in the channel and noise in Bob’s
detectors but which are conservatively attributed to the action of an
eavesdropper. Therefore, any QKD protocol must include a classical
post-processing step in order to extract a secret key from the correlated
strings X and Y. This SKD process is similar to the models previously
introduced: in a first step the legitimate parties reconcile the strings
obtained from their randomness source and in a second step they
produce a smaller but more secure key.

Let us give some basic definitions about the quantum counterparts
of information measures [86, 95]. A state in a quantum system with d
degrees of freedom is described by ρ a trace one, positive-semidefinite
and self-adjoint operator in Hd, a d-dimensional Hilbert space . That
is, a state ρ, verifies:

Tr(ρ) =

n∑
i=1

ρii = 1 (4.21)

xρx > 0, ∀x ∈ Cn (4.22)

ρ = ρT (4.23)
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where ρT represents the transposed of ρ and ρ the conjugate of ρ. We
denote by P(Hd) the set of all operators describing quantum states in
Hd.

We define the distance between two states by:

D(ρ,σ) =
1

2
Tr(

√
(ρ− σ)(ρ− σ)) (4.24)

The equivalent of the entropy of a random variable in the quantum
world is the von Neumann entropy of a state ρ, it is defined as:

S(ρ) = −Tr(ρ log ρ) (4.25)

Given ρX and ρY, two quantum states that are both part of a larger
system represented by ρXY, the quantum joint entropy and mutual
information are defined by:

S(X, Y)ρ = S(ρXY) = −Tr(ρXY log ρXY) (4.26)

S(X; Y)ρ = S(ρX) + S(ρY) − S(ρXY) (4.27)

Let ρXY ∈ P(HX⊗HY) and σY ∈ P(HY). The conditional quantum
min-entropy of ρXY relative to σY is given by:

H∞(ρXY|σY) = − log min λ ∈ R|λidX ⊗ σY − ρXY > 0 (4.28)

Let ρXY ∈ P(HX ⊗HY). The conditional quantum min-entropy of
ρXY given HY is defined as:

H∞(ρXY|Y) = sup
σY

H∞(ρXY|σY) (4.29)

We finally consider the smooth generalization of the conditional
min-entropy in the quantum setting. Let ρXY ∈ P(HX ⊗HY) be a
bipartite quantum state and ε > 0. The smooth min-entropy of ρXY

relative to σY and given HY is, respectively, given by:

Hε∞(ρXY|σY) = sup
ρ̂XY

H∞(ρ̂XY|σY) (4.30)

where the supremum is found over all ρ̂XY such that D(ρXY, ρ̂XY) 6 ε.

Hε∞(ρXY|Y) = sup
σY

Hε∞(ρXY|σY) (4.31)
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We could address both the one-shot and the source model sce-
narios of QKD. In the former, the size K of the secret is given by a
Csiszar-Körner-type formula [22]:

Snq(XY|Z) = I(X; Y) − S(X; Z) (4.32)

where the result from Csiszar and Körner has been generalized [24] to
quantum settings by replacing the mutual information I(X; Z) by its
quantum counterpart S(X; Z). Two different measures of information
are used in this formula because the assumptions made on Alice’s,
Bob’s and Eve’s capabilities are different. Eve is not supposed to be
restricted to classical correlations and could for instance use quantum
technologies (quantum computer, quantum memory) to perform her
attack. The secret key from Eq. 4.32 is valid only in the asymptotic case.
However a real system has only access to finite resources, which means
that Alice and Bob not only have access to bounded computational
power but also they have to distill a secret key from a finite number of
quantum systems. It is thus clear the interest of the one-shot scenario
in the context of QKD.

In the finite length scenario, we consider ε-security in the same
sense that we defined it in the one-shot scenario. For some ε > ε1 > 0
the amount of ε-secure key that the legitimate parties can distill is
upper bounded by [105]:

Hε1∞ (X|ZC) − 2 log
1

εPA
> lε (4.33)

where εPA represents the probability that the privacy amplification
fails.

We can measure the net impact of information reconciliation by a
decrease in the smooth min-entropy. It is shown in [105] that:

Hε1∞ (X|ZC) > Hε1∞ (X|Z) − leak (4.34)

where leak is a purely classical term that tracks the length of bits
correlated with X and Y that have been revealed:

leak = H0(C) −H∞(C|XY) (4.35)

The main effect of an imperfect reconciliation is clearly a reduction
of the secret key rate, which in turn, in terms of the figures of merit of
a QKD protocol, limits the distance range over which secret keys can
be distilled [89, 106]. This is the reason why the reconciliation should
be as efficient as possible.





5
I N F O R M AT I O N R E C O N C I L I AT I O N

The block parity disclosure approach [...]
forces Alice and Bob to sacrifice at least one bit

in each block on the altar of privacy.

— Charles H. Bennett et al. [10]

5.1 introduction

In this chapter we compare several practical information reconciliation
protocols, the objective is to show that though there are several ad-hoc
protocols proposed for the task, adapted error correcting codes are an
ideal solution from the efficiency point of view. In order to compare
the different reconciliation methods we concentrate in reconciliation
methods for correlated discrete sources even if the ideas presented here
can be easily extrapolated to other scenarios. For instance, recently,
they have been considered for the reconciliation of continuous-variable
QKD [56].

Beyond the reconciliation efficiency, there are two other param-
eters to consider when evaluating the quality of a information rec-
onciliation procedure: that is the computational complexity and the
interactivity. The first one stresses that a real information reconciliation
procedure must be feasible. Any sufficiently long random linear code
of the appropriate rate could solve the problem [134], however optimal
decoding is in general an NP-complete problem [12]. The interactivity
of a reconciliation protocol should also be taken into account because,
specially in high latency scenarios, the communications overhead can
pose a severe burden on the performance of a SKD protocol.

The rest of the chapter is organized as follows: in section 5.2 we
describe what would be an optimal protocol, in section 5.3, we review
the literature on information reconciliation from the first protocols
and their improvements to Cascade protocol which is currently the
solution adopted in most implementations, in section 5.4, we describe
some other proposals and optimizations and in section 3.3, we present
a reconciliation technique based on LDPC codes optimized for the BSC.
This technique was introduced in [28].

5.2 information reconciliation is error correction

Let Alice and Bob be two parties with access to correlated strings
that can be regarded as the outcomes of a joint experiment given by
instances of two random variables, X and Y respectively. Information

75
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reconciliation is the process by which Alice and Bob extract common
information from their correlated sources. In a practical setting Alice
and Bob hold x and y, two n-length strings that are the outcome
of one or many repetitions of the random experiment. They wish
to agree in some string s = f(x, y) through one-way or bidirectional
conversation [121]. The conversation φ(x, y) is also a function of the
outcome strings, and its quality can be measured by two parameters:
the length of the conversation c = |φ(x, y)| and the probability that the
reconciliation scheme fails.

More precisely, we say that a reconciliation protocol R(x, y) =

[sx, sy, c] is a protocol that produces the strings sx and sy from the
strings x and y exchanging the string c through the public channel. A
protocol R is said to be ε-robust [14] if:

∃n0|∀n > n0
∑

x,y∈{0,1}n
p(x, y)p(sx 6= sy) 6 ε (5.1)

in the one-shot scenario the protocol is ε-robust simply if for n, the
length of the instances

∑
x,y∈{0,1}n p(x, y)p(sx 6= sy) 6 ε.

Once it has been separated from privacy amplification, the prob-
lem is reduced to one of Slepian-Wolf coding [113] (see Fig. 2.2).
Wyner’s coset scheme is a good solution for the compression of bi-
nary sources with side information (see Sec. 3.5). The efficiency of
an information reconciliation protocol sending a sequence c through
the public channel to help Bob recover x using side information y
with probability higher than 1− ε, can be measured using a quality
parameter fε:

fε =
|c|

nH(X|Y)
(5.2)

Let R be an ε-robust reconciliation protocol, as a direct conse-
quence of the Slepian-Wolf bound, we can prove that the reconciliation
efficiency is equal or greater than one [14]:

lim
n→∞ fε = |c|

nHε(X|Y)
> 1 (5.3)

in consequence, we say that a protocol is optimal if f = 1.
The definition of the reconciliation efficiency in the one-shot sce-

nario is similar:

fε =
|c|

Hε0(X|Y)
(5.4)

in this scenario fε is greater than one by definition. If we can write
pXY = (pUV)

n for some UV we have by Eq. 4.15 that the one-shot
efficiency converges to the efficiency in the repetition scenario.

Hereafter we drop the ε superscript; whenever relevant for the
discussion we will specify its value.
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We discussed in Sec. 3.5 the appropriateness of (linear) error
correcting codes for the Slepian-Wolf problem. In consequence error
correcting codes can be used for information reconciliation. Let R be
the coding rate of a code C(n− k) the reconciliation efficiency when
using the code to reconcile chains x and y is given by:

fC =
n− k

n ·H(X|Y)
=

1− R

H(X|Y)
(5.5)

In some scenarios Alice’s and Bob’s strings can be regarded as
the input and output of a BSC, characterized by the crossover proba-
bility ε. For instance, most QKD protocols encode the information in
discrete binary variables [7, 10], although there are many proposals
on continuous variable protocols [94, 46, 37]. Errors on the quantum
channel are normally uncorrelated and symmetric or, if prior to the
reconciliation Alice and Bob apply a random permutation, they can
behave as such [44]. This is the case we will consider here. For this
reason, X and Y can be seen, respectively, as the input and the output
of a BSC. In a typical implementation of a QKD protocol, Alice and Bob
have access to the channel characteristics. In particular, the crossover
probability ε of the BSC is supposed to be known by the legitimate
parties. Then, the efficiency parameter f can be described as the rela-
tionship between the length of the conversation and the optimal value
n ·H(X|Y) = n ·H(ε, 1− ε):

fBSC(ε) =
1− R

H(ε, 1− ε)
(5.6)

5.3 previous work

5.3.1 First protocol

The first protocol for information reconciliation in the context of
QKD was proposed by Bennett et al. [8, 9]. The objective of [9] is
to discuss how to use a channel with perfect authenticity but no
privacy to repair a channel with imperfect privacy but no authenticity.
The imperfections of the privacy channel can be of any kind but are
attributed to an eavesdropper, Bennett et al. propose a full secret key
distillation protocol composed by an error detection step followed by
an information reconciliation procedure and ending with a privacy
amplification step.

For error detection Alice selects a function f : {0, 1}n → {0, 1}k

where f belongs to a universal family of hash functions. Alice sends to
Bob f(x) and a description of f. If f(x) = f(y) Alice and Bob can assume
that the strings coincide with an error probability bounded from above
pe 6 2−k. For the information reconciliation step they propose several
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alternatives depending on the noise in the private channel. Then a
privacy amplification step with universal hash functions creates a
secret key.

If just a few errors are thought to have occurred Bob can try to
compute f(z) for all z such that d(y, z) 6 t, in other words, Bob can
try to compute f(z) for all z at distance at most t from y. This first
procedure is called bit twiddling, and except if there are a very small
number of errors rapidly becomes unfeasible.

If more errors are thought to have occurred then error detection
can be postponed to information reconciliation.

Alice applies an error correcting code in systematic form C to x
and sends only the the redundancy through the public channel to Bob.

The protocol described is generic and can be applied with any
linear error correcting code in systematic form. For low error proba-
bility (ε 6 0.01) the authors propose the use of Hamming codes [71]
complemented later, in the postponed error detection step, with bit
twiddling. If ε > 0.01 a convolutional code [71] could behave better
since the decoding effort escalates better than with Hamming codes
and MAP decoding. This first protocol achieves a efficiency that was
approximated by the following function in [9]:

f =
log(1+ 2

√
p(1− p))

h(p)
(5.7)

Table 5.1: Encoding rate and efficiency of the protocol in [9].

ε R Ropt f

0.001 0.9116 0.9886 7.75

0.010 0.7382 0.9192 3.24

0.030 0.5765 0.8056 2.18

0.050 0.4781 0.7136 1.82

0.100 0.3219 0.5310 1.45

0.250 0.1000 0.1887 1.11

0.400 0.0146 0.0290 1.01

5.3.2 The primitives

In this section we review three primitives that serve as building blocks
for the following information reconciliation protocols [88]. The primi-
tives are distributed algorithms that allow Alice and Bob to perform a
simple task on their strings, we introduce the primitives Dichot, Parity
and Confirm.
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The Parity primitive is used by Alice and Bob to compare the
parity of a specific subset of their strings. Parity is used by all the rest
of the primitives.

Algorithm 2 The Parity(a,b,π,n1,n2) primitive

Require: |a| = |b| and |a| > 0
â← π(a)
b̂← π(b)
Alice calculates pA ←

∑n2
i=n1

â[i]
Alice sends pA to Bob
Bob calculates pB ←

∑n2
i=n1

b̂[i]
Bob sends pB to Alice
return pA + pB

The Confirm primitive is used by Alice and Bob to check if their
strings differ. Alice and Bob choose a random subset of their strings
and check if the parity of the subset coincides. If the strings differ
Alice and Bob find a mismatch in the parity with probability 1/2.

Algorithm 3 The Confirm(a,b) primitive

Require: |a| = |b| and |a| > 0
Alice and Bob choose a random subset of their chains given by the
first d|a|/2e of permutation π
p←Parity(a,b,π,1,d|a|/2e)
return p, π

Dichot is a recursive binary search algorithm that allows Alice
and Bob to find an error if there is an odd number of errors. Given
two strings Dichot compares the parity of the first half, if it coincides
if performs Dichot on the second half, else it performs Dichot on the
first, see Fig. 5.1. Note that if there is an even number of errors there
is no guarantee on the behavior of Dichot.

5.3.3 The BBBSS protocol

A second proposal by Bennett et al [10] is embedded in a full QKD pro-
tocol description. The information reconciliation step in this protocol,
which we shall call Bennett, Bessette, Brassard, Salvail and Smolin’s
Information Reconciliation Protocol (BBBSS) following the names of
the authors, exploits the public channel’s interactivity and improves
the efficiency of the first proposal. We describe the whole procedure
in Alg. 5.

It consists in a multi-pass procedure. On each pass Alice and
Bob agree on a random permutation for their strings, then divide
the strings in blocks of length ki. ki was empirically found such that
in pass i a block of length ki is unlikely of having more than one
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Algorithm 4 The Dichot(a,b,π,n1,n2) primitive

Require: |a| = |b| and |a| > 0
if n1 = n2 then

Alice sends a and Bob sets b← a
return π(n1)

−1

else
p←Parity(a,b,π,n1,bn1 +n2

2
c)

if p 6= 0 then

return Dichot(a,b,π,n1,bn1 +n2
2

c
else

return Dichot(a,b,π,bn1 +n2
2

c+ 1,n2)
end if

end if

0 0 1 0 1 0 1 1 0 1

Alice Bob

0 0 0 1

0 1

Figure 5.1: Example of Dichot on blocks with mismatching parities. In this
example a = {01100} and b = {01101}. For simplicity we omit the
permutation and the substring indexes. There is an odd number of
errors. Alice and Bob run Dichot(a,b). Dichot divides the chains
in two halves and checks the parities of the first two halves:
Parity({011},{011}). As the parities coincide it recursively runs
Dichot({00},{01}). In this second run of Dichot it again divides the
chains in two halves and checks the parities of the first two halves:
Parity({0},{0}). Again the parities coincide and Dichot is called a
third time: Dichot({0},{1}). This time with the strings of length one
Alice and Bob find the error in the fifth bit.

.
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Algorithm 5 The BBBSS(x,y,pdiff) protocol

Require: |x| = |y| and |x| > 0
Set a0 ← x
Set b0 ← y
for i = 0→ 2 do

Alice and Bob choose a random permutation function πi
ki = fBBBSS(pdiff)

for l = 0→ dn/kie do
n1 ← lki
n2 ← min((l+ 1)ki,n)
Alice and Bob set p←Parity(ai,bi,πi,n1,n2)
if p 6= 0 then

Alice and Bob execute Dichot(ai,bi,πi,n1,n2)
end if

end for
Alice and Bob construct ci with one bit from every block created
in step i
ai+1 ← ai − ci

bi+1 ← bi − ci

if |ai+1| = 0 then
END

end if
end for
Set j← 0

while j 6 20 do
Alice and Bob set p,πi ←Confirm(ai,bi)
if p 6= 0 then

Alice and Bob execute Dichot(ai,bi,πi,1,d|a|/2e)
j← 0

end if
Alice and Bob construct ci with one bit from every block created
in step i
ai+1 ← ai − ci

bi+1 ← bi − ci

if |ai+1| = 0 then
END

end if
i← i+ 1

j← j+ 1

end while
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erroneous bit. They compare the parities of each block and for those
blocks with different parity they perform a binary search (see Alg. 4)
exchanging additionally logk bits.

Alice and Bob discard a bit from every block. Several passes are
performed with increasing block length until most errors are removed.

Then a new strategy is applied on each pass: Alice and Bob com-
pute the parity of a random substring, performing also a Dichotomic
search whenever it differs. This second strategy corresponds with
applying the Confirm primitive (see Alg. 3). This procedure can be
executed several times, if Confirm is executed s consecutive times
without finding an error the probability that there are still errors in
Bob’s chain is 1/2s.

The efficiency of the algorithm depends on choosing an appropri-
ate size of block. If the size is very small, most blocks are errorless
and unnecessary parities are exchanged between Alice and Bob. On
the other hand if the block size is too big in many blocks there will
be an even number of errors and they will remain undetected. In [10]
ki is optimized empirically to a value that can be approximated by
the function k0 = 0.55/p, where p is the crossover probability and
ki = d1.4ki−1e. The scheme was refined in [131], ki was analytically
found such that the number of parities exchanged to remove an error
on each pass are minimized. We reproduce their analysis.

Let the probability of detecting an error in a block be podd which
is the same probability as having an odd number of errors in the block,
we can calculate exactly podd as:

podd =
1− (1− 2p)ki

2
(5.8)

this follows from Lem. 9 if ∀i,pi = p.
Until pass i, z errors have been found and t bits have been dis-

carded, then the error probability on the remaining chain is:

pi =
np− z

n− t
(5.9)

Now the average number of disclosed parities ti and corrected
errors zi during pass i is:

ti =
n− t

ki
+ podd

n− t

ki
logpi =

n− t

ki
(1+ podd logpi) (5.10)

zi = podd
n− t

ki
(5.11)
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The relation between ti and zi gives the average number of parities
that need to be exchanged in order to correct one error:

ti
zi

=

n− t

ki
(1+ podd logpi)

podd
n− t

ki

(5.12)

which plugging in podd becomes:

ti
zi

= logpi +
2

1− (1− 2p)ki
(5.13)

there is no known formula for minimizing Eq. 5.13 but it can be easily
optimized numerically.

Algorithm 6 The Yamazaki(x,y,pdiff) protocol

Require: |x| = |y| and |x| > 0
a0 ← x
b0 ← y
i← 0

j← 0

while j 6 11 do
Alice and Bob choose a random permutation function πi
ki = fYamazaki(pdiff)

for l = 0→ dn/kie do
n1 ← lki
n2 ← min((l+ 1)ki,n)
p←Parity(a,b,πi,n1,n2)
if p 6= 0 then

Dichot(a,b,πi,n1,n2)
j← 0

end if
end for
Alice and Bob construct ci with one bit from every block created
in step i
ai+1 ← ai − ci

bi+1 ← bi − ci

if |ai+1| = 0 then
END

end if
i← i+ 1

j← j+ 1

end while
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Figure 5.2: Cascade division in blocks

5.3.4 The Cascade protocol

As mentioned in the introduction, the most widely used protocol for
error correction in the QKD context is Cascade. Proposed by Brassard
and Salvail in their seminal paper “Secret key reconciliation by public
discussion” [14] , this protocol is an evolution from BBBSS.

Cascade runs for a fixed number of passes. As in BBBSS, in each
pass, Alice and Bob divide their strings x = {x1, x2, ..., xn} and y =

{y1, y2, ..., yn} into blocks of equal length ki. If we let xl
i and yl

i stand
for Alice and Bob’s l-th block in pass i:

Kli = Ki[lki, min((l+ 1)ki,n)] (5.14)

The initial block length depends on the estimated error probability,
p, and it is doubled when starting a new pass. For each block they
compute Parity. If there is a parity mismatch it implies an odd number
of errors, and Alice and Bob compute Dichot on the block. The first
pass of Cascade is exactly the same as the first pass of BBBSS except
that in Cascade no bits are discarded this difference allows to correct
more bits in the following passes.

Whenever an error is found after the first pass, it uncovers an odd
number of errors masked on the preceding passes and the algorithm
returns to correct those errors previously undetected. The position
p where an error has been found belonged to different blocks in the
preceding passes. Alice and Bob apply the primitive Cascor to find
errors in these blocks in an optimized fashion (see Alg. 8). Let C be
the set of such blocks with an odd number of errors.

C = {Kli|p ∈ [lki, min((l+ 1)ki,n)]} (5.15)

Alice and Bob can now choose the smallest block in C and perform
a binary search to find and correct another error. This new error will
imply adding or removing blocks from C. The process continues until
C is emptied. This cascading process gives name to the protocol.

The value of the initial block size k1 is a critical parameter. In [14]
a numerical procedure is derived to choose k1 such that the proba-
bility that there are errors in a block from pass 1 Kl1 is exponentially
reduced with the number of passes. In [20] this numerical procedure is
approximated as k1 ≈ 0.73/e, e being the estimated error probability.
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Yamazaki et al. propose in two different papers [130, 117] improve-
ments on the analysis of the initial block size that allow to improve the
reconciliation efficiency. We review their proposals, following also the
ideas in [63], as the last main contributions to the family of protocols
initiated with BBBSS. Their proposal in [117] follows the observation
that most errors are detected in the first two passes of Cascade and
approximately half of them are corrected on each of both first passes.
From this hypothesis it is possible to minimize the parities exchanged
by optimizing k1 and k2. Now, if half the errors are corrected on the
first pass the number of parities exchanged in that pass are:

L1 =
n

k1
+
np

2
logk1 (5.16)

The remaining half of the errors are corrected in pass 2. In this
pass every detected error reveals a second error undetected in pass 1.
In consequence the errors are corrected in pairs and an error in pass 2
implies exchanging logk2 parities while an error detected in a block
from pass 1 implies exchanging logk1 parities. The expected number
of parities exchanged in pass 2 follows:

L2 =
n

k2
+
np

4
[logk1 + logk2] (5.17)

With this conditions the minimization of the parities gives a closed
formula for the optimal lengths in passes 1 and 2:

k1 = b
4 ln 2
3p
c (5.18)

k2 = b
4 ln 2
p
c (5.19)

Later, Yamazaki et al. improve their estimation by calculating
the average number of errors that are corrected in pass 1 and then
estimating the errors corrected in pass 2 as its complementary. In
particular if a block in pass 1 has an odd number of errors with
probability podd, then the expected number of corrected errors in pass
1 and pass 2 T1 and T2, respectively, are:

T1 =
n

k1
podd (5.20)

T2 = np− T1 = np−
n

k1
podd (5.21)
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The expression of the exchanged parities varies slightly:

L1 =
n

k1
+
npodd

k1
logk1 (5.22)

L2 =
n

k2
+
1

2

[
np−

n

k1
podd

]
[logk1 + logk2] (5.23)

There is no closed formula that minimizes the sum L1 + L2, how-
ever it is easy to minimize the sum numerically and obtain optimal
values for the lengths k1 and k2.

Algorithm 7 The Cascade(x,y) protocol

Require: |x| = |y| and |x| > 0
Set a0 ← x
Set b0 ← y
for i = 1→ 3 do

Alice and Bob choose a random permutation function πi
ki = fCascade(pdiff)

for l = 0→ dn/kie do
n1 ← lki
n2 ← min((l+ 1)ki,n)
p←Parity(a,b,πi,n1,n2)
if p 6= 0 then

e=Dichot(a,b,πi,n1,n2)
if i > 1 then

Cascor(a,b,i,e,π1,π2,...,πi)
end if

end if
end for

end for

Algorithm 8 The Cascor(x,y,i,e,π1,π2,...,πi) protocol

Require: |x| = |y| and |x| > 0
Construct C the set of all blocks that contain the bit e. C = {al

i|a[e] ∈
al

i}

while C 6= ∅ do
l = mini ′ al

i ′ ∈ C

e’=Dichot(al
i ′ ,b

l
i ′)

Update C with all blocks that contain the bit e ′

end while

It should be noted that Cascade is highly interactive even when
carefully implemented. Since many exchanges between Alice and Bob
are required to reconcile a string, the time overhead for these commu-
nications can severely limit the achievable key generation rate. This
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Figure 5.3: Discovering an error uncovers hidden errors in the preceding
steps.

could for instance be the case in free space QKD implemented between
a satellite and a base station and even more when the communication
between Alice and Bob is performed over a network connection with
a high latency.

Despite this limitation, Cascade is certainly the most widely used
reconciliation protocol in practical discrete variables QKD setups. One
of its interests is its relative simplicity and the fact that it performs
reasonably well in terms of efficiency. As we shall see, most of the alter-
native solutions developed after Cascade have focused on reducing the
level of interactivity, usually at the expense of reconciliation efficiency.
This is the reason why we have used Cascade as the essential element
of comparison with the solutions that we develop in the next chapter.

5.4 other work on information reconciliation protocols

Many variations around the principle of interactive reconciliation used
in Cascade have been proposed, in order to limit the interactivity.
Among the most notable works, we can cite the Winnow protocol [15].
Like Cascade, Winnow splits the binary strings to be reconciled into
blocks but instead of correcting errors by iterative binary search, the
error correction is based on the Hamming code. Winnow’s interest
lies in the reduction of the amount of required communication to
three messages per iteration [121]. In the first communication called
the parity test step Alice and Bob exchange the parities of every
block. After that, they exchange the syndrome of a Hamming code for
correcting single errors in every block with a parity mismatch. The
protocol incorporates a privacy maintenance procedure by discarding
one bit per parity revealed (i.e. m bits are discarded when a syndrome
of length m is exchanged).

Winnow is thus significantly faster that Cascade but unfortunately,
its efficiency is lower for error rates below 10 %, i.e. in the parameter
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range useful for practical QKD. Recently, some interesting improve-
ments have been proposed for selecting an optimum block length in
this protocol [51].

Another interesting development has been conducted by Liu
[64] who has proposed a protocol that optimizes the information
exchanged per corrected bit. Liu’s protocol is in essence very simi-
lar to Cascade. Its objective is to minimize the information sent on
the public channel to correct one error during a pass. This protocol
however remains highly interactive.

Some QKD protocols provide Alice and Bob with correlated con-
tinuous random variables and specific work on key reconciliation has
been conducted in this context, beginning with the work on Sliced
Error Correction [122] used to convert continuous variables into bi-
nary strings. It is also mainly in the context of continuous variables
that modern coding techniques have been used within information
reconciliation protocols: turbo codes in [85, 121] and LDPC codes in
[13, 61].

5.5 ldpc

In contrast with continuous-variable information reconciliation, not
much has been done to adapt modern coding techniques to the dis-
crete case. Forward error correction has the advantage of being very
well known and even attaining the theoretical limit for some chan-
nels [102]. Also, and of great importance for SKD, it requires a single
message, namely the syndrome of X for the code being used, to correct
the discrepancies. Relevant references are Watanabe et al. [125] who
proposed using LDPC codes for their information reconciliation proce-
dure, BBN Niagara [34] and the work for free space QKD by Duligall
et al. [25], all of which use LDPC codes. However [34] only provides a
single point comparing the performance of LDPC codes and Cascade,
showing a net decrease of the communication overhead but a slightly
decrease in the efficiency while [25] does not provide any information
on the results of their use of LDPC codes.

Let us now we consider the experimental performances of using
a set of LDPC codes developed for the BSC. LDPC codes are decoded
with the belief propagation algorithm [38]. We have considered the
efficiency of reconciliation for ε = 10−3, that is, the remaining frame
error probability is below ·10−3, though the remaining errors could be
handled very efficiently by concatenation with a Bose, Ray-Chaudhuri
and Hocquenghem codes (BCH) code of very high rate (typically 0.998
[2]).

It is worth noting that classical error-correcting codes were explic-
itly considered and said to be inadequate for information reconciliation
in many of the first works [8, 9, 10, 20]. These limitations were con-
sistent with the computational resources available at the time and
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explain why alternative methods were considered for information
reconciliation.

As explained in Section 5.1 the performance of a reconciliation
protocol can be evaluated by measuring the amount of information
disclosed in this process. For chains modeled as the input and output
of a BSC with a crossover probability p, an ideal reconciliation protocol
would reveal a fraction h(p) while a real protocol reveals f(p)h(p).

We have represented the reconciliation efficiency f(p) on Fig. 5.4
for Cascade and for a set of LDPC codes. The results that we have found
with Cascade are very similar to those of Crepeau [20] or Brassard
and Salvail [14]: Cascade performs well at low bit error rates where its
efficiency differs only by 10% from the Shannon limit of 1. However, its
efficiency decreases gradually as the crossover probability increases.

A quick observation reveals that, in contrast with Cascade, the
reconciliation efficiency f(p) exhibits a saw behavior when our set
of LDPC codes is used. The reason for this is that we have chosen a
discrete number of codes. As each code has a threshold, a string with
a measured error probability p will be corrected with the code having
the smallest threshold greater than p. The saw effect will be reduced
as the number of LDPC codes used is increased.

As we can see on this figure, optimized LDPC codes can perform
better than Cascade as soon as the error rate is above 4%. With our
discrete set of LDPC codes, the performances are always better than
Cascade when the error rate is above 5%. This gain of performance
can significantly impact on the achievable secret key generation rate
in practical QKD.
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Figure 5.4: Reconciliation Efficiency f(p) achieved using our discrete set of
LDPC codes described in Table 3.2 compared to Cascade.



6
R AT E A D A P T I V E I N F O R M AT I O N
R E C O N C I L I AT I O N

We wish to change the code rate, i.e., the number
of check bits, and hence the correction power of
the code during transmission of an information

frame according to source and channel needs.
For practical purposes, we would like to have not

just switching between a set of encoders and
decoders, but one encoder and one decoder which can

be modified without changing their basic structure.

— Joachim Hagenauer [49]

6.1 introduction

Although linear codes are a good solution for the reconciliation prob-
lem, since they can be tailored to a given error rate, their efficiency
degrades when it is not known beforehand. This is the case in QKD,
where the error rate is an a priori unknown that is estimated for every
exchange. The Quantum Bit Error Rate (QBER) might vary significantly
in two consecutive key exchanges, specially when the quantum chan-
nel is transported through a shared optical fibre that can be used
together with several independent classical or quantum channels that
can add noise. To address this problem there are two different options:
(i) it is possible to build a code once the error rate has been estimated,
and (ii) a pre-built code can be modified to adjust its information rate.
The computational overhead would make the first option almost un-
feasible except for very stable quantum channels, something difficult
to achieve in practice and impossible in the case of a shared quantum
channel in a reconfigurable network environment [60]. We proceed to
describe the use of the second strategy as the easiest and most effective
way to obtain a code for the required rate, for which we describe a
protocol that adapts pre-built codes in real time while maintaining an
efficiency close to the optimal value.

We introduced this one-way reconciliation technique in [31, 29]
and analyzed its security in [30]. The protocol is protected by the
patent ES 2389217 B2 [33]. Outside the scope of this thesis, a new
two-way protocol exploiting these ideas was developped in [74, 76].

91
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6.2 rate modulation

Puncturing and shortening, described in Sec. 3.4 are two common
strategies used to adapt the rate of a linear code. These techniques
may be regarded as the transmission of different parts of the codeword
over different channels (see Fig. 6.1).

Since puncturing is a process by which p codeword symbols are
eliminated, it can be seen as a transmission over a BEC with erasure
probability of 1, BEC(1), or it also can be regarded as a transmission
over a BSC with maximum error BSC(0.5). It should be no surprise
that both extreme channels have the same capacity:

CBSC(0.5) = CBEC(1) = 0 (6.1)

Shortening is a process by which s codeword symbols are known
with absolute certainty, as such it can be seen as a transmission over
a BEC with erasure probability of 0, BEC(0), or in the same fashion it
can be presented as a transmission over a noiseless BSC BSC(0). Again
both capacities coincide:

CBSC(0) = CBEC(0) = 1 (6.2)

The remaining symbols are transmitted by the real channel which
in the present paper can be modeled by a binary symmetric channel
with crossover probability ε, BSC(ε)

Supposing that R0 is the original coding rate, the modulated rate
is then calculated as:

R =
R0 − σ

1− π− σ
=

k− s

n− p− s
(6.3)

where π and σ represent the ratios of information punctured and
shortened respectively.

Both strategies, puncturing and shortening, can be applied simul-
taneously. Given a C(n,k) code and n ′ 6 n bits, if puncturing and
shortening are applied with a constant number d of punctured and
shortened symbols, a single code can be used to protect the n ′ bits for
different error rates. There are two consequences of applying a con-
stant d: (i) there is a limit to the minimum and maximum achievable
information rates. These limits, expressed as a function of δ = d/n,
define the correction interval:

0 6 Rmin =
R0 − δ

1− δ
6 R 6

R0
1− δ

= Rmax 6 1 (6.4)

(ii) puncturing and shortening procedures cause an efficiency loss [47].
Therefore, there is a trade-off between the achievable information rates
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Figure 6.1: Puncturing and shortening on a LDPC code results in the divi-
sion of the original binary symmetric channel used to reconcile
Alice’s x string with Bob’s y into three different channels: a binary
erasure channel with erasure probability of 1 (for the fraction π of
punctured symbols), a BEC with erasure probability of 0 (for the
fraction σ of shortened symbols) and a binary symmetric channel
with crossover probability ε (for the rest of the symbols).
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and reconciliation efficiency. One way to compensate both constraints
is to use multiple codes to define different correction intervals as
shown in the next section, Section 6.3.

This efficiency loss, caused by high levels of puncturing and short-
ening, can be avoided if a set of n codes Ci with different information
rates is used: R0(C1) 6 R0(C2) 6 R0(Cn). The target error range can
then be partitioned into, [Rmin(C1),Rmax(C1)]∪ [Rmin(C2),Rmax(C2)]∪
...∪ [Rmin(Cn),Rmax(Cn)], not necessarily with the same size. The num-
ber of intervals depends on the width of the error rate range to cover
and on the desired efficiency. The compromise between the width
of the interval covered and the achieved efficiency in the one code
case is transferred to a compromise between efficiency and the added
complexity of managing several codes. We can study this effect with
the DDE described in Sec. 3.2.3. To take into account puncturing and
shortening we can modify the initial density (see Eq. 3.52):

fr(p) = (1− δ)frBSC(p) + πδ0(x) + σδ∞(x) (6.5)

Fig. 6.2 shows the computed efficiency thresholds for several
families of codes with different coding rates. It can be observed how
different values of δ offer a trade-off between the covered range of
rates and the achieved efficiency.

6.3 protocol

We now proceed to describe a rate-compatible information reconcilia-
tion protocol using puncturing and shortening techniques as described
above.

Step 0: Raw key exchange. Alice and Bob obtain a raw key. The key
exchange may be modeled as follows. Alice sends to Bob the string x,
an instance of a random variable X, of length ` = n− d through a BSC

with crossover probability ε. Bob receives the correlated string, y, but
with discrepancies to be removed in the following steps.

Step 1: Pre-conditions. Prior to the key reconciliation process Alice
and Bob agree on the following parameters: (i) a pool of shared
codes of length n, constructed for different coding rates; (ii) the size
of the sample, t, that will be used to estimate the error rate in the
communication; and (iii) the maximum number of symbols that will
be punctured or shortened to adapt the coding rate, d = p+ s = nδ.

Step 2: Error rate estimation. Bob chooses randomly a sample of
t bits of y, α(y), and sends them and their positions, β(y), to Alice
through a noiseless channel. Using the positions received from Bob,
β(y), Alice extracts an equivalent sample in x, α(x), and estimates the
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Figure 6.2: Efficiency thresholds for different codes with information rates,
R0 = 0.5, 0.6 and 0.7. Two δ values, 0.1 (solid line) and 0.05

(dashed) have been used to adapt the rate for each code. As a
comparison, a single code covering all of the range of interest,
with rate R0 = 0.5 and δ = 0.5, is presented to show how the
efficiency degrades for high δ values, although a broader range is
covered. The codes have been optimized using the density evolu-
tion algorithm for the BSC. The Cascade efficiency was calculated
using the same sample size (2× 105). The block size used in the
first step, k1, is given by k1 = d0.73/εe (optimized in [20]) and
doubled in every subsequent step kn = 2kn−1. The sawtooth
behavior of the Cascade efficiency reflects the points where k1
changes.
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crossover probability for the exchanged key by comparing the two
samples:

ε ′ =
α(x) +α(y)

t
(6.6)

Once Alice has estimated ε ′, she knows the theoretical rate for
a punctured and shortened code able to correct the string. Now she
computes the optimal rate corresponding to the efficiency of the code
she is using: R = 1− f(ε ′)h(ε ′); where h is the binary Shannon entropy
function and f the efficiency. Then she can derive the optimal values
for puncturing and shortening, p and s respectively, as:

s = d(R0 − R(1− d/n)) ·ne
p = d− s

(6.7)

Step 3: Coding. Alice creates a string x+ = g(x,σε ′ ,πε ′) of size n.
The function g defines the n− d positions to take the values of string
x, the p positions to be assigned random values, and the s positions
to have values known by Alice and Bob. She then sends s(x+), the
syndrome of x+, to Bob as well as the estimated crossover probability
ε ′.

This process can be regarded as jointly coding (and decoding) the
original strings sent through a BSC(ε) with p bits sent through a BEC

with erasure probability 1, and s bits sent through a noiseless channel
(see Fig. 6.1).

Step 4: Decoding. Bob can reproduce Alice’s estimation of the op-
timal rate R, the positions of the p punctured bits, and the positions
and values of the s shortened bits. Bob then creates the corresponding
string y+ = g(y,σε ′ ,πε ′). He should now be able to decode Alice’s
codeword with high probability, as the rate has been adapted to the
channel crossover probability. Bob sends an acknowledgment to Alice
to indicate if he successfully recovered x+.

6.4 security

The security of sp-protocols is addressed in this section. We demon-
strate that the use of an sp-protocol does not impose any constraint
on the achievable secret key rate. Moreover, from this demonstration
it is possible to infer that the quality of the information reconciliation
procedure depends only on the quality of the error correction code.
We begin with the proof of a lemma (Lem. 12, 13, 14, 15) that allows
to exploit the random construction of the punctured and shortened
bits in the proposed protocol. Then, we consider the security of the
protocol for the four different SKD scenarios discussed in Ch. 4.
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Lemma 12. Let X, Y and Z be three random variables, if Y is independent
from variables X and Z the joint min-entropy of X and Y conditioned to Z
can be expressed by:

H∞(XY|Z) = H∞(X|Z) +H∞(Y) (6.8)

Proof.

H∞(XY|Z) = min
z
H∞(XY|z) (6.9)

= −min
z

log max
xy

P(xy|z) (6.10)

= −min
z

log max
xy

P(x|z)P(y|z) (6.11)

= −min
z

[
log max

x
P(x|z) + log max

y
P(y|z)

]
(6.12)

= H∞(X|Z) +H∞(Y) (6.13)

where Eq. 6.11 derives from the consideration that X and Y being
independent variables, and Eq. 6.13 from Y and Z being independent
variables.

Lemma 13. Let X, Y and Z be three random variables, if Y is independent
from variables X and Z the joint collision entropy of X and Y conditioned to
Z can be expressed by:

H2(XY|Z) = H2(X|Z) +H2(Y) (6.14)

Proof.

H2(XY|Z) =
∑
z

p(z)H2(XY|z)

= −
∑
z

p(z) log

(∑
xy

p(xy|z)2

)

= −
∑
z

p(z) log

(∑
x

p(x|z)2
∑
y

p(y|z)2

)
=
∑
z

p(z) [H2(X|z) +H2(Y|z)]

= H2(X|Z) +H2(Y) (6.15)
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Lemma 14. Let X, Y and Z be three random variables and ε > ε ′ > 0, if Y
is independent from variables X and Z. Then:

Hε∞(XY|Z) > Hε
′∞(X|Z) +H∞(Y) (6.16)

Proof. We follow Renner’s procedure to proof the superadditivity and
subadditivity of smooth quantum min-entropy in [95]. ∃pX̂Ẑ,pŶ with
δ(pX̂Ẑ,pXZ) < ε

′ and δ(pŶ,pY) < ε
′′ = ε− ε ′ such that:

H∞(X̂|Ẑ) = Hε ′∞(X|Z) (6.17)

H∞(Ŷ) = Hε ′′∞ (Y) (6.18)

We have by Lem. 12 that:

H∞(X̂Ŷ|Ẑ) = H∞(X̂|Ẑ) +H∞(Ŷ)
= Hε

′∞(X|Z) +Hε ′′∞ (Y)

> Hε
′∞(X|Z) +H∞(Y) (6.19)

where the inequality holds because δ(Y, Y) = 0 < ε ′′ We can finish
the proof if Hε∞(XY|Z) > H∞(X̂Ŷ|Ẑ). This condition holds because
δ(pŶX̂Ẑ,pYXZ) < ε:

δ(pŶX̂Ẑ,pYXZ) = δ(pŶ × pX̂Ẑ,pY × pXZ)

6 δ(pŶ × pX̂Ẑ,pŶ × pXZ) + δ(pŶ × pXZ,pY × pXZ)

=
1

2

∑
xyz

|pŶ(y)(pX̂Ẑ(xz) − pXZ(xz))|

+
1

2

∑
xyz

|pXZ(xz)(pŶ(y) − pY(y))|

= δ(pX̂Ẑ,pXZ) + δ(pŶ,pY)

< ε ′ + ε ′′ (6.20)

where the first inequality follows from the triangle inequality for the
variational distance (see Eq. 2.8).

Lemma 15. Given a composite system with three elements X, Y and Z and
let ε > ε ′ > 0. If the state of the system can be described by a product state
of the form ρY ⊗ ρXZ, where ρY is the operator representation of a random
variable Y distributed by pY, i.e. ρY =

∑
y pY(y) |y〉 〈y|. Then:

Hε∞(XY|Z) > Hε
′∞(X|Z) +H∞(Y) (6.21)

where H∞(Y) is the classical min-entropy associated with the random vari-
able Y.
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Proof. We can trivially represent ρY over P(HY ⊗H1) with the den-
sity matrix ρY ⊗ id1. With this representation we can apply Renner’s
superadditivity theorem in [95] for product states:

Hε∞(ρXZ ⊗ ρYI|ZI) > Hε
′∞(X|Z) +Hε ′′∞ (Y|I) (6.22)

where ε = ε ′ + ε ′′ .
The next inequality follows because we can choose σI = id1 and

ρ̂YI = ρYI.

Hε
′′∞ (ρYI|I) = sup

σI

sup
ρ̂YI

H∞(ρ̂YIσI)

> H∞(ρYI|id1) (6.23)

Now:

H∞(ρYI|id1) = − log min λ|λidY ⊗ id1 − ρYI > 0

= − log min λ|λidY − ρY > 0

= − log min λ|λidY −
∑
y

pY(y) |y〉 〈y| > 0

= − log max
y
pY(y)

= H∞(Y) (6.24)

where in the first equation we have applied the definition of min-
entropy from Eq. 4.28, in the second the tensor product with the
identity leaves the state unchanged and the fourth equation follows
because the smallest λ that makes λidY −

∑
y pY(y) |y〉 〈y| non-negative

is the maximum probability in pY.
We prove the result putting together Eq. 6.22, Eq. 6.23 and Eq. 6.24:

Hε∞(XY|Z) = Hε∞(ρXZ ⊗ ρYI|ZI)

> Hε
′∞(X|Z) +Hε ′′∞ (Y|I)

> Hε
′∞(X|Z) +H∞(ρYI|id1)

= Hε
′∞(X|Z) +H∞(Y) (6.25)

We finish the security section proving, in the four security scenar-
ios reviewed in Ch. 4, that the sp-protocol does not reveal any more
information than a reconciliation protocol using a code with the same
coding rate would reveal.

Theorem 3. Given a code C(n,k), a security constant t, the public com-
munication C, and Z the eavesdropper information, then the min-entropy of
the variable X̂ constructed by the sp-protocol, is with probability 1− 2−t

greater or equal than that of using an adapted error correcting code of rate R
to reconcile X and Y minus the security constant:

H∞(X̂|ZC) > H∞(X|Z) − |X|(1− R) − t (6.26)
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Figure 6.3: Extended string construction. The figure shows how the extended
string x̂ is constructed from a random permutation of two strings:
the original string to be reconciled, x, and a string consisting of
punctured and shortened symbols, x ′.

Proof. Directly given by Eq. 4.20:

H∞(X̂|ZC) > H∞(X̂|Z) − |C|− t (6.27)

Distinguishing in X̂ part of the variable that corresponds to the
sequence to be reconciled, X, and the additional variable used to
extend the original sequence, X ′ (see its correspondence with strings
in Fig. 6.3):

= H∞(XX ′|Z) − |C|− t (6.28)

Since X ′ is independent of Z and X by construction, Lem. 12 can
be applied:

= H∞(X|Z) +H∞(X ′) − |C|− t (6.29)

The entropy of H∞(X ′) takes the value of the number of random
p+ s bits:

= H∞(X|Z) + |X|
π+ σ

1− π− σ
− |C|− t (6.30)

The length of the conversation |C| is s+n− k, which in the pro-
posed protocol stand for the s shortened bits and the syndrome of X ′.
It can be written as a function of the size of X, π and σ:

= H∞(X|Z) + |X|
π+ σ

1− π− σ
− |X|

(1− R0) + σ

1− π− σ
− t (6.31)
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and thus

= H∞(X|Z) − |X|(1− R) − t (6.32)

Theorem 4. Given a code C(n,k), a security constant t, the public com-
munication C, and Z the eavesdropper information, then the collision en-
tropy of the variable X̂ constructed by the sp-protocol, is with probability
1− 2−(t/2−1) greater or equal than that of using an adapted error correct-
ing code of rate R to reconcile X and Y minus the security constant:

H2(X̂|ZC) > H2(X|Z) − |X|(1− R) − t (6.33)

Proof. From Eq. 4.17:

H2(X̂|ZC) > H2(X̂|Z) − |C|− t (6.34)

The same argument as in Th. 3 follows:

= H2(XX ′|Z) − |C|− t (6.35)

We now apply Lem. 13:

= H2(X|Z) +H2(X ′) − |C|− t (6.36)

and, operating:

= H2(X|Z) − |X|(1− R) − t (6.37)

Theorem 5. Given a code C(n,k), ε1,ε2 > 0, the public communication
C, and Z the eavesdropper information, then the smooth min-entropy of the
variable X̂ constructed by the sp-protocol, is greater or equal than that of
using an adapted error correcting code of rate R to reconcile X and Y minus
a security constant:

Hε1+ε2∞ (X̂|ZC) > Hε
′∞(X|Z) − |X|(1− R) − log

1

ε2
(6.38)

with ε1 > ε ′ > 0

Proof. From Eq. 4.9 and Lem. 14:

Hε1+ε2∞ (X̂|ZC) > Hε
′∞(X|Z) +H∞(X ′) − |C|− log

1

ε2
(6.39)

which after some manipulation becomes:

= Hε
′∞(X|Z) − |X|(1− R) − log

1

ε2
(6.40)
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Theorem 6. Given a code C(n,k), and ε > 0, the public communication
C, and a composite quantum system described by the operator ρXYZ where Z
represents the eavesdropper’s system, then the min-entropy of X̂, is greater
or equal than that of using an adapted error correcting code of rate R to
reconcile X and Y:

Hε∞(X̂|ZC) > Hε
′∞(X|Z) − |X|(1− R) (6.41)

with ε > ε ′ > 0.

Proof. From Eq. 4.34 and Lem. 15:

Hε∞(X̂|ZC) > Hε
′∞(X|Z) +H∞(X ′) − |C| (6.42)

which operating becomes:

= Hε
′∞(X|Z) − |X|(1− R) (6.43)

6.5 simulation results

In this section we discuss the efficiency of the rate-compatible infor-
mation reconciliation protocol for strings that can be regarded as the
input and output of a BSC. We compare the results of the protocol to
regular LDPC codes as proposed in Sec. 5.5 and to Cascade.

Fig. 6.4 shows the efficiency, calculated as defined in Eq. (5.2), in
the reconciliation process simulated for three different alternatives: (i)
using the Cascade protocol, (ii) using LDPC codes without adapting the
information rate, and (iii) using LDPC codes adapting the information
rate with the rate-compatible protocol proposed here. The target error
range selected is [0.055, 0.11], where a high efficiency protocol is a
must. Low cross over probabilities do not demand a close to optimal
efficiency since other requisites, such as the throughput, are more
critical in obtaining a high secret key rate. In order to achieve a
efficiency close to 1, the error range [0.055, 0.11] has been divided into
two correction intervals: R0(C1) = 0.5, R0(C2) = 0.6 and δ = 0.1. The
codes have been constructed using families of LDPC codes specifically
optimized for the BSC.

The construction process has been optimized using a modified
progressive edge-growth algorithm for irregular codes with a detailed
check node degree distribution [74]. A codeword length of 2× 105 bits
has been used.

The results show that there is a small price to pay for the rate
adaptation. LDPC codes without puncturing and shortening behave
slightly better near their threshold, however for the δ value chosen
the penalty is very small and the rate-compatible protocol allows to
reconcile strings in all the range with f 6 1.1. The unmodulated LDPC
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Figure 6.4: Computed efficiency for medium to high error rates, a typical
range expected in shared quantum channel environments, long
distances or high losses scenarios, such as in networks, and where
obtaining high efficiency is critical. The solid line is the Cascade
efficiency. Its parameters are the same than for Fig. 6.2. The
dotted line represents the modulated LDPC thresholds. For all
LDPC results shown here δ = 0.1. The long, thick, dashed lines
joined by thin dashed lines is the efficiency of an unmodulated
code. Short dash and dash-dotted lines are the results for the
modulated codes. Dash-dotted is for a rate R0 = 0.6 and short
dash are for R0 = 0.5, triangles and diamonds are used to mark
the computed points. The smooth and efficient behavior of the
modulated, rate adapted codes, as compared to the unmodulated
version is to be noted. The gain in efficiency over Cascade allows
for an extended usability range of the system at high error rates.
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codes exhibit an undesirable saw behavior that can lead to efficiencies
worse than that of Cascade unless many different codes are calculated,
incurring in an unacceptable penalty in Central Processing Unit (CPU)
time. The new protocol works at a much better efficiency than Cascade,
that performs in all the tested range with f > 1.17.



7
C O N C L U S I O N

If your quanta are broke. We fix ’em.

— Seth Lloyd [66]

This thesis discusses some improvements in the distillation of infor-
mation theoretically secure secret keys. In contrast to computational
security, ITS allows the legitimate parties to assume that their keys re-
main secure independently of any unforeseen technical or theoretical
developments.

Several scenarios allow to distill information theoretically secure
secret keys. The common feature among them is that they act as a
source of correlated randomness. The key distillation process can be
divided in two steps: information reconciliation and privacy amplifi-
cation. Information reconciliation allows to establish a common string
while in the privacy amplification step a shorter but more secure key is
created. Both steps are highly coupled: in essence every bit exchanged
in the information reconciliation step implies that one additional bit
has to be removed of the final key in the privacy amplification step.

The problem of correcting the discrepancies between the strings
of the legitimate parties in SKD is known as the problem of source
coding with side information by the information theory community.
Under this paradigm, the theoretical limits of information reconcilia-
tion are given by the Slepian-Wolf bound. In some models of SKD the
strings can be modeled as the input and output of a BSC, if the assump-
tion holds the theoretical limits of information reconciliation can be
reached with linear error correcting codes. Information reconciliation
is basically error correction.

In this thesis we have adopted a pragmatic approach towards
error correction and developed specific techniques well suited for SKD

purposes. In the real scenario of QKD we have to deal with a broad
range of error rates, ranging from 1% to 11%. Moreover, information
reconciliation has to be performed in near real time, limiting the
number of accesses to the communications channel. As opposed to
the eavesdropper that should safely be supposed to have access to
unlimited resources, the legitimate parties are equipped with a finite
amount of resources. LDPC codes were then selected as the framework
to develop a practical information reconciliation scheme.

In Ch. 3 we design LDPC codes for the BSC with thresholds close
to the theoretical limit. The results in Ch. 5 show that each code,
adapted to a specific error rate, provides a close to optimal solution for
reconciliation provided that the strings can be modeled as the input
and output of the adequate BSC. The reconciliation efficiency, however,
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drops sharply as the error rate of the BSC moves away from the design
point. To solve this issue, we propose the sp-protocol in Ch. 6, a
simple protocol based on puncturing and shortening LDPC codes.
This protocol limits the information gathered by the eavesdropper
to the same amount of information than an adapted code would
reveal; even if more data is exchanged on the public channel. The
extra data exchanged increases the required bandwidth but keeps
the interactivity requirements to zero, compared to the heavy use
of two-ways communications that cascade-like protocols require. We
have shown that this is the case in several ITS models. In particular
some QKD protocols can use the sp-protocol as an efficient information
reconciliation primitive.

The sp-protocol allows the legitimate parties to reconcile their
chains with a continuous efficiency curve, and as the efficiency of LDPC

codes under puncturing and shortening can be analytically described
and optimized, the results proved in this thesis allow to address the
information reconciliation problem as a code design problem. The
results obtained on Ch. 6 for the sp-protocol indicate that efficiency
values close to the theoretical limits can be obtained.

This new framework allows to consider the information reconcilia-
tion step following the random distribution of SKD protocols as a code
design problem. The ideas can be applied to any protocol beyond the
specific setting that we have analyzed, e.g. recently the sp-protocol has
been proposed for the reconciliation of continuous-variable QKD [56].
We believe that this opens the doors to consider simpler and possibly
better schemes to process all the classical part of SKD protocols as a
whole.



A C R O N Y M S

AMS American Mathematical Society

AWGN Additive White Gaussian Noise

BCH Bose, Ray-Chaudhuri and Hocquenghem codes

BBBSS Bennett, Bessette, Brassard, Salvail and Smolin’s Information
Reconciliation Protocol

BEC Binary Erasure Channel

BER Binary Error Rate

BSC Binary Symmetric Channel

CPU Central Processing Unit

DDE Discretized Density Evolution

DMC Discrete Memoryless Channel

DiffE Differential Evolution

FER Frame Error Rate

iid Independent Identically Distributed

ITS Information Theoretic Security

MAP Maximum a Posteriori

ML Maximum Likelihood

MPA Message Passing Algorithm

LDPC Low Density Parity Check

LLR Log Likelihood Ratio

PEG Progressive Edge Growth

QBER Quantum Bit Error Rate

QKD Quantum Key Distribution

RSA Rivest, Shamir and Adleman’s algorithm

SKD Secret Key Distribution

SPA Sum Product Algorithm
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