
*Published in: Jennifer Pérez, Isidro Ramos, José A. Carsí, Cristóbal Costa-Soria: Model-Driven
Development of Aspect-Oriented Software Architectures. Journal of Universal Computer Science, vol. 19,
no. 10 (2013), 1433-1473, accepted: 27/5/13 © J.UCS. DOI: 10.3217/jucs-019-10-1433. Rankings: JCR:
0.762 , Journals CORE: A, Journals Microsoft Academic Research/Computer Science: 316 position of 1363

PRISMA: Model-Driven Development of Aspect-
Oriented Software Architectures*

Jennifer Pérez1, Isidro Ramos2, Jose A. Carsí2, Cristóbal Costa-Soria3

Technical University of Madrid (UPM) - ETSISI-CITSEM, Madrid, Spain
jenifer.perez@eui.upm.es

Universidad Politécnica de Valencia (UPV) - DSIC, Valencia, Spain
iramos@dsic.upv.es, pcarsi@dsic.upv.es

Global Metanoia S.L., Paterna Technological Science Park (Valencia), Spain
ccosta@globalmetanoia.com

Abstract. This summary presents a methodology for supporting the develop-
ment of AOSAs following the MDD paradigm. This new methodology is called
PRISMA and allows the code generation from models which specify functional
and non-functional requirements.

Keywords: MDD, Aspect-Oriented Software Architectures, code generation

1. Summary

Currently, mature MDD methodologies are required for supporting the code genera-
tion from models that specify non-functional requirements. Aspect-Oriented Software
Architectures (AOSA) emerged to deal with the design of both, functional require-
ments and non-functional requirements, which opened an important challenge in the
software engineering field: the definition of a methodology for supporting the devel-
opment of AOSAs following the MDD paradigm. This new methodology should al-
low the code generation from models which specify functional and non-functional
requirements. This contribution presents an approach, called PRISMA, which deals
with this challenge. PRISMA follows the MDD approach by enabling software archi-
tects to define AOSA models, which allow the generation of the final code of AOSAs.
The tasks of the software architect are facilitated thanks to the fact that: (i) the level of
abstraction provided by models is higher than the provided by programming lan-
guages, and (ii) the code is automatically generated from models. The PRISMA MDD
process is based on MOF and its models undergo the different levels of refinement
during the process. Therefore, the PRISMA MDD process is divided into two main
steps: (i) from the PRISMA Metamodel to PRISMA Type Models, and (ii) from
PRISMA Type Models to PRISMA Configuration Models (see Fig. 1)

The PRISMA metamodel defines the PRISMA model and establishes its properties
in a precise way (see 1, Fig. 1). To use these primitives in a modeling context, the
PRISMA CASE tool provides the PRISMA metamodel through a graphical language
to model PRISMA software architectures (see 2, Fig.1). PRISMA type models are

described using the concepts that are defined in the metamodel, guaranteeing that
every PRISMA type model is defined conforming to the PRISMA metamodel (see 4,
Fig. 1). The PRISMA MDD process assists the architect by providing mechanisms for
the verification of models: this allows the detection of modelling mistakes, and keeps
them from spreading throughout the rest of the stages. This verification distinguishes
two kinds: verification rules that must always be satisfied (hard constraints), and veri-
fication rules that must be satisfied once the model has been completely finished
(weak constraints). Once the PRISMA type model has been completely described, the
architect can proceed to generate both the PRISMA AOADL specifications and the
C# code corresponding to this model (see 4, Fig.1).In addition, since a PRISMA type
model is a generic system architecture (banking system, tele-operated robot, etc.), the
model can be reused for different specific systems. Once its code has been generated,
the architect can proceed to define a specific system model, called configuration
model. Every configuration model conforms to a PRISMA type model thanks to the
fact that PRISMA configurations are defined using the concepts that have been previ-
ously defined in its PRISMA type model as modelling primitives. They are provided
by PRISMA CASE, which automatically generates a domain-specific graphical mod-
elling tool to configure specific software architectures from the type models, and gen-
erating the C# application code corresponding to the configuration model (see 5 and
6, Fig. 1).

The PRISMA MDD process is presented as an important advance in the automatic
generation of code from AOSAs thanks to its automatic generation of AOADL speci-
fication, C# code and a domain-specific model to configure the final PRISMA soft-
ware architecture of a system. This domain-specific model reduces the gap between
the user and his/her knowledge about modelling. In addition, it has been applied to
different kind of applications to validate its code generation capability: the robots
TeachMover and Agrobot. The results revealed a high percentage of automatic code
generation from PRISMA AOSA models: 94,3% for the TeachMover and 68,1% for
the Agrobot, which correspond with 5686 and 1125 Generated Lines of Code. These
code generation results reveal that the complete automatic code generation from
AOSA models is feasible.

Fig. 1. MDD Process from the PRISMA Metamodel to Applications

