

UNIVERSIDAD POLITÉCNICA

DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INFORMÁTICOS

MÁSTER UNIVERSITARIO EN INGENIERÍA DEL SOFTWARE –
EUROPEAN MASTER IN SOFTWARE ENGINEERING

Application of User-centered Design in the
Development of an Automated/Assisted Testing

System for Self-service Devices

Master Thesis

Edwin Leonardo Téllez Sánchez

Madrid, July 2015

2

This thesis is submitted to the ETSI Informáticos at Universidad Politécnica de Madrid in partial

fulfillment of the requirements for the degree of Master of Science in Software Engineering.

Master Thesis

Master Universitario en Ingeniería del Software – European Master in Software Engineering

Thesis Title: Application of User-centered Design in the Development of an Automated/Assisted

Testing System for Self-service Devices

Thesis no: EMSE-2015-05

July 2015

Author: Edwin Leonardo Téllez Sánchez

Ingeniero de Sistemas

Universidad Nacional de Colombia

Supervisor: Co-supervisor:

Xavier Ferré
Ph.D. in Computer Science
Universidad Politécnica de Madrid

Jose González-Alonso
Ingeniero en Informática
Universidad de A Coruña, Spain
Master in Business Administration
University of Oxford, UK

Departamento de Lenguajes y Sistemas
Informáticos e Ingeniería de Software
Escuela Técnica Superior de Ingenieros
Informáticos
Universidad Politécnica de Madrid

Head of professional services for
Payments – Europe
NCR Corporation

ETSI Informáticos
Universidad Politécnica de Madrid
Campus de Montegancedo, s/n
28660 Boadilla del Monte (Madrid)
Spain

3

To God

To my family

To my friends in Spain and Colombia,

And to everyone that has helped me be a better person and professional

4

ACKNOWLEDGEMENTS

I thank to Xavier Ferré, my advisor, and Jose Gonzalez, my co-advisor at NCR, for their

feedback, patience, and trust.

I thank also the people at NCR Iberia, who made possible this project, especially Susana

Miranda and Eva Pindado. They were a supportive team during the nine months of work.

Finally, I thank the Graduated International School of Campus Moncloa (EIP Campus

Moncloa), which supported my studies through a scholarship for the academic year of 2014-

2015.

5

CONTENTS

ABSTRACT ... 9

1 INTRODUCTION ... 10

1.1 ATM software layers ... 10

1.2 ATM software layers ... 10

1.3 The AX certification process .. 11

1.4 Problem statement ... 12

1.5 Project goal .. 12

1.6 Solution Proposal .. 12

1.7 Expected benefits .. 12

1.8 Contents of the document .. 13

2 SELECTING USABILITY TECHNIQUES IN SOFTWARE PROJECTS ... 15

2.1 Usability techniques for agile projects .. 17

2.2 Usability Planner ... 20

2.3 Integrating UCD with agile methods ... 20

3 THE AX CERTIFICATION PROCESS .. 22

3.1 NCR AX Middleware .. 22

3.2 Business process model .. 23

3.3 Activities and performers .. 25

3.4 Process issues .. 26

3.5 Analysis of effort required by the current process ... 27

3.5.1 Time by activity (hours required by an expert) ... 27

4 SELECTION OF USABILITY METHODS IN THE PROJECT .. 29

4.1 Methods selection with Usability Planner .. 32

4.1.1 Activities ... 32

4.1.2 Method selection ... 33

4.1.3 Methods for design .. 34

4.1.4 Methods for evaluation ... 35

4.2 Usability plan ... 36

5 SPECIFICATION OF THE CONTEXT OF USE ... 38

5.1 User profiles .. 38

6

5.2 User tasks .. 39

5.2.1 Test execution tasks ... 40

5.2.2 Test reporting tasks ... 42

5.3 Physical environment .. 43

5.4 ATM technical restrictions .. 45

5.4.1 Hardware restrictions .. 45

5.4.2 Software restrictions .. 45

5.5 Preliminary conclusions .. 46

6 INTERACTION DESIGN PROCESS .. 47

6.1 Milestone 1: Inception and Proof of concept ... 47

6.1.1 Analysis of the AX certification process and training on ATMs platforms 48

6.1.2 Product concept ... 49

6.1.3 Definition of main product features .. 51

6.1.4 Bringing concepts from software testing discipline .. 51

6.1.1 First research on similar products (Competitor analysis) 52

6.1.2 Functional and non-functional requirements .. 53

6.1.3 First UI design (wireframe) .. 54

6.1.4 First proof of concept .. 55

6.1.1 Selecting the product name ... 56

6.1.2 Evaluation .. 56

6.2 Milestone 2: First stable version ... 56

6.2.1 Ethnographic observations .. 57

6.2.1 Second research on similar products (Competitor analysis) 58

6.2.2 Construction of the first application version ... 60

6.2.3 First usability test ... 62

6.2.4 Design concept of the command runner ... 63

6.2.5 Second usability test .. 64

6.2.6 Improvements after the usability test ... 65

6.2.7 Navigation map: optimizing the navigation of the execution view 68

6.3 Milestone 3: Second stable version .. 70

6.3.1 Implementing a new execution view ... 70

6.3.2 Third usability test ... 73

7

6.3.3 Design of a new test case summary view .. 73

6.3.4 Giving full control to the user: Pause and Resume .. 76

6.3.5 Implementation of a new Command Runner .. 76

6.3.6 Making usable dynamically generated UI forms ... 78

6.3.7 Fourth usability test ... 81

6.4 Milestone 4: Evaluating the final application version ... 83

6.4.1 Fifth usability test .. 83

6.4.2 Lines of improvement .. 83

7 EVALUATION .. 85

7.1 Methods, metrics, participants and location .. 85

7.2 Laboratory usability test 1 .. 88

7.2.1 Goal .. 88

7.2.2 Activities ... 88

7.2.3 Results .. 88

7.3 Laboratory usability test 2 .. 89

7.3.1 Goal .. 89

7.3.2 Activities ... 89

7.3.3 Results .. 89

7.4 Laboratory usability test 3 .. 92

7.4.1 Goal .. 92

7.4.2 Activities ... 92

7.4.3 Results .. 92

7.5 Laboratory usability test 4 .. 94

7.5.1 Goal .. 94

7.5.2 Activities ... 94

7.5.3 Results .. 95

7.6 Thinking aloud protocol for evaluating Reports ... 96

7.6.1 Goal .. 96

7.6.2 Activities ... 96

7.6.3 Results .. 96

7.7 Heuristic evaluation .. 97

7.7.1 Goal .. 98

8

7.7.2 Activities ... 98

7.7.3 Results .. 99

7.7.4 Recommendations ... 102

7.8 Usability test 5: Effort required in a real certification by non-experts 103

7.8.1 Goal .. 103

7.8.2 Activities ... 103

7.8.3 Usability issues found .. 103

8 RESULTS ... 107

8.1 Application functional modules .. 107

8.2 Project benefits ... 111

8.2.1 Tracking the effort required by the new system ... 111

8.2.2 Expected benefits per year .. 112

9 DISCUSSION ... 114

9.1 Critical analysis of the integration of UCD and Agile Methods 114

9.2 Critical analysis of the use of Usability Planner .. 114

9.3 Critical analysis of the usability methods applied ... 115

10 CONCLUSIONS AND FUTURE LINES OF WORK .. 117

10.1 Achievement of project goals ... 117

10.2 Business benefits of automation... 118

10.3 Lessons learned about our use of UDC ... 118

10.4 Benefits and costs of usability evaluation ... 119

10.5 Future work ... 120

11 REFERENCES .. 121

12 APPENDIX A. TIMELINE OF APPLIED UCD METHODS PER ITERATION 125

13 APPENDIX B. INTERACTION DESIGN ITERATIONS FOR OTHER MODULES 130

14 APPENDIX C. SUMMARY OF THE FIRST ETHNOGRAPHIC OBSERVATION 143

15 APPENDIX D. SOFTWARE ARCHITECTURE ... 146

16 APPENDIX E. SATISFACTION QUESTIONNAIRE .. 154

9

ABSTRACT

Automated Teller Machines (ATMs) are sensitive self-service systems that require important

investments in security and testing. ATM certifications are testing processes for machines

that integrate software components from different vendors and are performed before their

deployment for public use.

This project was originated from the need of optimization of the certification process in an

ATM manufacturing company. The process identifies compatibility problems between

software components through testing. It is composed by a huge number of manual user

tasks that makes the process very expensive and error-prone. Moreover, it is not possible to

fully automate the process as it requires human intervention for manipulating ATM

peripherals.

This project presented important challenges for the development team. First, this is a critical

process, as all the ATM operations rely on the software under test. Second, the context of

use of ATMs applications is vastly different from ordinary software. Third, ATMs’ useful

lifetime is beyond 15 years and both new and old models need to be supported. Fourth, the

know-how for efficient testing depends on each specialist and it is not explicitly

documented. Fifth, the huge number of tests and their importance implies the need for user

efficiency and accuracy. All these factors led us conclude that besides the technical

challenges, the usability of the intended software solution was critical for the project

success.

This business context is the motivation of this Master Thesis project. Our proposal focused

in the development process applied. By combining user-centered design (UCD) with agile

development we ensured both the high priority of usability and the early mitigation of

software development risks caused by all the technology constraints.

We performed 23 development iterations and finally we were able to provide a working

solution on time according to users’ expectations.

The evaluation of the project was carried out through usability tests, where 4 real users

participated in different tests in the real context of use. The results were positive, according

to different metrics: error rate, efficiency, effectiveness, and user satisfaction. We discuss

the problems found, the benefits and the lessons learned in the process.

Finally, we measured the expected project benefits by comparing the effort required by the

current and the new process (once the new software tool is adopted). The savings

corresponded to 40% less effort (man-hours) per certification. Future work includes

additional evaluation of product usability in a real scenario (with customers) and the

measuring of benefits in terms of quality improvement.

10

1 INTRODUCTION

Software testing is a critical activity for self-service devices. Testing is required not only

during development but also after maintenance activities, when a software module is

updated or a hardware module is replaced.

Automated Teller Machines (ATMs) are sensitive systems that require important

investments in functional testing. And their prolonged useful lifetime –which can reach the

20 years-, increases the need for updates and system testing.

The NCR Company is a leading manufacturer of ATMs which also offers software products

for non-NCR ATMs. Specifically, the AX Middleware is a product that allows customers to

build vendor-independent applications. So customers that own diverse ATM brands and

models can have the same application running on all them. In other cases, the middleware

also eases the transition from old to newer ATM models and software platforms.

The AX platform requires a complex testing process to verify that it works on each ATM

independently of the manufacturer. The process requires extensive and repetitive human

effort which produces high costs and is error prone.

The goal of this Master Thesis project is to automate as much as possible the AX certification

process, in order to increase efficiency and the quality delivered to customers.

1.1 ATM SOFTWARE LAYERS

Regarding hardware, ATMs are modular systems composed by several self-service financial

peripherals such as Card Reader, Receipt Printer, Cash Dispenser, Note Acceptor, etc.

On the software side, ATMs have an architecture composed by two layers, according to the

CEN/XFS standard:

1.2 ATM SOFTWARE LAYERS

Regarding hardware, ATMs are modular systems composed by several self-service financial

peripherals such as Card Reader, Receipt Printer, Cash Dispenser, Note Acceptor, etc.

On the software side, ATMs have an architecture composed by two layers, according to the

CEN/XFS standard:

11

FIGURE 1. ATM software layers

 Manufacturer Layer. This layer is made up of the XFS Middleware (which is a

standard for accessing financial devices independently of the manufacturer). It

includes device drivers and the operating system.

 Bank Layer. The bank layer contains the bank application, which is the front-end that

connects to banks transactional systems.

Theoretically, bank applications can operate on any ATM of any manufacturer thanks to the

standardized manufacturer layer. But in practice the CEN/XFS standard is interpreted

differently by manufacturers. Therefore, the AX Middleware is a layer added by NCR to even

the differences of XFS interpretations.

The middleware only supports the ATMs that have been certified. Given the number of

different ATM configurations in the market –such as brands, models, operating system

versions, and peripherals- certifications are performed on demand for each individual ATM.

1.3 THE AX CERTIFICATION PROCESS

Usually, certifications are requested when a customer buys a new ATM model that is not

supported by the AX, or after an important update in the ATM manufacturer’s layer, such as

the migration to a newer operating system. And certifications are critical, because all the

ATM operations will rely on the AX middleware, once the ATM is certified and it is in use.

The AX Certification Process is a system testing process performed on a singular ATM that

runs the AX Middleware. The process is performed by a team of specialists that travel to the

ATM place, and performs an exhaustive set of tests on the system. That requires physical

manipulation of ATM peripherals. For that reason, the tests cannot be done remotely or

automatically.

The outcome of this process is the Certification Report, which summarizes the results of the

tests, the issues found, and the responsible party (the software provider). The report size

depends on the number of peripherals tested, but it usually contains more than 150 printed

pages, which are edited manually.

Once the responsible party fixes the faulty software, the process of testing and reporting is

repeated until no issues are detected. This can imply additional travels.

Bank Layer

Manufacturer Layer (XFS)

12

The full process can require more than 10 working days. Although, depending on the

department workload and business priorities, it can be expanded to more than a month.

The company wants to automate the Certification Process because is too costly in terms of

money and time, and the specialists are a small team.

1.4 PROBLEM STATEMENT

Currently, the Certification Process has the following problems that need to be solved:

- Many process tasks are carried out manually and are error-prone and costly.

- Tasks that require user interaction require high user efficiency and accuracy.

- The know-how for efficient testing depends on each specialist and it is not explicitly

documented. This is also a business risk for the company.

- The huge diversity of ATM brands and models (that range from 20 years ago until

today) need to be supported, as any of these systems can require certification.

In summary, it is required a software solution for automating specific tasks and for assisting

users in others. Besides the technical challenges, the efficiency and accuracy of use are

critical and the context of use is more constrained than ordinary software. Software

usability is critical for the success of the project.

1.5 PROJECT GOAL

The goal of the project is to develop from scratch a software tool that effectively assists

users through the AX Certification Process, in order to overcome the current problems in

the challenging context of use.

1.6 SOLUTION PROPOSAL

Our proposal is the application of user-centered design (UCD), along with agile software

development for building the desired software solution.

The former is for ensuring that product usability will have a high priority, and the latter will

allow us to early identify and mitigate development risks to guarantee a working solution

will be delivered on time and budget.

The agile development method will be based on several SCRUM practices such as: Short

iterations (of 1 or 2 weeks), backlog management, sprint reviews, and sprint planning.

1.7 EXPECTED BENEFITS

With the incorporation of the new software we expect the following benefits:

Time and costs reduction

13

 Reduced specialists’ effort and time during ATM testing

 Reduced travelling costs because of fewer visits to customer facilities

 Automatic generation of the Certification Report.

Improved perceived quality

 Easier issue detection and tracking (through better tests tracing)

 Reduction of typing errors during report generation

1.8 CONTENTS OF THE DOCUMENT

This document is structured in 12 chapters and 3 appendixes:

 First Chapter: INTRODUCTION. This introductory chapter presents the project, the goals

and the solution proposal.

 Second Chapter: SELECTING USABILITY TECHNIQUES IN SOFTWARE PROJECTS. It is an

overview of the state of the art of usability methods selection in user-centered design.

 Third Chapter: THE AX CERTIFICATION PROCESS. It presents a description of the

business process where the software solution is required, and also it provides an

analysis of effort required by the company in the current state.

 Fourth Chapter: SELECTION OF USABILITY METHODS IN THE PROJECT. It shows the

criteria used for selecting the usability methods in the project and the usability plan.

 Fifth Chapter: SPECIFICATION OF THE CONTEXT OF USE. It is the specification of the

context of use as the result of analysis.

 Sixth Chapter: INTERACTION DESIGN. It describes the interaction design process carried

out along project iterations, from the conception of the product to its first release,

according to the user-centered design process.

 Seventh Chapter: EVALUATION. It describes the evaluation methods applied in the

project

 Eighth Chapter: RESULTS. This chapter describes the final product obtained along with

the project benefits after its usage.

 Ninth Chapter: DISCUSSION. This conclusive chapter is a critical analysis of the usability

methods applied, the use of Usability Planner and other relevant issues around UCD and

agile methods.

 Tenth Chapter: CONCLUSIONS AND FUTURE LINES OF WORK. This chapter exposes the

conclusions once the project was finished and also proposes future lines of work.

 APPENDIX A. TIMELINE OF APPLIED UCD METHODS PER ITERATION. This appendix is a

detailed timeline of the usability methods applied along iterations and the products per

iteration.

 APPENDIX B. INTERACTION DESIGN ITERATIONS FOR OTHER MODULES. This appendix

is a catalog that illustrates the evolution of the product design for other features not

described in the document.

14

 APPENDIX C. SUMMARY OF THE FIRST ETHNOGRAPHIC OBSERVATION. This is the

original document produced after the first ethnographic observation.

 APPENDIX D. SOFTWARE ARCHITECTURE. This appendix describes the resulting

software architecture design.

 APPENDIX E. SATISFACTION QUESTIONNAIRE. This section shows the form template

used to evaluate user satisfaction.

15

2 SELECTING USABILITY TECHNIQUES IN SOFTWARE

PROJECTS

The application of user-centered design (UCD) in a particular project requires several

considerations. Bevan [1] proposes a practical approach which consists of two parts: 1) the

identification of the user-centered design activities that are actually required, and 2) the

selection of the most appropriate methods based on the design and organizational context.

Regarding the first step, we need to explore the UCD activities and take from each category

(Analysis, Design or Evaluation) the ones that are relevant in each moment of the project.

These activities are listed below for reference.

FIGURE 2. UCD categories and their activities

The decision depends on the actual needs. At the beginning of the project we will typically

require more activities of analysis, while at advanced phases we will need to emphasize

more on design and evaluation activities. This will constitute the usability plan.

Concerning the second part, the goal is to find adequate UCD methods for our project based

on the context. For this, Bevan [1] suggests a straightforward approach, which is illustrated

below.

FIGURE 3. Steps for finding adequate UCD methods in a project according to [1].

Evaluation

Expert Evaluation Usability Tests
Follow-up Studies of Installed

Systems

Design

Interaction Design

Analysis

Specification of
the context of use

Design of the
Product Concept

Prototyping
Requirements
Specification

Requirements
Validation

Identify risk-reduction
best practices for the
desired development

category

Identify applicable
UCD methods

Identify the most cost-
effective UCD

methods

16

:

First, we have to focus on a development activity category (i.e., Project Envisioning,
Architecting Solutions, Evaluation, etc.), from which we take a sample of best practices
aimed at reducing risk of poor product quality due to lack of usability. These best practices
are defined in the ISO PAS 18152 standard.

Second, we must identify which UCD methods are applicable in the development category
(i.e., Field studies and Observations can be applied during Evaluation). Moreover, we need
to assess to what extent the methods achieve best practices.

Finally, we need to assess which UCD methods are the most cost-effective given the time
and effort required and the project constraints. The last step, cost-effectiveness evaluation,
must take into account at least the following factors [1]:

a) Constraints: Time, cost, skills available, access to stakeholders and other users (refer

to ISO-16982 standard).

b) The nature of the task: Complexity, amount of training required, consequences of

errors, time pressure.

c) The nature of the product: Whether it is a new or an existing product, the product

complexity, etc. (As defined in the ISO-16982 standard).

d) Context of use: Range of contexts, how well understood is the product and the

context.

A summary of the selection process is depicted in the following figure. The filtering of

choices starts from the more general (i.e. select a development activity) to the concrete

search (i.e. select the most cost-effective method).

FIGURE 4. Summary of the process for selecting UCD methods

For reference, we provide a summary of UCD method types, which will be referred along

this document (taken also from [1]).

Development
categories

Risk
mitigation

best practices

Applicable
UCD methods

Cost-benefit
selection

17

FIGURE 5. Examples of types of usability methods

In each method type, we can find several usability techniques. In the literature we find more

than 40 usability techniques, which can be applied in a UCD project. Some examples of

popular techniques are shown below:

 Participatory design

 Participatory workshop

 Performance measurement

 Personas

 User profiles

 Photo surveys

 Preliminary field visit

 Paper Prototypes

 Scenarios

 Storyboards

 Task analysis

2.1 USABILITY TECHNIQUES FOR AGILE PROJECTS

Silva [5] presents a systematic review of usability methods for agile projects. This study

shows the most common recommendations of integrating usability into agile projects in

literature from 2001 to mid of 2010.

A first quantitative analysis shows the usability artifacts used by frequency. This is shown in

the figure below:

Observation of
users

Performance-
related

measurements

Critical-incident
analysis

Questionnaires

Interviews Thinking aloud
Collaborative

design and
evaluation

Creativity
methods

Document-
based methods

Model-based
methods

Expert
evaluation

Automated
evaluation

18

FIGURE 6. Common user-centered design artifacts applied in agile projects. Figure taken from [5].

This list mixes integration strategies, UCD methods, and positive results (e.g., Close

collaboration), but it gives a good picture of what people is using and getting in practice.

For instance, the first is LDUK (SDUF) which corresponds to Little Design Up Front. It is

mentioned by 30 studies that say that it is more suitable and compatible with agile methods

than BDUF (Big Design Up Front). Other 15 studies say that projects should apply One Sprint

Ahead integration.

On the other hand, the most recommended methods in decreasing order are: low-fidelity

prototypes (25 studies), user testing (22 studies), and usability inspections (19 studies), and

finally (with less than 10 studies each): Scenarios, Personas and Essential use cases.

Secondly, as a result of a qualitative analysis of the studies, the author suggests a strategy

for integration user-centered design in agile projects. It is shown in the following picture.

19

FIGURE 7. Suggested integration of user-centered design for agile projects. Figure taken from [5].

 The suggestion corresponds to a generic usability plan and also involves the introduction of

UCD roles and the use of a Sprint 0. The UCDS (user-centered design specialist) team shall

comprise at least two roles: A UCD researcher and a UCD prototyper. The iterations are

described as follows [5]:

Iteration 0: The activities involved are contextual inquiry, tasks analysis and

interviews.

The methods are: Paper prototypes, Design Cards, Feature Cards, and User

Stories with acceptance criteria with usability issues.

Iteration 1: Perform same analysis activities for the next iteration and also perform

Inspection Evaluation on the code of the current iteration.

The methods are: Oral Storytelling (for getting feedback in the current

sprint), Prototypes, Design Cards and User Stories for next iteration.

Iteration 2: Perform same analysis activities for the next iteration and also perform

Inspection Evaluation on the code of the current iteration and User Testing on the

Iteration 0’s design that was coded in iteration 1.

The methods are: The same as before and Issue Cards to report problems of

the code implemented in iteration 1 (designed in iteration 0).

Iteration N: Evaluate implementation with Inspection Evaluation on the code of the

current iteration. And perform Inspection Evaluation and User Testing on the code of

iteration N-1, which was designed on iteration N-2. And perform Inspection

Evaluation and User Testing on the code of iteration N (designed on N-1).

20

The methods are: The same as before including Issue Cards to report

problems.

In conclusion, the author provides a concrete set of recommendations suitable (or

commonly applied) in agile projects, where big upfront design is not welcomed, and the

preferred methods are the cheapest and easily-driven by developers (for instance, low-fi

prototypes and inspections). However, richer methods that effectively involve users and

their environments are left out. This of course will have consequences on the quality in use

of the product.

2.2 USABILITY PLANNER

As a final thought, it is important to consider the cost of the usability methods selection in

typical software development scenarios. Typically, there is no access to usability experts and

the schedule is too tight to perform a research on usability method selection for the

concrete project. The process does require a good understanding of the methods and their

applicability on different contexts; otherwise we can end up with decisions that are out-of-

context or beyond-budget.

For alleviating this, Bevan et al [2] developed an automated assistant tool which aims to

reduce the overhead of manual searching and assessment during UCD method selection, by

providing recommendations based on search criteria in terms of project constraints. We will

describe the tool –called Usability Planner- when we present its usage in the project (see

Chapter 4).

2.3 INTEGRATING UCD WITH AGILE METHODS

Integrating UCD with agile development has the potential to help developers involve

customers and users, which is recognized as a difficult practice. And also it helps integrate

HCI practices with software engineering [6].

Integrating UCD with Agile Development brings some challenges as both have similarities

but also differences. The three main similarities according to [6] are:

1) They are iterative processes

2) User involvement: For instance, Scrum promotes user evaluation and user

participation in sprint reviews, while in UCD this is one of the six founding principles.

3) Team coherence: The full team should be united and have a common understanding

of (and focus on) the project and the users.

On the other hand, the main differences are:

1) UCD advocates for building and maintaining design artefacts, while Agile methods

encourages the reduction of design documentation overhead; and

21

2) UCD promotes a deep initial analysis and learning of users and their needs, while

Agile methods discourages any big up-front research or design in favor of producing

a working product sooner.

In practice, the integration of these two approaches requires the consideration of 5 relevant

principles [6]:

1) User involvement: The user must be involved and assume specific roles in the team,

such as having a proxy user in the team.

2) Collaboration and culture: Collaboration is a must among UCD designers,

developers and users (which cannot be passive bystanders). Communication and

joint work should be daily.

3) Prototyping: UCD designers should be willing to provide prototypes and user

feedback to developers in a timely manner and in a cycle that is suitable for

everyone (UCD prototypes are cheaper and quickly to build while code is more

expensive and takes longer, so UCD designers should plan for the waiting time)

4) Project lifecycle: UCD designers should have ample time for the initial research of

users and needs before the actual development start.

5) Project management: It is required a cohesive project management framework that

avoids power conflicts between UCD and development roles and bureaucracy.

22

3 THE AX CERTIFICATION PROCESS

In this chapter we describe the business process that we want to assist, then we describe its

issues and finally we analyze the effort required to users. First, before describing the actual

process, we briefly explain why this process exists.

3.1 NCR AX MIDDLEWARE

In the past, ATM front-end applications were programmed by accessing directly device

drivers. This meant that an application designed for a specific ATM was impossible to be

deployed on an ATM of a different manufacturer.

To overcome this limitation, the CEN/XFS1 standard was created, which allowed the access

to financial devices through an intermediary layer providing a standard Application

Programming Interface (API). Ideally, any application developed on top of the XFS standard

will work on any ATM model. This is illustrated in the following figure.

FIGURE 8. a) With the XFS standard any app works in any ATM system. b) Reality of different XFS

interpretations made by manufacturers
2

However, in practice many incompatibility problems appeared, as there were subtle

different interpretations of the standard by manufacturers, which is unacceptable in the

ATM business sector.

As a response, NCR created a solution named the NCR ActiveX Middleware (AX Middleware)

which provides a unified and simplified API on top of XFS to front-end applications. The

main benefit of using this middleware is that the end-user application is fully independent of

1 According to Wikipedia, CEN/XFS (eXtensions for Financial Services) is client-server
architecture for financial applications on the Microsoft Windows platform, especially
peripheral devices such as ATMs. It is an international standard promoted by the European
Committee for Standardization (CEN). The standard is based on the WOSA Extensions for
Financial Services or WOSA/XFS developed by Microsoft.
2 Images taken from: www.atmmarketplace.com

23

the XFS layer, and therefore the differences among incompatible XFS interpretations don’t

affect it.

FIGURE 9. AX MIDDLEWARE

However, this solution has a cost: Each single ATM must be certified to ensure AX is fully

compatible. This is the goal of the AX Certification process.

3.2 BUSINESS PROCESS MODEL

The AX Certification Process can be considered as a software compatibility testing process,

where the AX platform is functionally tested against the underlying ATM XFS platform. The

goal of the process is to guarantee that the AX platform works as expected on a specific

ATM.

The process consists on the following core activities:

A detailed BPMN model of the AX Certification Process was elicited during analysis, which is

shown in the figure below. Core activities are highlighted in green.

Test
planning

Test
execution

Test
reporting

24

Figure 10 the AX Certification Process

25

3.3 ACTIVITIES AND PERFORMERS

The participants of the Certification Process are: Customer, Project Managers, Specialists, and

third-party ATM manufacturers. The activities and the performers are described in the

following table:

Activity Description Role

Certification request The customer requests the certification of a non-NCR ATMs to NCR Customer

Request reception The project manager receives the request Project Manager

Session scheduling The project manager schedules the testing session with the
customer

Project Manager

Test preparation Identify hardware and software settings
Get latest AX binaries
Get latest documentation
Prepare registry settings for ATM
Prepare certification template for the specific ATM devices
Prepare test resources (USB sticks, external input devices, laptop,
tools)

Specialist

Test execution

Install tools and latest binaries
Check ATM settings
Execute all test cases (one by one)
Document results & issues
Collect runtime traces
(Occasionally : Develop fixes on the fly)

Specialist

(In case of failure)
Stop the session

In case of failure (of HW/SW) that impedes to start or continue the
tests, the session must be stopped, and the partial results must be
documented.
A new date must be proposed.

Specialist

Elaboration of
Certification Report

For each device:

 Review results and runtime traces

 Identify error causes and assign owners

 Fill the report template

Specialist

Deliver report to
customer

Deliver report to customer Project Manager

Request fixes The customer request the platform vendor to fix the problems
found (written in the report). The vendor can be either NCR or a
third party.

Customer

Fix platform errors The owner of the platform fixes the error and delivers an update.
This enables a new certification cycle.

NCR /
Manufacturer

Close certification Once the certification is approved by both the customer and NCR
the process is finished.

Customer

Table 1. Main activities of the certification process

26

3.4 PROCESS ISSUES

The basic flow of the AX Certification Process seems quite clear and simple: test design,

planning, execution, and reporting. However, as software testing process for financial devices it

is required that activities be rigorous, systematic and standardized. But this is difficult to

achieve with the current process as most of the activities are performed manually. That is,

there are no software tools for supporting the process. This makes tasks be error prone,

complex, and tedious for users. All these factors put in risk the quality delivered to customers.

Activity Issues

Test Session
Preparation

 The procedures of test cases are not documented. Only the specialists
know the exact procedures. This knowledge is not shared among
certification team members

 Specialists heavily depend on personal memory of previous sessions to
perform the exact testing steps.

 Besides the certification report template there are no standardized test
scripts that can serve both as documentation and reusable artefacts for
assisting to anyone who wants to make a certification.

Test Execution  Tests are performed manually, there are not specialized tools.

 The test execution session takes place in the customer's premises (which
usually requires travelling)

 A single test session can span between 4 and 5 working days depending
on the specialist and the number of devices

 A certification can require a second or a third iteration of tests: And each
iteration produces different data that need to be appended to the latest
certification report

Report
Elaboration

 Report usually is done one or more weeks after the test execution. So
results are difficult to remember, and finding error causes is
cumbersome.

 The report is about 140 pages, written by hand in a text document. If the
test results were in a standard format, the report could be automatically
generated.

 The document is error prone as command results are manually written
and inserted from several runtime traces.

 The results obtained from different iterations need to be merged by
hand.

Report
Presentation

 The document generated (PDF) does not provide navigation (nor
bookmarks) which makes it hard to read.

 Failed tests are hard to find and easy to miss by customers

Table 2. Certification process’ issues

27

Moreover, specialists invest significant effort in manual activities that could be automated. This

affects business efficiency and also employees’ satisfaction. We identified the issues in each

activity, which are discussed in the table above.

In summary, the AX Certification process requires important manual work that demands

significant time and elevated costs for NCR and its customers. Moreover, most of them can be

automated or assisted with software tools.

3.5 ANALYSIS OF EFFORT REQUIRED BY THE CURRENT PROCESS

The goal of this analysis is to get a realistic measure of the current effort required to perform a

full certification as a baseline for measuring the benefits after introducing the new tool (which

is discussed in Chapter 8 RESULTS).

Given that the main testing activities correspond to test planning, test execution and test

reporting, we focus the performance measurement on these activities only. We analyze the

effort currently required by the team by tracking the time required by each activity (in man-

hours).

We take into account that a certification requires several testing sessions. Therefore we have a

measure for the first, second, and third sessions (additional sessions are rare).

Moreover, the session effort depends on the complexity of the financial device being tested.

So, we measured the effort required by three different devices with varying complexity:

 A simple-to-test device: Receipt printer

 A medium-complexity device: Cash dispenser

 A complex device: Bill acceptor

Finally, the effort required heavily depends on the user. Users are usually specialized in one or

two financial devices but not in all. So the measures were asked to the specialist in each case.

Therefore, we considered these measures as the “best case”.

3.5.1 TIME BY ACTIVITY (HOURS REQUIRED BY AN EXPERT)

The following table contains the information collected from users, about the effort required for

certifying each device following the current procedures3.

3 These numbers do not take into account the time for fixing the errors found (except for very

small fixes).

 (*)The execution session can include partial generation of report and small AX fixes in-situ.

28

Activity Device Session 1 Session 2

(**)

Session 3 Average

Test

preparation

Cash dispenser 3 0 0

2.5 Bill acceptor 1.5 0 0

R. Printer 3 0 0

Test execution

(*)

Cash dispenser 8 4 2

10 Bill acceptor 8 3 1

R. Printer 2 0.75 0.25 - 0.5

Report

elaboration

Cash dispenser 4 0.5 0.25

2.8 Bill acceptor 1.5 0.5 0

R. Printer 1 0.25 0.25

 Total 27

Table 3. Average effort required to certify one peripheral

In conclusion, the certification of a single ATM device made by an expert takes in average 15.3

man-hours.

Finally, having in mind that an ATM has typically between 7 and 9 financial devices (or even 10),

a full certification can require between 107 and 153 man-hours. This is the average raw cost for

certifying a single ATM of a single customer.

(**) Time of successive sessions is relative, since it depends on the number and kind of errors

detected. It does not take the same time to verify an output state that to reproduce the faulty

conditions.

29

4 SELECTION OF USABILITY METHODS IN THE PROJECT

This chapter describes the procedure we followed to select the methods for user-centered

design. A quick characterization of the project is as follows:

 A bespoke software product is needed.

 The specification is clear as it depends on a mature and well-established process.

 The software is targeted to in-house users who have advanced technical knowledge.

 This is the first time user-centered design is introduced in the development

environment.

According to one of his preliminary studies [7], Bevan establishes a guide for selecting usability

methods, which he considers appropriate for commercial environments. There, he emphasizes

that besides using general characteristics of projects for the selection process, it is required

more guidance on the appropriateness of the methods in different contexts of use. For

instance, he suggests that participatory design methods are much easier to apply for systems

developed for in-house users. While some other methods are only required in specialized

circumstances, such as focus groups, parallel design, wizard of Oz, remote evaluation, etc.

In our case, we opted for using a tool for getting a quick list of recommended usability methods

for the project, based on its characteristics. And then we filtered out methods that were

equivalent or similar to others, the methods that were not feasible, and finally before applying

each method, we jointly discussed each method with the customer to approve its application.

Despite all the steps done, this selection process was rather fluent and easy.

In this section we present the description of the project context which was the main input for

the selection process. These factors correspond to constraints over the project, the users, the

tasks, the product, the context and the team, as defined by the Usability Planner tool. Each one

is analyzed in depth below.

Project Constraints

Budget: The budget was established before the beginning of the project and cannot be

modified. The allocation of people to the project was also predefined. We consider the

budget limited.

Time: The project duration is exactly 1 year, which is considered enough and allows the

introduction of several UCD activities. If this time was not enough, the scope of the

project could be reconsidered.

30

Usability importance: The system under development is a bespoke product which is

targeted for assisting a core business process. This process requires technical expertise

and high interaction with ATMs. The context of use is very specific and the results of

tests cannot depend on the use conditions or the users. Inconsistencies in the use of the

tool or in the information provided must be avoided.

Specification (un)certainty: The business process has a maturity of more than 15 years.

So, the process is clearly defined and well-known by users. However, it does not imply

that the process is formally specified in paper.

User Constraints

Access to users: Developers and users are collocated in the same working space. This is

an invaluable advantage for having easy and frequent access to users. Moreover, users

are willing to participate and get involved. They are about 8 people.

Impaired users: There are no functionally impaired users. And there are no explicit

requirements for accessibility.

Habitual use: Habitual users will always be the PS team members. Currently, they are

employees with at least 14 years of experience in the company. Therefore, the system is

not required for first time users, but for experienced habitual users.

Task Constraints

Complexity of tasks: ATM testing requires a background in platforms, standards,

vendors’ compatibility, issue tracking, etc. User’s knowledge will vastly impact his/her

performance along the process activities and the use of the application. This can be

considered as a complex process.

Quantity of tasks: The most complex activity (execution of tests) is typically composed

by more than 100 test cases, which is full of details and need to be performed by the

user one by one.

Safety or business critical tasks: The manipulation of the ATM through the new

software does not produce risks either for users or the physical components. In business

terms, it cannot produce loses or any other important harm derived from wrong usage.

Therefore, the product is not considered safety or business critical.

Organizational changes: The Certification Process is not going to be altered by the

introduction of the tool. The activities and the performers will continue being the same.

The impact is in terms of efficiency and quality.

31

Product Constraints

Efficiency of use: The efficiency of the process is the ultimate business goal. The speed

of the process determines its cost and the customer’s perceived quality. Therefore, the

efficiency of use is fundamental for the product’s success.

Accuracy importance: During ATM testing the collection of data must be accurate and

complete, as it will be the data for decision making, and it has a direct impact on the

quality of the certification service delivered to customers.

Adaptation of an existing system: This is a fully new product and there are no previous

systems with the same purpose. Although there are individual tools that are used

separately and as such they are the baseline that the new system must supersede.

A well understood product: The process is mature and well defined. But the product

hast not been fully conceived and specified. However the use cases and the features are

clearly understood. So this is not considered a constraint.

Customizable product: The product is for professional use only. It is not expected to be

customizable in any sense. In the contrary is conceived as a standardized tool.

Context Constraints

General purpose: The tool purpose is very specific for ATM certifications. It is not going

to be used for a variety purposes.

Team Constraints

Usability expertise availability: There is no access to usability experts. This is considered

an important limitation. However, the development team has basic knowledge on

interaction design is available.

In the following table we summarize the most relevant project characteristics and constraints.

Project Constraints

Budget is restricted

Usability is important

Complex tasks

Many tasks

Efficiency and accuracy are important

A well understood product

No usability expertise available

32

Table 1. Constraints of the ActiveX Certify project

4.1 METHODS SELECTION WITH USABILITY PLANNER

The selection of methods was performed with different criteria. One important step was the

use of a tool for getting recommendations of methods for our particular project. And then,

after an additional filtering, we proposed a sample of the methods to the client to decide its

application and make a plan.

We used Usability Planner, which is a tool developed by Nigel Bevan together with a team from

the Technique University of Madrid (UPM) [2, 3, 4]. The tool follows a practical 3-step process

which is pretty straightforward. This is shown below.

Figure 11 Method selection menu of Usability Planner

4.1.1 ACTIVITIES

This step consists in the selection of the user-centered design activities to be performed. In our

case, we selected the following activities:

 Analysis:

o Specification of the context of use

o Design of the product concept

o Prototyping

o Requirements specification

 Design:

o Interaction design

 Evaluation:

o Usability tests

o Expert evaluation

Basically we will not perform the following activities:

 Strict usability requirements specification and validation: Because the development will

not be outsourced, compliance will not be verified by a third-party. Moreover, the team

is very small (3 people) and resources are very limited.

 Follow-up studies of installed systems: Because there are no previous systems in use.

And on the other hand, this project will finish with the system deployment.

33

4.1.2 METHOD SELECTION

This step consists in filling the search criteria to get instantaneous suggestions. A fragment of

the search criteria offered by the tool is shown in the figure below.

Figure 3. A fragment of the search criteria offered by Usability Planner

Applying the project constraints discussed previously, the tool produced a list of 23 usability

methods. The methods were ranked according to the scale:

 Strongly recommended

 Recommended

 Slightly recommended

 Neutral

 Not recommended.

Due to the vast list of suggestions, we took only the strongly recommended methods. From

these suggestions we filtered the methods that were redundant or equivalent to other

methods. This selection is explained in the following tables.

Methods for Analysis

Sub activity Method Why

Specification
of the context
of use

Ethnographic
observation

Selected because its effectiveness and viability
(visits to real certifications are allowed). The
information is collected from the source, and it is
good for discovering tacit information.

Competitor analysis There are no competitors in the market; however,
there are lots of similar products (for software

34

testing) that can be inspiring.

Affinity diagramming /
Participatory workshops

(Not selected) because they require several people
at the same time, which is not viable for the
company.

Contextual inquiry /
Field study

By selecting Ethnographic observation we
discarded these methods, which share the same
objectives.

Essential use cases Not selected. Instead a definition of standard use
cases is planned with users.

Design of the
Product
Concept

Scenarios Selected because is good and practical for devising
desired product features.

Braindrawing This method requires from 5 to 12 participants. So
it was not considered.

Parallel design This was not selected because it also requires
several people working at the same time.

Prototyping Paper prototyping Selected because it is familiar, cheap (in time) and
effective.

Wireframe Selected to be applied, although with less
frequency than prototyping.

Requirements
Specification

Usability specifications Selected as an integral part of requirements
elicitation.

User & task analysis
[added]

Informal description and analysis of user profiles
and tasks through the analysis of the business
process (tasks vs. assignees, tasks and resources
required, etc.)

Common industry
specification for usability
requirements

Not considered because the development is not
outsourced. And strict requirements compliance
validation is not required

Function allocation /
Task allocation

Task analysis is performed trough other methods
(above).

4.1.3 METHODS FOR DESIGN

Sub activity Method Why

Interaction

Design

Navigation

map

Selected for the navigation analysis and design for selected

functionalities.

Participat

ory design

This method requires several participants in long sessions, which is

difficult to justify and approve in a department with few people and

tight schedules. So it was not considered.

35

4.1.4 METHODS FOR EVALUATION

Sub activity Method Why

Usability Tests Laboratory usability

testing

Selected as the primary evaluation method because of its

popularity and because NCR has a dedicated laboratory

for testing with easy access for employees. And the lab

and the users are collocated in the same building.

Thinking aloud Selected as a secondary evaluation method, if the time

allows its application.

Performance

measurement

Selected as a secondary evaluation method, if the time

allows its application.

Expert

Evaluation

Heuristic evaluation Selected for being widely used and accepted, and

because it’s quick and practical. However, we

acknowledge our lack of access to experts. The method is

selected as a complementary method to laboratory

testing (according to availability of time).

In conclusion, we selected 12 methods from the suggestions offered by the tool:

 Analysis: 7

 Interaction design: 1

 Evaluation: 3 (being two of them subject to time availability)

These methods are shown in the figure below.

36

FIGURE 12 List of selected usability methods (*optional methods)

4.2 USABILITY PLAN

After method selection, we designed a usability plan. This plan is not the scheduling of activities

as the project is developed iteratively (according to agile development). So iterations cannot be

planned in advance. Therefore, our usability plan will consist on establishing when UCD

activities can be performed according to expected project milestones.

Analysis

• Specification of the
context of use

• Competitor analysis

• Ethnographic
observation

• Design of the Product
Concept

• Scenarios

• Prototyping

• Paper prototyping

• Wireframe

• Requirements
Specification

• Usability
specifications

• User & task analysis

Interaction Design

• Navigation map

Evaluation

• Expert Evaluation

• Heuristic evaluation

• Usability tests

• Laboratory usability
testing

• Thinking aloud*

• Performance
measurement*

37

FIGURE 13. Project usability plan

Having in mind that the project has an established duration of 8 months and iterations will be

short (two weeks in average), then we can assume that the project will have at least 10

iterations. Second, the company wants to have at least one release at the middle of the project.

So, we can plan for two releases before finishing the project (milestones 1 and 2) and a final

release (milestone 3).

So the usability plan basically consists on assigning UCD activities along the iterations (as shown

in the figure above):

 First Version: The first milestone (a third of the project) will be the most intensive in

UCD analysis, but they are not limited to that, as it is expected a working software for

iteration 3.

 Then, a usability test will be performed.

 Stable version 2: The second milestone will consist mainly in development through

prototyping, wireframes, interaction design, and coding along several iterations.

 A second usability test needs to be performed.

 Stable version 3: The third milestone will fix the usability problems identified and

produce the last functional software features.

 A final usability test will be performed in order to find usability issues before producing

a final release.

 Release: This is the final version, which can be used for measuring the project benefits

in a complete certification process.

38

5 SPECIFICATION OF THE CONTEXT OF USE

In this chapter we describe the results of the analysis of the context of use. This is an important

activity in the user-centered design as it is foundation for other analysis and design activities:

some usability requirements are derived from the context of use, and usability evaluation must

exhibit the fundamental conditions found in the real context of use [8].

The user’s analysis, task analysis and the context of use specification in general were done

mainly through observations of Certifications in the lab and in real Certifications at the

company’s customer facilities. These findings were then refined through several users

meetings. This analysis was considered finished on iteration 12 (that is more than 50% of the

project time). A detailed description of the UCD methods involved is shown in Chapter 6.

5.1 USER PROFILES

Several people participate in a certification process, such as the company’s customers, project

managers, specialists and ATM manufacturers’ representatives. However, the users directly

involved in the testing activities are the certification specialists from the company division for

software support. Currently, there are about 5 specialists, although only three of them are in

charge of certifications. The general user profile is the folioing:

 Users population: 5 concrete people

 Location: All users are allocated in the same building and office

 Job title: All users are consultants at the software support division

 Profession: All users are software professionals with at least 10 years of experience in

software development and support activities.

 Requirements: The requirements for preparing, running, and reporting tests are

applicable for all the users (there is no distinction of tasks between user profiles).

Moreover, the users have different specialties. There is a user that certifies several devices, but

in general each user is expert in one or two devices. A sample mapping of users (specialists) and

devices (specialties) is shown below (only 4 devices are shown):

 Cash dispenser Note acceptor Receipt printer Pin Keypad

Specialist 1 X X

Specialist 2 X X

Specialist 3 X

Table 4. Sample mapping of users (specialists) and devices (specialties)

39

Therefore, we defined two different user profiles: Junior and Senior. Below, we summarize the

user profiles, which are very concrete and particular in our project:

Junior User Profile

 A user that is expert in the certification process

 A user that certifies a specific device for the first time (or in very
few occasions)

Senior User Profile

 A user that is expert in the certification process

 A user that certifies the device of his or her specialty

Table 5. User profiles

5.2 USER TASKS

Task analysis consists on getting a task organization model that describes user tasks and

practices in the business process. The methodology to obtain the users tasks according to [9]

is:

1) Obtain information about the background of the work that is going to be automated.

2) Collect and analyze data through contextual observations of real users doing their job in

their work environment.

3) Build a task organization model of the current users tasks

These steps can be done in several iterations, for instance, the first iteration can be to perform

the contextual observations, the second iteration can be the documentation and analysis of the

work environment, in the third iteration we can build tasks scenarios, and a final iteration can

be the documentation of the task analysis.

Some recommendations for performing task analysis are [9]:

 The construction of a formal model for each observation can be cumbersome and

unworthy, while textual descriptions are usually richer than a specific predefined

template that could be hard to interpret.

 It is not recommended to perform lots of observations in a row, instead it is better to

stop to digest and analyze the findings of each one.

 In small projects with only one user type (or profile), 3 to 6 contextual observations –

distributed in 1 or 2 iterations- can be enough. While in bigger projects with many

different actors, 15 or more observations are usual.

40

 Regarding the participants, select people who are well-known for their best practices. As

they are experts, they work with efficiency and effectiveness. So they are the most

suitable for describing what they do by using principles and abstractions.

 Finally, it is also important to also involve less-experienced people, to know their

perspective of the tasks. But this is not recommended at the beginning.

In the case of the Certification Process, we have performed two ethnographical observations of

real certifications (they are described in Chapter 6), and elaborated textual descriptions (one of

them is presented in APPENDIX C. SUMMARY OF THE FIRST ETHNOGRAPHIC OBSERVATION).

Finally, we build a schema of the activities with their tasks and the place where they are

performed. This schema is presented in the figure below. We focused the analysis on the main

activities of the process: test planning, test execution and reporting.

FIGURE 14. Activities and tasks of the Certification Process

The activities where automation is more relevant and critical are Test Execution and Reporting.

So we describe them in more detail.

5.2.1 TEST EXECUTION TASKS

Test planning

• Place: Daily
user's
workplace,
using a laptop

• Identify
hardware and
software
settings

• Get latest AX
binaries

• Get latest
documentation

• Prepare registry
settings for ATM

• Prepare the
report template

• Prepare test
resources

Test execution

• Place: Customer
facilities, using
the ATM

• Install tools and
latest binaries

• Check ATM
settings

• Execute all test
cases

• Document
results & issues

• Collect runtime
traces

• (Develop fixes
on the fly)

Test reporting

• Place: Daily
user's
workplace,
using a laptop

• For each device:

• Review results
and runtime
traces

• Identify error
causes and
assign owners

• Fill the report
template

41

The test execution activity is the most complex and critical activity in the process. The tasks that

compose a test session are illustrated in the task model below:

FIGURE 15. Task model of the Test Execution activity (the most important task in red)

The task model defines a setup step which is done once, and also a generic task that can be

performed as many times as the number of financial devices installed in the ATM. Standard

ATMs involves from 5 to 9 financial devices. Moreover, all tasks are performed manually though

all them could be assisted or automated with software.

The most important task is Execution of Test Cases. Each device requires a test suite which tests

all the commands and events of the device in its different states. A typical test suite can

comprise up to 100 combinations of device functions and device states. And all of them need to

be verified with test cases. Each test case is composed by four parts:

A. Setting the initial device state: It requires the execution of several commands and user

actions (depending on the device and the test case).

B. Running the target command (the command under test)

C. Make assertions: The comparison of results against the expected output (baseline)

D. Documentation: Each test case result must be documented for the Certification Report

AX ATM
Certification

Tests

Setup

ATM inventory

Update of AX and
intallation of

tools

Certification of
Device i

Execution of test
cases

Results logging

Identification of
Issues

Document
system and

registry settings

42

Finally, when the session is over, the user collects the runtime traces with the results (copying

them out of the ATM).

It is worthy to mention that the test session can be repeated up to three times (in different

dates): Each time a software fix is applied by its manufacturer (as it was described in Chapter 3).

Finally, a quick and dirty computation of the number of tasks performed along the test

execution activity is:

Thus, for the simplest case an ATM requires the execution of 500 test cases, while in the worst

case it requires 2700 test cases. Moreover, the specialist usually needs to run the test case

more than once when a test case fails, because the user must be sure that the procedure was

done correctly before reporting any failure. These factors make the number of tests higher.

5.2.2 TEST REPORTING TASKS

The elaboration of the Certification report consists on the following tasks:

Collection of results. This information can be taken either directly from the screen or from the

runtime traces written by the testing tool. Usually, the user takes notes directly from the screen

if the result is simple and common. Otherwise, it will tag the test case with a timestamp which

will allow him to find the particular result in the logging file in the future.

FIGURE 16. Report elaboration out of runtime traces and issues

Report elaboration. The user uses a report template to elaborate the report. The template

contains the list of test cases describing: The test case description, the obtained result, the

expected result, the status (either pass or fail) and comments. The user must fill all the fields

with the information collected. The user normally starts filling the template while is executing

the tests, but this is a task that need to be finished afterwards when he is back to office.

5-9
devices

100
test cases

1-3

sessions

Report

Log

Log

Log

1+
week
later

Where is the
result of this

test case?
Timestamp ?

43

Moreover, the elaboration of the report could be delayed or postponed depending on the

user’s workload for one week or more.

Assigning issue owners and commenting results. Once the report is filled-in with results, the

user checks the failed test cases to be sure that all of them have a comment explaining the

errors and also identifies the owner of the issue. The owner of the issue can be either the

company or the third-party ATM manufacturer.

Report delivery. The report is converted to PDF and delivered to the customer.

Report versioning and merging. In the cases where the certification has been repeated, a final

activity is required to compile and merge the previous certification reports with the new partial

results into a single final certification report.

5.3 PHYSICAL ENVIRONMENT

This section describes the physical context of use of the test execution activity, which is always

performed in the customer’s facilities, where the ATM is installed. The place usually

corresponds to building basements and ATM maintenance laboratories. The people involved in

this activity are the tests specialist, the customer staff, and the ATM manufacturer staff. And

test resources include USB sticks (with software tools), external keyboard and mouse, a laptop

and financial test material. The following figure depicts a typical testing scenario.

FIGURE 17. Context of use and typical tools used during the testing session

The ATM is usually prepared for testing with the housing uncovered for easy access to USB

devices ports. A PC keyboard is always available but there is no room to place it. Typing needs

Test materials are

on the table

Typing is done on top of ATM

(no option to look at it)

Mouse & touch screen

are optional

PC for

writing the

results

Time: 4-5

full days

User works

standing

USB stick with tools

and results

ATM under test

44

to be performed on top of the ATM. Moreover, the ATM casing doesn’t allow chairs or tables in

front of it, so the user typically works standing. Other resources like the user’s laptop, cards,

and the external mouse must be located on a separate table or desktop. So, switching between

the laptop and the ATM screens is periodical.

The physical space tends to be uncomfortable for certain tasks, like taking detailed notes,

exchanging files, reading large logging traces in a small screen, asking for help to remote

coworkers, etc.

The resources a tester has are limited by host’s facilities. Usually, phones are available but WI-FI

spots, power outlets, tables and chairs are not (or they are far away the ATM).

The time frame allocated for testing is usually between 4 to 5 full days. This slot is enough in

average, but unexpected conditions (e.g. a broken device) can lead to session cancellation and

rescheduling.

Finally, users typically use between 4 and 9 different software tools or utilities. The typical

appearance of the ATM desktop and the laptop’s is shown in the figure below.

a) Typical ATM desktop (a single window actually fits the whole screen)

b) Typical laptop desktop (for editing the report template)

FIGURE 18. Typical desktop appearance during the testing session (screenshots of the applications used).

45

In summary, ergonomics is compromised by the physical conditions and the combination of the

navigation by keyboard, the small screen size, and the low screen resolution produce a negative

user experience which affects user’s productivity during the long test sessions. All this suggests

that an integrated software solution is definitely required.

5.4 ATM TECHNICAL RESTRICTIONS

The development of a tool for an ATM needs to meet additional requirements in comparison to

standard desktop applications.

First, an application targeted for ATM testing should be multiplatform. Customers have a broad

range of brands and models that can be 15 years old to versions released few months ago. This

means that the application runtime requirements cannot be too high in terms of both hardware

resources and operating system versions. About 5% of the ATM installed base works on

Windows 7, while the remaining works on older versions. ATM installations older than 15 years

and operating systems previous to Windows XP are considered out of the scope of the project.

5.4.1 HARDWARE RESTRICTIONS

Input devices: The main input device is the standard PC keyboard. Pointing devices are not

always available (like mouse and touch screens).

Touch screens: Standard Windows applications are not usable with ATM touch screens, as the

precision of these displays is too low for the standard (small) icons and controls. Moreover,

privacy filters make the screen harder to use (deeper and less precise). Finally, display sizes are

small (about 14’’).

Connectivity and data transfer: The only enabled input/output media are USB ports. Usually,

they are so limited that it is required to disconnect some devices (e.g. mouse) to insert memory

sticks. ATMs have network connectivity but are strictly reserved to customer’s applications.

5.4.2 SOFTWARE RESTRICTIONS

Compatibility and software installation: Operating system settings cannot be modified and

software installation is forbidden. Testing applications need to be multiplatform and portable

(i.e., no need of installation). If the application relies on a framework or virtual machine, it must

be fully compatible with the expected operating system versions (Windows version, Service

Packs installed, settings, etc.).

46

Screen resolution: Typical screen resolution is low (800x600 pixels) and operating system’

visual styles are disabled. Development settings shall take this in mind to avoid unexpected

user interface behavior once the application is deployed on ATMs.

Network communications: Network access is restricted by the system administrator.

Error handling: ATMs have special error handling policies which provokes immediate system

reboots whenever an application halts. This can produce data and time loss for users if a

reboot occurs during a testing session. An auto-save mechanism can be considered.

5.5 PRELIMINARY CONCLUSIONS

Given that ATMs impose high restrictions on user interaction, the efficiency, effectiveness and

satisfaction of use are compromised and very limited. In this environment, productivity can be

improved by reducing the dependency of external resources (like documentation, report

templates, and ultimately technical knowledge), by unifying the separate software tools, and by

automating tasks that does not require user intervention (such as results logging, collection of

system information, etc.).

An early strategy to overcome this quickly and cheap was proposed without success. Using the

client-server architecture the user could control the ATM server application from a separate

device (a laptop or tablet). This way, the user could enjoy a richer user experience provided by

a mobile application without losing the direct physical interaction with the ATM. This option

was discarded as network connectivity is disallowed for security reasons (as mentioned before).

So the solution necessarily needed to be a native GUI desktop application running on the ATM.

On the other hand, an alternate solution could have been a command-line interface

application, which is naturally optimized for keyboard interaction and does not demand

complex runtime dependencies. However, the customer wanted to be able not only to execute

test cases but also to allow edition and reporting in the same application. This suggested that a

GUI application was the most suitable alternative for this project.

47

6 INTERACTION DESIGN PROCESS

In this chapter we describe how we applied user-centered design through the development

process. Along this retrospective we will see how the most business-critical activity:

Certification Tests Execution, required greater effort through more iterations of design and

evaluation, as its usability requirements were higher.

The project required 23 iterations along 9 months. The most important project milestones were

the following:

 Milestone 1: Implementation of a proof of concept for running Test Suites

 Milestone 2: First stable application version (edition and execution of test suites for 2

ATM devices)

 Milestone 3: Second stable application version (new execution model, reports, and

support for 8 ATM devices)

 Milestone 4: Final application version (improved user experience and support for 10

devices)

FIGURE 19. Project iterations and milestones

User-centered design was incorporated into the development process from the very beginning,

and their activities were performed in parallel to software development tasks. The way of

carrying out both UCD and development was through the One Sprint Ahead strategy. In which

each new product feature is studied and designed in the current iteration, then implemented in

the next one, and evaluated later on. However it was not a strict sequence as many UI designs

were implemented several iterations later.

Given the high number of iterations, we describe the interaction design process grouping them

in project milestones.

6.1 MILESTONE 1: INCEPTION AND PROOF OF CONCEPT

The project started from an idea for automating/assisting the AX Certification tasks. Before the

project, there were tools used by users: A set of executable applications for invoking AX

commands, and a set of standalone web pages (VBScript and ActiveX) for invoking AX

48

commands. However, they were used in isolation for specific tasks and just by few users. Thus,

the project goal was defined as creating a solution from scratch that could assist all users in the

whole process.

6.1.1 ANALYSIS OF THE AX CERTIFICATION PROCESS AND TRAINING ON ATMS PLATFORMS

 This first iteration is considered the inception of the project which consisted on the analysis of

the business process and the introduction to technical background of ATMs platforms. The

business process was described in terms of: Activities, People, Information (entities and

concepts), Resources (tools) and sequence of flow. The result of this analysis was presented in

Chapter 3. The activities performed in this iteration are the following:

 Meetings. A specialist explained the concepts behind ATM software platforms and their

architecture through several meetings.

 Learning sessions in the lab. A specialist explained the AX Certification in the ATM

laboratory through examples of real certification tests on the ATM. Two sessions with

different specialists were performed.

 Reading of reference material. We read different material for getting detailed

information about the AX platform, the underlying XFS specification, and also real

examples of Certification Reports, which is the outcome of the Certification Process.

The sessions in the laboratory were not contextual observations as the specialist was not

performing the real work and he was also continuously interrupted during the process.

However, the kind of information obtained was similar: user tasks, context of use, functional

requirements, etc. So we elaborated a description of the session with these observations. The

following figure shows a snapshot of the first report.

FIGURE 20. Picture of the observations in the laboratory learning sessions (a 2-page report)

49

6.1.2 PRODUCT CONCEPT

The first description of the product proposed by users in early meetings was: “We need

something similar to XFS CERTIFY which fulfills a similar goal for testing the XFS layer; it allows

the execution of commands and allows testing several devices at the same time”. A screenshot

of the product is shown below:

FIGURE 21. A product referenced by users as an example (rights reserved)

However, users soon presented a clear description of the product concept: “The device

certification is a sequence of test, where each test needs a situation (or device state), the

execution of a command, and the verification of the result based on a baseline. Tests change the

state of the device.”

50

FIGURE 22. Concept of a device certification test

A further refinement to this idea was obtained through successive meetings with users: “The

certification requires the definition of a series of steps that should execute sequentially to

achieve the desired device state and the command under test. These steps can be of three types:

AX Commands, AX Events, and user actions”. This idea is illustrated in the following paper

prototype, which again, was proposed by users.

FIGURE 23. A Certification Test Script (paper prototype proposed by users)

Command 1

Command 2

Test: DetermineState

1. Enable (command)

2. Insert card

3. User event (input/output)

4. DetermineState (command)

Add step:

 Command

 Event: Screen / ActiveX

 Custom:

o User input

o User message

Command: Enable (select one)

Parameter 1: ………….

Parameter 2: ………….

 O K Cancel

User input

A message for instructing the user:

“Please insert a debit card”

 O K Cancel

Event: Inserted (select one)

 O K Cancel

51

6.1.3 DEFINITION OF MAIN PRODUCT FEATURES

From use cases and the initial product concept we depicted the general features the product

should provide:

Tests design: The design of tests consist on describing all the steps that must be
executed to certify a device or an entire ATM. Each step can execute an action or
prompt the user to put the device in a situation. The general features of the editor are:
create a test, save to a file and open a test from a file. The editor can be used in a PC
(design time) or on an ATM.

Test execution: Execution of a test consists of the sequential execution of each step in
the test set. Execution can be in two modes: All tests of the device or stepper. Results
are checked according to expected values and execution creates execution traces (logs).
Test execution is performed on the ATM only.

Results review: This consists on checking that all the steps were executed properly,
adding comments to explain incidents found and identifying causes of failures. This can
be done in the user's PC or even on the ATM.

Report generation: Once the test results are available, a user will be able to generate
the certification report. This consists on the results of each test and the revision
comments. The scenario in which the report is made is the user’s PC.

6.1.4 BRINGING CONCEPTS FROM SOFTWARE TESTING DISCIPLINE

The overall definition of the product is encompassed in the discipline of Software Testing. So

we considered appropriate to refer to some of its concepts: Test Suites and Test Cases, along

with assertions and expected results.

In this way, we mapped the definition of a device certification as a test suite. While a test case

was mapped as the unit test of a device function. The situation required by each test case was

defined in terms of tests steps (actions) that make up a test case. Finally, we defined four types

of actions: commands, events, and user actions (used for asking user intervention).

52

FIGURE 24. Application of software testing terms to define a certification test

Test suites and test cases are containers. Commands and events correspond to valid functions

of the device API (ActiveX). Custom actions can be any of the following types:

 User Message: Displays a text message to the user to communicate something in a test

point.

 User Input: Requests user’s inputs such as comments.

At this point, a natural decision was to start searching for testing applications on the market.

6.1.1 FIRST RESEARCH ON SIMILAR PRODUCTS (COMPETITOR ANALYSIS)

First we reviewed Selenium IDE for Firefox, which is useful for web applications testing. A

screenshot is shown below:

Test suite:

Certification of Card Unit

Test case:

Device capabilities

Custom Action:

user message: "The test will
start now"

Command:

deviceCapabilities()

Custom Action:

user input: "Input 'YES' if the
device continues enabled"

Event:

Event X is expected

Test case:

Card insertion

53

FIGURE 25. A reference application for product concept design (The Selenium IDE)

This application gave us a first idea on the basic layout of the user interface (UI) and the basic

application features. They were basically:

 Tests design: Capabilities for edition of test suites, tests cases and test steps

 Execution: Execution of a test suite, a test case, or a test step.

 Logging: The recording of results and events.

 Reference: Display of API documentation for the referred actions.

6.1.2 FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS

The initial set of functional requirements was derived from the product features, the use cases,

and the overall product concept. They first requirements specified were the following:

A. Execution of individual commands: The user shall be able to run individual AX

commands at any time. The application shall ask for the arguments through a graphical

user interface showing the names and descriptions of each parameter. The results shall

be presented in a detailed view with the name, description and value of each output

parameter.

B. Modeling of test suites and test cases: The application shall allow the user to define a

test suite with its corresponding test cases, where the test case shall have a description

and the containing test steps.

Steps
Test cases

Edit test step

Run

Log

Test suite

54

C. Modeling of test steps: The test steps in a test case can be any of the following types

(the SRS document contains full details):

• Command step

• Event step

• User input

• User message

D. Logging: all the actions (test steps) executed by the application shall automatically be

logged in a text file.

E. Keyboard accessibility: The application UI shall provide access to functions through the

keyboard.

F. Error handling: Any error produced in an action or in the application shall be properly

managed in order to avoid data loss by a system reboot (according to the ATM settings).

G. Security: The application shall request a login name and password to allow its use. The

application shall allow the configuration of users through a settings file.

6.1.3 FIRST UI DESIGN (WIREFRAME)

A following step after having defined the product concept was the design of the graphical user

interface (GUI). Through this design (see the figure below) visibility is given to the following

items:

 Current test suite (name)

 ATM device under test

 Execution toolbar

 Key functions: open and save test suite

The interface allows us to view on a single screen the exact status of the execution of the test

(current Test Suite, selected Test Case, and current Test Step.

55

FIGURE 26 First wireframe

Lower tabbed panels allow us to view the execution log, test suite description (written by the

user who designed the test), and the help panel (which could render content of the user

manual). Finally, the main menu (File, Devices, Options, and Help) is entirely optional or could

be relegated for user settings.

6.1.4 FIRST PROOF OF CONCEPT

During this milestone, the construction was focused on creating a proof of concept to touch the

technology involved (.NET, Windows Forms and ActiveX components) and also to validate the

main software architecture design, as the base for designing the whole product. The

architecture is described in APPENDIX D. SOFTWARE ARCHITECTURE. Its goals were primarily to

ease the modeling and reuse of Test Suites, and the design of an extensible catalog of ATM

devices, which allows users to enhance the supported devices without software coding by using

high-level models in JSON format.

The proof of concept was actually able to open, load and execute Test Suite models specified in

a JSON document. A screenshot is shown below.

Open, save
Test suite

Execution
toolbar

Test
cases

Test
steps

56

FIGURE 27. First proof of concept in .NET (Windows Forms)

6.1.1 SELECTING THE PRODUCT NAME

The first and final name of the product was defined by users based on the convention used in a

tool referred in the conception of the product. The tool is called XFS Certify and allowed the

testing of XFS commands. So it was natural for users to choose ActiveX Certify for our project,

which clearly identifies the purpose of the product: To certify the ActiveX platform (AX) in a

particular ATM.

6.1.2 EVALUATION

Along these iterations, we confide on the agile good practice of showing the products to users

as soon as they were ready to get early feedback. So we presented the draft of the analysis

document, the UI wireframe and the executable proof of concept. After the feedback we

produced new versions of the analysis document; the wireframe was accepted as is; and the

proof of concept worked as expected, which was enough to validate the product understanding

and to foresee the goals for the next milestone.

6.2 MILESTONE 2: FIRST STABLE VERSION

The first milestone finished with an initial specification of functional requirements, usability

requirements and the first validation of the architecture. The goal of the Milestone 2 was to

implement the wireframe to produce a working version capable of running test cases on at

least two ATM’s devices. The scope of this milestone left out the generation of the Certification

report to the Milestone 3.

57

The activities performed in Milestone 2 corresponded to an additional ethnographic

observation, a new research in related software (competitor’s analysis), the implementation of

the first functional version, and two usability tests.

6.2.1 ETHNOGRAPHIC OBSERVATIONS

In order to get richer information of the business process, the context of use and to validate the

current specification of requirements we needed to observe how a real certification was

performed by specialists in the field. Fortunately, at the time there were two customers that

required the certification service so it was possible to apply this method early in the

implementation process, before the first stable version was finished.

The first observation performed was a 5-hour session whose goal was the certification of the

PIN keypad for a well-known customer located in the same city. In this session, only one

specialist and one observer (the developer) participated. The place of the session was the

basement of the building, where a laboratory for ATMs maintenance is located. The activities

carried out were:

1) Observation by taking notes (during the session)

2) Elaboration of report with the findings (after the session)

3) Presentation of the findings to users (to validate them and getting feedback)

4) Conclusion (the requirements and the analysis documents were updated accordingly)

The results of the observation were 8 new requirements, the information of the physical

environment, and the description of user tasks (all these results are part of the previous

chapter, see Chapter 5). The most important facts were:

 There are new kinds of parameters in inputs forms that need to be supported (multiple

selection and default values). This was a new functional requirement.

 The session was fully performed with the keyboard (no mouse was available).

 The ATM user desktop was composed by at least 6 separate applications used at the

same time for each test (see details in the Appendix).

 It is very frequent the reading of logs (which need to be searched in the file system and

opened each time a change is made).

 The user did not follow the order of the certification report to run the tests. Instead he

groups tests with the same pre-requisites, so it is not required to repeat the tests.

 A summary of each result is written by hand in the report document but the details are

taken afterwards from the logs. A problem here is that the order of execution of tests is

different to the order in the report, so the user must to search and find each specific

result in the traces.

58

 Using Word (in a separate laptop) adds problems as the user needs to switch between

machines. Moreover, the laptop performance adds important delays to the process.

Finally, the full report can be found in the APPENDIX C. SUMMARY OF THE FIRST

ETHNOGRAPHIC OBSERVATION

The second ethnographic observation was scheduled several days later. The session was carried

out for the same customer but for a different ATM and device. The goal was to certify the Card

Reader. The participants were also the same user and the developer and the allocated time was

4 hours. We performed the same activities as in the previous observation: Taking notes during

the session and analyzing the results afterwards. The results were as follows:

 The context of use was basically the same as specified previously

 In particular one of the test was repeated about 10 times in order to verify a boundary

condition (number of maximum cards allowed). This simple test required a lot of time, it

was suggested that a kind of “macro” or “template” or “reusable test case” could be

useful as the input parameters were always the same and the number of repetitions is

indeterminate (depends on the ATM model).

In conclusion, this session gave us important information though it was not as fruitful as the

first one.

6.2.1 SECOND RESEARCH ON SIMILAR PRODUCTS (COMPETITOR ANALYSIS)

Regarding early visual and interaction design we started looking similar applications in the

market. The product analyzed was Microsoft Test Manager (see image below) which is an

online suite of tools for professional software testing (mainly but not limited to web

applications). The picture below illustrates one of its UI screens for test suite edition.

59

FIGURE 1. Microsoft Test Manager & Visual Studio Online (test suite edition).

We analyzed the terms used, the edition and execution functions and keyboard shortcuts. Here

we have the results:

Edition view

 It uses the same terms: Test Suite, Test case, and Test step.

 The presentation is clear: test suite title, description, and list of test cases.

 Editing tools and contextual menu: supports edition and execution options.

Execution view

In this view, several elements are observed:

• Navigation of test cases (previous and next)

• Background information: Current test case and current step

• Presentation of all steps in the test case numbered (including non-executed)

• Presentation of the results of each step: pass and fail icons.

• The panel is reduced to make room for the application being tested.

60

FIGURE 2. Microsoft Online Test. The execution view (left side) and a sample application being tested (right)

6.2.2 CONSTRUCTION OF THE FIRST APPLICATION VERSION

Following the main ideas of the wireframe we started the first implementation. However, we

quickly devised two issues:

1) The prototype proposed a single view for edition, execution and the results. This made

the UI simple to understand, but given that actions could be executed individually, it

would not allow tracing the results in historical order. Moreover, providing both edition

and execution functions in the same view seemed more complex to manage.

2) The wireframe did not include a way to display the results of actions, besides the

logging view which shows unstructured text.

Therefore, we decided to divide the UI into two views: Edition and Results. This idea also

matches with the GUI of the commercial product seen in the previous section.

The implementation was done in C# using Windows Forms. The first implementations were

pretty similar among them, so we describe only the resulting stable implementation of the

design (corresponding to the result of iteration 7 and 8).

61

FIGURE 28 Edition and execution views (from iteration 4 to 8)

As the prototype did not include the Results view, the design was decided during the

implementation. The presentation of results was defined as a tabular form showing the result

of the action (command result) and the outcome of the test (either pass or fail). This window

worked like a graphical logging window, i.e., it showed the results of actions in historical order

(independently of test cases and where new results were always appended). The basic idea was

simple and was liked by users.

The execution functions allowed were: Run Suite, Run Test Case, and Run Test Step. However,

they were located only in the Edition View (except for the Run suite function).

Test suite

Main
toolbar

Test
cases Test

steps

Results

62

6.2.3 FIRST USABILITY TEST

The first test was scheduled in the ATM laboratory with one of the users –a specialist with

experience in the certification of several ATM’s devices (the test is detailed in Chapter 7). This

test was also the first application deployment on a real ATM, because until now the

development and tests were carried out on an ATM simulator.

The preparation of the session resulted in lot of unexpected results which affected the stability

and the usability of the application, which produced big delays. So instead of cancelling the test

session, we opted by performing a user exploration session, where the user took the control

and started performing usual tasks while talking aloud to the evaluator. There were no previous

training besides the verbal explanation of the general layout of the window and the main

supported functions. The user started running commands (steps), looking at the results, trying

again, etc. The idea was to get an initial feedback and perception of the current version.

At the end of the session, the user summarized the experience as positive but also suggested a

list of concrete new requirements most of them being functional (we don’t put it here for the

sake of brevity). The main issues observed by the evaluator were the following:

 The application shall inform the user when the AX service is not correctly installed and

running (otherwise the application will fail silently).

 Background and font color contrast in some GUI controls were inadequate (either

invisible or hard to read).

 Using the keyboard (controlling focus) was challenging (some toolbars have no shortcuts

or keyboard access, and other functions had the same access key).

 Some GUI forms were not adapted correctly to screen size and resolution (forms too

big).

 Stacked modal popups must to be avoided (some modal windows were locking the

whole interface and were behind other windows difficult to reach with the keyboard).

The last suggestion was to avoid the use modal pop-ups, as this is one of the most usability

common problems the users have experienced in the past while using windows applications in

the ATM without a mouse pointer. Popups were used to inform the user about the arrival of AX

events. Several implementation alternatives were reviewed: auto-hiding balloons, stacked

messages in the results table, and status bars. The last option was selected because of its low

cost and the time restrictions, and also because the standard UI controls available in Windows

Forms did not match the kind of control required.

63

FIGURE 29. Iteration 8: Modal popups are replaced by a new execution status bar

The session findings were collected and discussed afterwards with the full team to decide on its

implementation. The implementation of the fixes was done immediately, although many of

them were almost unnoticeable in the external appearance of the application.

6.2.4 DESIGN CONCEPT OF THE COMMAND RUNNER

The findings of the usability test helped not only to improve the existing features, but also were

taken into account for designing the new product features. The Command runner is a feature

that allows the execution of commands at any time, as a shell console. It corresponds to the

first requirement. In this milestone we designed the first concept of the feature using a

wireframe (see the figure below).

The wireframe was presented to users and they provided the following feedback:

 The wireframe is attractive and simple which is good

 The idea of using templates for predefined sequence of actions seems useful but it is not

currently required.

 It is desirable to be able to manage different devices at the same time (e.g., using tabs),

as it is provided by the XFS Certify product.

Finally, the implementation of the feature was scheduled for the next milestone.

64

FIGURE 30. Wireframe of a new product feature: The Command Runner

6.2.5 SECOND USABILITY TEST

The second test was performed about two weeks after the first one. The participant invited was

a different user with experience in the certification process and also part of the project team.

However, this user had neither seen nor used the application before. The details of the test are

also described in Chapter 7. The activities consisted on the execution of an existing test suite

and the creation of a new test suite for the Card Reader unit in the ATM laboratory. The test

was split in two sessions because of other user’s commitments.

65

The result of questionnaire for user satisfaction was very high in all aspects although the

number of user errors and suggested improvements was 14. The main findings were the

following:

 The newly added start screen is too small and is unnecessary

 The name given to the test suite is not used for naming the file

 It is not clear which panel has the focus

 The result details view has no close button (though shortcuts exist to close the window)

 The comparison between expected and obtained result is not shown item by item (it is

not practical to look at the text comparison and then go to the detailed table to find the

position of the mismatch). This is shown in the next section.

 The “Run” button must be renamed to “Run test case” to avoid confusion with “Run

suite” or “Run Step”.

 The logging text is not easy to read because there are no separators between test steps.

 The “Open Results” function was only found with help.

6.2.6 IMPROVEMENTS AFTER THE USABILITY TEST

The implementation of changes was done in several iterations afterwards. The first

improvement was done in the Result Details window. The main changes were the following:

 Simplify the view by removing tabs: The revision options were unified into the main

view.

 Explicit save and close buttons were added.

 Comparison of results item by item: colors and symbols were added to highlight the

meaning of the comparison. The last image (Iteration 17) corresponds to Milestone 3 to

get an overview of the evolution (moreover, the main improvement was in Milestone 2).

In the images below we show the comparison of the window before and after the usability test.

Another improvement was in the start screen. At the end of the Milestone 1 it was added a

small start screen offering 3 basic options at the startup: Create Suite, Open Suite, and Open

Device Manager. However, after the test we saw that this welcome screen was unneeded. The

figure below shows how a new start screen was proposed, but again it was finally discarded by

users, as they expected to start the application and get into the main window directly. So a

welcome screen was not developed. The figures are shown below.

66

FIGURE 31. The design and implementation of the Result Detail window

Iteration 10. Result details with 2 tabs: Expected and obtained result (left) and comments panel
(right)

Iteration 11. Wireframe with comments incorporated in the
same view

Iteration 17. Implementation of design with colors and symbols
(This corresponds to Milestone 3)

67

FIGURE 32. The Start Screen

Iteration 11. Wireframe proposal for starting screen. But it was not approved by users.

Iteration 7 Iteration 6

68

Finally, a major enhancement was needed to improve the navigation between views during

execution of Test Suites. For this, we applied the navigation map method presented in the next

section.

6.2.7 NAVIGATION MAP: OPTIMIZING THE NAVIGATION OF THE EXECUTION VIEW

The usability test revealed how hard was the switching between views and jumping between

controls while running a test case repeatedly (especially by using just the keyboard). The basic

steps were:

 In Edition View: Select a test case, click on Run, change to Results view, wait and

then see the Result Details window, look at the details, add comments (changing view),

return to the previous dialog to continue, etc.

The current navigation map along with the user interface is displayed in the next page. Each

node is a view (e.g., a tab panel) or a dialog box. The orange cycle is the required path to run

the same test case again; while the red cycle is the sequence of steps done in case of a test case

failure, which requires the user to place comments and a revised result. The high number of

steps is distractive for the user and is inefficient.

Afterwards, a new navigation map was proposed along with a wireframe that implemented its

main ideas. The ideas of the new design were:

 To drop the modal dialog for failed test steps: provide the alternatives for continuing

(Stop, Continue, and View Result) in the main Results view.

 To allow put comments and revisions in the general Results view.

 To place the execution functions (Run Test Case, Run Suite and Stop) into the general

results view. The Run Step function had not sense anymore in a Test Suite.

 To preserve the hierarchy of test cases and steps in the Results view with a master-

detail view.

The second part of the picture below shows the new navigation map with a new UI design that

fulfills the navigation requirements. Finally, the implementation of the design was done in

several iterations, as it required important changes in the application architecture and code.

69

Iteration 7. Navigation during test case execution (modal dialog is obtrusive)

Start

editor

Open suite

result
s

choose

Run case

On error

Continue,
Stop

Out parameters Review

view
save

Select test case again

editor

result
s

Error:
Continue,
Stop

Out parameters

View details

Select next test case

Open suite
Run test case

Add comments

Iteration 11. New navigation flow (all in one view)

70

6.3 MILESTONE 3: SECOND STABLE VERSION

The activities performed during Milestone 3 were less focused in analysis and more in software

implementation, interaction design and evaluation. Analysis activities were focused on the

elicitation of requirements and the validation of concepts for the latest module: Reports.

6.3.1 IMPLEMENTING A NEW EXECUTION VIEW

At the beginning of Milestone 3 (iteration 12) it was clear that the new model of execution

proposed by the new navigation map required further refinement in order to plan its

implementation and make it more viable. So, we proposed about 12 new refinements of the

design until getting a viable proposal. The goal was to solve the following issues (refining the

previous ideas):

 Results are not classified by test cases

 It is not clear the current step in execution until it has finished

 The AX events are not logged in the results view

 The execution of a test case requires dropping the result of other previous test cases

 Unnecessary switching between editor and results view for running a single test case

A selection of the proposed designs is shown in the next page. We started with a master-detail

format for test cases and test steps. Then we simplified the view with to avoid repetition of

test steps and added controls for navigating back and forward. Then we removed the master

panel for simplifying the keyboard control. In the last proposal, users suggested that test cases

should have a short name (identification) and a long description which would be useful for

guiding the user, and also a master panel was introduced again but only for visualization of the

current test case.

The implementation was split in two parts: First to implement the third design and then add the

master panel (test cases) to get the fourth design. However, once the implementation started it

was clear that this view was saturated and that a global view of results was missing. Therefore,

we built several paper prototypes to show the problem to users. At the end of the meeting we

agreed on the creation of a new view for having the results of test cases and ease the addition

of comments directly. The first implementation of this new refinement is shown in the Figure

34, where there are now two views: Execution view and Results view. The implementation of

iteration 17 (bottom left) was selected for a new usability test.

After the test, in iteration 18, a new layout was proposed placing the revision panel in the top

of the view, but it was discarded as it was far from clear and introduced too much controls in a

single region.

71

Figure 33. (Iteration 12) Wireframes for new execution view (attractiveness vs keyboard friendly vs coding cost)

72

FIGURE 34. Implementation of the Execution View (Part 1: Top; Part 2: Bottom)

Iteration 14. Implementation of new Execution and Results views (now two separate views)

Two alternatives for revision panel (Left: Design of Iteration 17. Left: Discarded proposal in iteration 18)

73

6.3.2 THIRD USABILITY TEST

Once the build of Iteration 17 was ready, it was scheduled a new usability test. The test was

carried out in the ATM laboratory, with the same user who participated in the previous test

(about 2 months before). This user had neither seen nor used this application version before.

The goal of this test was the evaluation of the new Execution and Results view along with the

implementation of the previously approved design of the Command Runner (there are

additional details in Chapter 7). The activities of the test were:

 Activity 0: Execution of individual commands (for testing of the Command Runner)

 Activity 1: Run an existing test suite (for testing of the new Execution view)

 Activity 2: Create and execute full test suite (for testing the small enhancements of the

Edition view)

 Activity 3: Partial execution of test suites

The results of this test were as follows:

 Activity 0 was removed from the plan because the Command Runner was impossible to

use without a mouse (this activity was postponed for a future usability test after a new

version was ready).

 Activities 1 to 3 were successfully finished and within the predicted time (with a 4-

minute delay).

Regarding error rate, the user made 5 errors caused by ambiguities in the GUI, an accidental

error (the “Run test case” menu item is highlighted and very close to the “Edit test case” item,

but the latter is more frequently used than the former). Other 11 errors corresponded to user

doubts and other diverse issues. The most important issues found were:

 The test case conclusion window is a modal dialog that asks for user comments.

However, this dialog impedes to see the results, so a comment cannot be provided.

 The edition of test steps (of type Event) caused confusion. A new design was proposed

to users to solve ambiguities.

On the other hand, the user satisfaction questionnaire was better compared to the previous

test. Finally, out of the findings we proposed several changes, which are commented in the

next sections.

6.3.3 DESIGN OF A NEW TEST CASE SUMMARY VIEW

74

FIGURE 35. The Test Case Summary View used in the Test 3 and the new design proposed (option 1)

Iteration 17. Execution view and test case conclusion

Iteration 18. Wireframe for execution view and test case summary (option 1)

75

FIGURE 36. Design of Test Case Summary View (option 2) and its implementation

Iteration 18b – Execution view and test case summary (option 2)

Iteration 19. Implementation of new design of test case summary Iteration 22

76

A solution for summarizing the end of a test case was needed. We proposed two alternative

designs (using wireframes) with the aim to solve the following needs:

 Make visible the end of each test case

 Give enough context to decide test case outcome (show the results of the test steps)

and provide comments (mark it as “pass” or “fail”)

 Make easier the navigation to the next test case

In Figure 35 we show the version used in the test and the first design proposed (wireframe),

and Figure 36 shows the second wireframe. The latter was selected for the implementation. A

feature was added in the implementation: The outcome of the test case is suggested

automatically (out of the results of steps) and can be reset to the automatic value using a

hyperlink.

6.3.4 GIVING FULL CONTROL TO THE USER: PAUSE AND RESUME

Until the test 3, the user had no option to pause and resume a test case, which is something

that gives flexibility to users during the execution of a long Test Suite or Test Case. Moreover,

whenever a test step fails the execution should simply pause and let the user decide what to

do. However, until now we used a modal dialog with three options: Continue, Stop, and View

result (see Figure 35 in the top) that was too restrictive as it blocked the full UI. So users could

not browse previous steps or see anything different to these options.

The visual design of this feature is trivial (just add the Pause button and allow to switch the Run

button to the Continue function), however the implementation required a major development

effort. Fortunately, the architecture was prepared for such a change as the execution was fully

decoupled from the GUI and also used a separate thread from the beginning. The resulting

implementation is also shown in Figure 36.

6.3.5 IMPLEMENTATION OF A NEW COMMAND RUNNER

Going back to the results of the third usability test, we needed a solution for making the

Command Runner more accessible and usable. On the first hand, the initial implementation did

not fully followed the original wireframe design (where commands are selected in a popup).

On the other hand, the wireframe does not allow multiple devices at the same time. So a new

design in between was proposed and implemented. Moreover, the activity of the last usability

test was cancelled because of the lack of keyboard accessibility. Therefore, a new

implementation was created which fully addressed the mentioned concerns. In the figure

below we see the images of the original prototype, the failing and the new implementations.

77

FIGURE 37. Command Runner: The wireframe and the implementations (iteration 19’s was used in the 4
th

 usability test).

Iteration 13

Iteration 19. Final implementation (popup is more complex
than the wireframe)

Iteration 8. First wireframe for the Command Runner. The
wireframe does not allow multiple devices simultaneously.

78

6.3.6 MAKING USABLE DYNAMICALLY GENERATED UI FORMS

The application uses dynamically generated input forms for the edition of test steps. These

forms are generated at runtime by loading a device model (a JSON document with the

definition of the device, of its commands and arguments)4.

The basic layout of the forms is rather simple, a heading panel (the command description), the

content panel (a list of input controls), and the footer (the dialog buttons). Below, we show the

input from corresponding to a specific device command.

FIGURE 38. Dynamic form for editing test step arguments (Iteration 12)

The first design considerations were regarding the main layout. Its characteristics are:

 The name and description of each parameter are grouped for easy reading.

 Help texts are highlighted using a well-known color convention.

 The area of parameters is scrollable to allow any number of items while having a fixed

window height, and always-visible dialog buttons at the bottom.

Second, the content of input forms was filled at runtime. So besides allowing any number of

items, we found the issue of overlapping controls. Whenever the device model had descriptions

that were too long or split in several lines of text the help text hid the input control.

4 This strategy is based on model-driven engineering (MDE)

Scrollable
area

A group panel
for each
parameter

Buttons
always
on top

Jump to top

79

A proposal for avoiding this was the addition of a new attribute in the device model: one for a

short description and another for full descriptions. The latter could be displayed on demand in a

separate view while the former could be always visible and located beside the input control

(see the figure above). So the implementation consisted on the modification of Json models and

the introduction of the popup note. However, the latter was postponed to a future iteration.

FIGURE 39. Layout issues of generated input form

FIGURE 40. Input form dynamically generated. In orange is shown the proposal for displaying long description.

Third, the requirements included the support for different kind of parameters, which were

increasing in complexity:

 Free input fields (text boxes)

 Single selection fields (combo boxes)

 Multiple selection lists (list of check boxes)

 Composite parameters (a parameter with a linked edition form with parameters of any

kind)

Iteration 18

Device.json
{
 “Name” : “Currency”,
 “Description”: “Enter the currency using ISO format”,
 “LongDescription”: “The ISO format consists of […]”
}

The ISO format
consists of three
letters such as:

• USD
• EUR
• JPY
• COP

Command Input Form

|

Currency

X

Enter the currency using ISO
format

?

80

And the list continues. One of the most challenging types was the parameters with a command-

line format. An example of this parameter is found in the command for controlling sensors.

There are several sensors:

 Sensor 1

 Sensor 2

 Etc.

And the command allows operations on each of them:

 Turn on

 Turn off

 Unchanged

So the edition form for this parameter shall allow inputs like this: “sensor1=ON sensor2=OFF”

or this “sensor1=ON”. So, the most intuitive and efficient editor that can be generated is the

one at the bottom-right in the figure below: Through three-state check boxes we could set the

operation for each sensor and the form would translate them into the target string format.

FIGURE 41. Four different design alternatives for the command-line format parameter editor

81

However, this option has several problems. First, the Json model is generic and allows any

number of items and operations. So instead of three-state checkboxes we would require a

generic list box per item.

A second issue is regarding the number of items: if there are too many items then finding the

right item would be cumbersome. And a third problem is regarding the length of texts: text with

very different text lengths would make the content hard to read: a bunch of list boxes and

labels. A fourth issue is regarding the requirements: the tool shall allow both the input of valid

and invalid format values, because the goal of the tool is testing.

Therefore, we looked for other alternatives (see the figure above). They are based on the idea

of having an editor with free input text with a single toolbar with the items and operations

available. So the user can freely edit the text or use the edition tools. We chose the bottom-left

design, as it was a safe alternative with an acceptable usability and a viable development cost.

The implementation of the design is shown below:

FIGURE 42. Implementation of the command-line parameter editor

This generic editor meets the requirements, as it allows values with valid and invalid format,

and also has the following characteristics:

 Valid values can be built using the controls, while invalid inputs can be formed through

direct typing.

 It is a generic editor: it accommodates to list of keys and values of any size without

affecting easy reading and picking of items.

Regarding usability, effectiveness and performance could be furtherly evaluated with users,

although its impact is not relevant, as it is a very specific parameter type that is found in very

few devices.

6.3.7 FOURTH USABILITY TEST

82

The fourth usability test was the first test that covered the three main features (and use cases)

of the application: Edition, Execution and Command Runner. The test was performed in the

same ATM laboratory, but using a newer ATM model (NCR SelfServ 22). The goal of the test

was to evaluate the usability through the certification of a new device: The cash dispenser. The

participant was a user who has not participated till now, who is expert in the device and had

not used the application version before (see Chapter 7 for more details). The activities of the

test were:

 Running individual commands

 Run an existing test suite

 Create and execute a test suite

The user successfully finished all the test activities within the expected time (with just 2

additional minutes). The error rate obtained was 1 user error and 6 varied issues:

 The Command Runner reuses dialogs from the Execution View, but the options for

setting a baseline and writing comments has no sense in its context (even if its disabled

is confusing, it is preferred to be hidden).

 (Dialog) The label “Edit Test Case” is used for creating and editing test cases, which is

confusing (this caused the user error).

 “Create test case” is a function that cannot be reached with the keyboard (using Tab).

The shortcuts and contextual menu were not discovered by the user.

 List boxes in test step input forms show selection options that are difficult to recognize:

The options should have a short name and long description, but it is used only the long

description.

 Test Case summary view: The user tries several times to enter and see more details (but

the option does not exist.

This test was followed by a Thinking Aloud Protocol test aimed to evaluate the usability of

reports. This last test was the first usability evaluation for the Reports module. The test was

carried out by the same user but using her laptop, as it is the usual context of use for report

generation. The activities were the following:

 Generate a certification report out of two test suite result files (Device Card Reader and

Cash Dispenser). The report was required to comply with a list of requirements.

The result of the test was positive. The user successfully finished the test without requiring

external assistance in a third of the estimated time (10 instead of 30 minutes). The error rate

was 2 user errors, 5 varied issues and 1 (minor) bug:

83

 The report wizard provides an “Open Folder” button: The user thought it was to open a

source results file folder instead of the target report folder.

 The bug was a date field that should be automatically filled but was empty.

 The user wanted to open a report definition to edit it, but this function does not exist.

However, creating a new report from scratch required almost the same effort.

Following the “talk” of the user, the flow of actions was coherent with its thinking most of the

time.

Finally, before the end of the milestone, a new version was released which included most of the

suggested improvements. This version was the last version produced which is presented in

Chapter 8.

6.4 MILESTONE 4: EVALUATING THE FINAL APPLICATION VERSION

In this last milestone, we wanted to measure the business benefits of the project. Therefore we

designed a new usability test (#5) whose goal was not only to evaluate the user experience but

also to measure the total effort required in a full certification process by using the new tool.

6.4.1 FIFTH USABILITY TEST

The fifth usability test was designed to be more realistic and demanding. We searched for a

participant with the junior profile (according to the user profiles defined in Chapter 5). And

effectively we selected a user who knows the certification process but has never done a

certification of any device before. The place of the test was the ATM laboratory, the ATM used

was the NCR 5886 (an old model), and the device tested was the Card Reader. In Chapter 7 and

Chapter 8 we describe the results of this activity in detail.

Besides the numbers obtained, a general conclusion was that a junior user will be able to

perform successfully a full certification only if the Test Suite is modeled with very detailed

instructions and the user also knows the usual practices for physically manipulating the device.

That is, the tool does not provide any support for teaching the user how to interact with the

ATM in the context of the certification process.

On the other hand, we observed that the paramount effort required by the user was not

comparable with the effort required by an expert. So this test also led to a broader discussion

about how experts really perform the testing steps and how the tool can be adapted to allow a

closer assistance to any kind of users.

6.4.2 LINES OF IMPROVEMENT

84

We arranged a meeting with an expert user (senior profile) with the aim of getting his opinion

regarding the last product version. The goal was to know how he exactly performs a test session

in the most optimal way. To make more objective the session, we asked the user to try to

model a Test Suite, while thinking aloud, with the exactly same configuration he usually uses in

the execution of tests.

The session took about 1 hour and at the end the user modeled the skeleton of a test suite for

the Card Reader. Instead creating 100 test cases with all the combinations of state-function, he

defined a suite with the following structure:

 1 big test case for testing the standard correct operation of the device in a single flow of

actions.

 Separate test cases for error conditions and boundary cases

However, in a second iteration he produced the following structure:

 The flow of actions for the correct case was modeled as a Test Suite divided by several

test cases

 The error condition tests were modeled as a separate Test Suite

In the final iteration, the user explained that the certification report was structured by defining

a set of device states where several Device commands are tested. Therefore, testing 5

commands in a given device state corresponds to “1 test involving these 5 commands in a row”

instead of running “5 tests in the same state”. So he modeled a Test Suite composed by test

cases, each one corresponding to a device state (about 10 items). And each test case required

the assertion of several commands under test. This optimal model required the modification of

the application, as currently several assertions per test case are allowed but the report will

produce only one record per test case, not a record per assertion made.

The last proposal was an important step for making possible the complete introduction of the

tool in the business process. The following chapter (Chapter 7) describes in detail the

evaluation of the product along the development process.

85

7 EVALUATION

In this chapter we describe the methods applied for usability evaluation (the selection of

evaluation methods is discussed in Chapter 4).

In general, we will see that once a stable product version was available a test was performed

before continuing developing new features. So, latter tests were more comprehensive than

formers –more functional features were available.

The following picture shows the timeline of the project. The usability evaluation methods we

applied are shown with the “UX” label. As an aside note, we highlight the first test because it

was not successfully applied though its results were worthy to mention.

FIGURE 43. Usability evaluations performed along the project

7.1 METHODS, METRICS, PARTICIPANTS AND LOCATION

Methods and metrics

The usability metrics to be measured were selected according to project goals and actual

resources (as defined in [20, 21, 23]):

 Efficiency (time on task)

 Effectiveness (success rate), and

 Satisfaction (like/dislike questionnaire)

Each method was applied according to the kind of task, its context of use, and the functional

feature evaluated. They are the following:

 Laboratory usability testing: For measuring all three metrics interacting with the ATM

 Thinking aloud protocol: For measuring effectiveness and satisfaction using user’s PC

 Heuristic evaluation: For measuring usability strengths and drawbacks according to

Nielsen’s principles.

Below, the figure shows how evaluations covered functional modules along the participants

and the location:

86

FIGURE 44. Usability evaluation methods applied per functional module

Participants

On the other hand, the number of participants in each case was always 1 user, who was always

a different person. But now we will see why this is not a drawback for the validity of the

evaluation.

First, the number of participants is not required to be always high. According to Nielsen [18], 5

participants can provide the most of the information of usability issues during a usability test,

and increasing the number will provide us very little additional feedback. Second, in the

context of the company, there are 3 people currently in charge of the Certification Process and

potentially 2 more people can be involved depending on the company’s needs. So, we have a

total population of 5 users. This means we could have planned the 5 tests made at least in two

different ways:

 Involving all 5 users in all tests

 Involving 1 different user in each test

We chose the second alternative because it was more viable (involving the whole team at the

same time or along the same week for a 1-hour session is difficult to ask in a company); and

also it gave us the advantage of having always a different “novice user” who had not used the

application before.

Suite
edition

Usab. lab tests:

5 (M, SM, SM,
EP, JL)

Devices tested:
CardUnit, Cash

Dispenser

Location:

ATM lab

Suite
execution

Usab. lab tests:

5 (M, SM, SM,
EP, JL)

Devices tested:
CardUnit, Cash

Dispenser

Location:

ATM lab

Reports

Thinking Aloud:

2 (EP, JL)

Location:

User's PC

Command
runner

Usab. lab tests:

1 (EP)

Devices tested:
CardUnit, Cash

dispenser

Location:

ATM lab

Device
manager

Workshop with
4 users

Location:

Users' PC

87

Location and resources

The usability tests were performed in the company’s laboratory where two different NCR ATMs

were fully available for project evaluations. The physical settings of the laboratory are pretty

similar to real context of use (keyboard and mouse are distant; the user is standing; test

materials are on the table, etc.). In absence of a small table, the keyboard must be operated

from the ATM’s top.

FIGURE 45. ATM laboratory where evaluations were performed (The NCR SelfServ 22 ATM was one of the

machines used)

In the usability laboratory tests the observer must be pretty close and behind the user,

otherwise screen’s privacy filter will impede the external observation. Note-taking during the

test is made with notebook and pencil. The picture below shows one of the two ATMs used in

the usability tests.

88

7.2 LABORATORY USABILITY TEST 1

Test date: 2015-01-15

Test duration: 120 minutes

Place: Laboratory using a NCR 5886 ATM

Version tested: Iteration 8 build

Devices tested: Card reader and receipt printer

Participants: 1 User (M)

7.2.1 GOAL

Perform the first application deployment on an ATM and evaluate its functionality and usability.

7.2.2 ACTIVITIES

 Activity 1: Create a test suite for the described list of test cases (commands)

 Activity 2: Enhance the test suite modeling the described list of test cases (events)

The user was asked to create a test suite with 17 test cases from text descriptions for the card

reader and then run them in order. However, due to problems setting up the application on the

ATM (it was the first time) the session was delayed and we needed to change it. So instead the

plan, the user made an exploration of the tool trying to perform habitual tasks while talking

aloud and providing comments, suggestions and feedback.

7.2.3 RESULTS

This test cannot be considered a valid laboratory usability test because the test plan was not

followed. However, the session produced important feedback and new requirements that were

quickly implemented in the tool thereafter. The most important issues found were:

 Background and font color contrast in some GUI controls were inadequate (either

invisible or hard to read).

 Using the keyboard (controlling focus) was challenging (some toolbars have no shortcuts

or keyboard access, and other functions had the same access key).

 Stacked modal popups must to be avoided (some modal windows were locking the

whole interface and were behind other windows difficult to reach with the keyboard).

 Some GUI forms were not adapted correctly to screen size and resolution (forms too

big).

 Finally, this experience became the base for the design of the next usability test.

89

7.3 LABORATORY USABILITY TEST 2

Test dates: 2015-02-02; 2015-02-06 (two sessions)

Test duration: 45 minutes; 50 minutes

Place: Laboratory using a NCR 5886 ATM

Version tested: Iteration 11 build

Device tested: Card reader

Participants: 1 User (SM)

7.3.1 GOAL

Evaluate the usability of the application for creating and executing test suites

7.3.2 ACTIVITIES

 Activity 1: Run a full test suite (the test suite is given)

 Activity 2: Create and execute a full test suite according to 6 instructions for test cases

 Activity 3: Partial execution of test suites

Note: During the session, the Activity 2 was simplified to reduce the session time. Original

estimated time was 60 min, which was adjusted to 40 min.

7.3.3 RESULTS

Despite having only one participant, the activity was important in determining a number of

software enhancements. It also set a benchmark for comparison against future usability

assessments.

7.3.3.1 EFFICIENCY OF USE

The indicator measures the time spent by the user (minutes) versus an estimate for novice

users.

Date User Activity 1 Activity 2 Activity 3 Total Comments

Session 1 SM 45 min Postponed Postponed 45 min The session was interrupted
because of other user’s
commitments.

Session 2 SM 30 min 15 min 5 min 50 min The user finished 30 minutes
before the estimated time.

Estimated time 30 min 40 min 10 min 80 min

7.3.3.2 EFFECTIVENESS OF USE

90

The indicator measures the level of completion achieved by the user in each activity.

Date User Activity 1 Activity 2 Activity 3 Total

Session 1 SM 80% - - 1 Partially done

Session 2 SM 100% 100% 100% 100%

In the first session it was not possible to complete the Activity 1. However, on the second date,

the activity was finished successfully by the same user.

7.3.3.3 ERROR RATE

Errors made by the user while using the application. We consider four different error types.

 User error: An error caused by a usability issue.

 Accidental input errors: Not considered a usability issue, except if it’s too recurrent or

generalized

 Issues and questions: Any other issue found like help requests and questions.

 Bugs: Application errors

 Activity 1 Activity 2 Activity 3 Total

User errors 8 5 1 14

(Accidental) Input errors 0 0 0 0

Issues / questions 0 0 0 0

Bugs 0 0 0 0

In the first session, the user made 4 errors while in the second she made 10 (there were more

activities).

7.3.3.4 USER SATISFACTION

At the end of the session, we asked the user to fill the UEQ questionnaire5, and then we used

the data analysis tool to summarize the results. This questionnaire measures six user

satisfaction categories through 26 questions.

The results per dimension are shown below. The figure highlights the ranges that are

considered good (greater than 1.5), and bad (less than 1).

5 http://www.ueq-online.org/

91

FIGURE 46. Results of the UEQ questionnaire

Attractiveness: Overall impression of the product. Do users like or dislike is?

Very high

Perspicuity: Is it easy to get familiar with the product?

Very high

Efficiency: Can users solve their tasks with the product without unnecessary effort?

Good

Dependability: Does the user feel in control of the interaction?

Good (somehow neutral)

Stimulation: Is it exciting and motivating to use the product?

Excellent

Novelty: Is the product innovative and creative?

Very high

So Efficiency and Controllability were the least scored, which can require broader attention for

future iterations. This can be explained by the difficulty of efficient control of the UI using only

the keyboard, and to quickly find the desired information (according to the user’s requests for

help).

In conclusion, all activities were developed entirely in the right time, without having knowledge

or training on the tool before. However, assistance was required several times and several

suggestions for improvement were recorded.

-2

-1

0

1

2

92

7.4 LABORATORY USABILITY TEST 3

Test date: 2015-04-15

Test duration: 55 minutes

Place: Laboratory using a NCR 5886 ATM

Device tested: Card reader

Version tested: Iteration 17 build

Participants: 1 User (SM), 2 observers

7.4.1 GOAL

Evaluate the usability of the modules: Test suite edition, Execution, and Command runner.

7.4.2 ACTIVITIES

 Activity 0: Running individual commands: A list of commands is given for execution

 Activity 1: Run a full test suite: The test suite is given

 Activity 2: Create and execute a full test suite: Instructions are given for creating and

running a desired test suite

 Activity 3: Partial execution of test suites

Note: Activity 0 was removed from the original plan because it was impossible to use the

application feature without a mouse. Therefore, this activity was not taken into account in any

of the indicators presented below (this activity was postponed for a future usability test).

7.4.3 RESULTS

7.4.3.1 EFFICIENCY OF USE

The indicator measures the time spent by the user (minutes) versus an estimate for novice

users.

 Activity
1

Activity
2

Activity
3

Total Comments

Estimated
time

5’ 25’ 5’ 35’ Time estimated for a user who has never
used this application version

Time
spent

8’
(10.15)

22’
(10.23)

9’
(10.45)

39’
(10.54)

The time spent was slightly greater by 4 mins.
(this is not considered an issue)

7.4.3.2 EFFECTIVENESS OF USE

The indicator measures the level of completion achieved by the user in each activity.

93

 Activity 1 Activity 2 Activity 3 Total Comments

% completion 100% 100% 100% 100% Everything was done

7.4.3.3 ERROR RATE

Errors made by the user while using the application. We consider four different error types.

 User error: An error caused by a usability issue.

 Accidental input errors: Not considered a usability issue, except if it’s too recurrent or

generalized

 Issues and questions: Any other issue found like help requests and questions.

 Bugs: Application errors

 Activity 1 Activity 2 Activity 3 Total

User errors 2 3 0 5

(Accidental) Input errors 0 1 0 1

Issues / questions 5 6 0 11

Bugs 0 1 0 1

In conclusion, besides the bug found, the user made 5 errors caused by ambiguities in the GUI,

an accidental error (which seems to produce frequent errors in the future: “Run test case” is

very close to “Edit test case” and is highlighted despite editing is more common than running).

Other 11 errors corresponded to doubts and diverse issues. These results provided important

feedback that became suggestions for change.

7.4.3.4 USER SATISFACTION

At the end of the session, we asked the user to fill the UEQ questionnaire6, and then we used

the data analysis tool to summarize the results. This questionnaire measures six user

satisfaction categories through 26 questions. Below we show the results along with the

meaning of the categories assessed (according to [11]).

6 http://www.ueq-online.org/

94

FIGURE 47. UEQ satisfaction questionnaire results

According to this scale, values above 1.5 are considered as “very good” while values below -1.5
are considered as “really bad”.

In our case, we see that the overall user perception is very positive. In particular, Perspicuity (or
clarity) and Controllability had the lowest scores. The lack of transparency (which produced
confusion and required assistance) is corroborated by the corresponding error rate metric seen
before (issues / questions).

7.5 LABORATORY USABILITY TEST 4

Test duration: 22 minutes

Test date: 2015-05-25

Place: Laboratory using a NCR SelfServ 22 ATM

Device tested: Cash dispenser

Version tested: Iteration 20 build

Participants: 1 User (EP)

 The user has performed certifications of this device previously and is familiar with it

 The user has never used the application before

7.5.1 GOAL

Evaluate the usability of the modules: Test suite edition, Execution, and Command runner.

7.5.2 ACTIVITIES

 Running individual commands: A list of commands is given for execution

 Run a full test suite: The test suite is given

-3

-2

-1

0

1

2

3

95

 Create and execute a full test suite: Instructions are given for creating and running a

desired test suite

7.5.3 RESULTS

7.5.3.1 EFFICIENCY OF USE

The indicator measures the time spent by the user (minutes) versus an estimate for novice

users.

 Activity
1

Activity
2

Activity
3

Total Comments

Estimated
time

5’ 5’ 10’ 20’ Time estimated for a user who has never
used the application version

Time
spent

4’
(10.59)

3’
(11.03)

15’
(11.06)

22’
(11.21)

We consider that the user finished in the
estimated period of time.

7.5.3.2 EFFECTIVENESS OF USE

The indicator measures the level of completion achieved by the user in each activity.

 Activity 1 Activity 2 Activity 3 Total Comments

% completion 100% 100% 100% 100% Everything was completed

7.5.3.3 ERROR RATE

Errors made by the user while using the application. We consider four different error types.

 User error: An error caused by a usability issue.

 Accidental input errors: Not considered a usability issue, except if it’s too recurrent or

generalized

 Issues and questions: Any other issue found like help requests and questions.

 Bugs: Application errors

 Activity 1 Activity 2 Activity 3 Total

User errors 0 0 1 1

(Accidental) Input errors 0 0 0 0

Issues / questions 3 1 2 6

Bugs 0 0 0 0

Seven drawbacks were found in total, from which, the most prominent are:

96

 The label "Edit Test Case" is not appropriate for the case of creating and editing

 Difficulty to activate a button with keyboard navigation

 There are difficulty to find functions without using mouse

7.6 THINKING ALOUD PROTOCOL FOR EVALUATING REPORTS

Test date: 2015-05-25

Session duration: 10 minutes

Version tested: Iteration 23 build (latest version)

Scope: Reports module

Place: ATM lab using the user’s laptop

Participants: 1 user (EP)

 She had not used the Reports before

The thinking aloud protocol consists on asking users to verbalize their thoughts, feelings, and

opinions while interacting with the system. This test is useful for capturing a wide range of

cognitive activities. Its main benefit is a better comprehension of the user’s mental model and

the terms he or she uses to express an idea or function [14].

The method is not designed to measure efficiency or quantitative data. So the test was

designed to have only one activity and we only measured the overall time.

7.6.1 GOAL

The goal of this test was to evaluate the usability of the Reports module (the wizard and

navigation).

7.6.2 ACTIVITIES

The user was asked to generate a certification report with two test suite results (Device Card

Reader and Cash Dispenser). The activity also had a list of features that the report should meet.

7.6.3 RESULTS

The user successfully finished the test without requiring external assistance. A minor bug and

two errors were found. The latter were functions missed by the user but finally she found a way

for finishing the activity and acknowledged these functions were not really important (opening

a report definition vs. creating a new one from scratch).

 Activity duration: 10’ (minutes)

97

The activity was finished in a much shorter time than expected. The estimated time was

between 20’ and 30’.

 Effectiveness of use: 100% successfully completed

 Error rate:

 Total

User errors 2

(accidental) input errors 0

Issues / questions 5

Bugs 1

7.7 HEURISTIC EVALUATION

Test date: 2015-05-26 and 2015-06-8 (revision)

Version tested: Iteration 23 build (latest version)

Scope: Edition and Execution features only

Evaluators: 1 (developer)

Heuristic evaluation is an inspection method performed by usability experts. It is part of the

“Discount Usability” methods [12], which were proposed as a viable alternative for projects

with restricted budgets7.

In heuristic evaluation, the benefit of the method depends on the number of evaluators. A

single evaluator is not strongly recommended as he or she will not discover most of the

usability problems. Instead, Nielsen [23] recommends at least 3 evaluators (and better with 5).

A model he proposed which relates the number of evaluators and the problems found, is

shown in the figure below.

In our case, we applied the method with a single evaluator (the developer) whose knowledge is

based on academic training in usability. This means we will discover about one third of the

usability problems. However, we find the method worthy whenever the results were

complementary with results from previous tests.

7 Discount usability consists on: a) Simplified user testing: The idea that testing 5 users was
"good enough", b) Narrowed-down prototypes: Using fast to design paper prototypes instead
something that embodies the full user experience, and c) Heuristic evaluation: which consists
on inspecting user interface designs relative to established usability guidelines [2].

98

FIGURE 48. Proportion of usability problems found by heuristic evaluation using various numbers of evaluators.

Taken from [23]

7.7.1 GOAL

The goal of this test was to evaluate the usability of the product according to the heuristics

recommended by Jacob Nielsen [13] in order to find usability flaws in the product, and obtain

recommendations for improvement.

7.7.2 ACTIVITIES

The developer checks the compliance of the 10 heuristics and then makes a list of

recommendations to solve the issues. The product evaluated is the latest version (produced in

iteration 23). Screenshots of the product are provided below.

99

FIGURE 49. Screenshot of the latest product version (edition and execution views)

7.7.3 RESULTS

Below we provide the description of each heuristic, according to [13], and the results of the

evaluation for each module. Results are given in terms of strengths and flaws found.

1) Visibility of system status: The system should always keep users informed about what is going

on, through appropriate feedback within reasonable time.

Module Strengths found Flaws found

Edition  UI components are
disabled according to
App state.

 User actions are
verbalized in the
status bar (during
and after the action)

 Last saved time label

 No visual hint when an item has been cut, moved
or pasted.

 Log panel shows details on last actions but is not
always enabled.

 Current filename is not visible to users

Execution  Progress bar is
updated during
execution

 Users can’t know which test cases have been
done and which are not (in the left panel)

 Current results file name is not visible to users.
 Users can’t know if results have not been saved

2) Match between system and the real world: The system should speak the users' language, with

words, phrases and concepts familiar to the user, rather than system-oriented terms. Follow

real-world conventions, making information appear in a natural and logical order.

Module Strengths found Flaws found

100

Edition  Terms: Device, command, event,
parameter, etc., are always used
along the user interface.

 None

Execution  Terms are very generic but
common and used by users: Run,
Stop, Pause, Continue, Error,
Warning, Owner, Comment, etc.

 “Assert” is not clear for users outside
the project. Better options can be:
Assessment/check /comparison/Test
Outcome

3) User control and freedom: Users often choose system functions by mistake and will need a

clearly marked "emergency exit" to leave the unwanted state without having to go through an

extended dialogue. Support undo and redo.

Module Strengths found Flaws found

Edition  None  Undo and redo are not supported

Execution  Pause and stop is allowed during
execution

 None

4) Consistency and standards: Users should not have to wonder whether different words,

situations, or actions mean the same thing. Follow platform conventions.

Module Strengths found Flaws found

Edition  Shortcut keys assignments follow
standard conventions: Open, save,
close, copy, cut, paste, etc.

 None

Execution  Screen layout for edition and
execution are very similar (master-
detail forms for test cases).

 All views support contextual menus.

 Shortcuts are not shown in
contextual menus (as they are
in others)

5) Error prevention: Even better than good error messages is a careful design which prevents a

problem from occurring in the first place. Either eliminate error-prone conditions or check for

them and present users with a confirmation option before they commit to the action.

Module Strengths found Flaws found

Edition  The user is informed before
exiting, overwriting results,
changing the context (opening
another suite)

 GUI controls are
enabled/disabled according to
current state

 Not all wizards (only report
wizard)*use error providers for
validating errors while typing editing
form fields. Execution

6) Recognition rather than recall: Minimize the user's memory load by making objects, actions,

and options visible. The user should not have to remember information from one part of the

dialogue to another. Instructions for use of the system should be visible or easily retrievable

whenever appropriate.

Module Strengths found Flaws found

101

Edition

 Main functions are
explicitly visible in
toolbars in each view.

 None

Execution  The user can’t know which the previously
executed test case was (if he changes the
selected item).

 The review panel for test cases is somehow
hidden or not visible enough despite being
one of the most used functions. So users need
to learn how to show it up to use it.

7) Flexibility and efficiency of use: Accelerators -- unseen by the novice user -- may often speed up

the interaction for the expert user such that the system can cater to both inexperienced and

experienced users. Allow users to tailor frequent actions.

Module Strengths found Flaws found

Edition  Shortcut keys are
enabled for
(almost) all
functions

 Key accelerators
(textual menus)

 A way to copy several items (test steps, test cases) is
not available.
The same for moving, deleting and other editing
functions (in batch)

 Creating a single test case with a single action,
setting the key flag, and setting a baseline requires
about 10 clicks, and possibly more than 20 keyboard
actions (when there is no a mouse). Of course
modeling 100 test cases is error-prone, tedious and
really costly. A generator of multiple test cases is
required based on the selection of commands for
instance.

Execution  Quick button for
commands
console

 None

8) Aesthetic and minimalist design: Dialogues should not contain information which is irrelevant

or rarely needed. Every extra unit of information in a dialogue competes with the relevant units

of information and diminishes their relative visibility.

Module Strengths found Flaws found

Edition  None  None

Execution  Popups were replaced
by status bar
messages, small
floating balloons and a
summary form

 The table with steps results is not minimalist at
all. It tries to show everything at once (in text)
which is somehow cumbersome for quick
reading. And there are important things that
are not shown.

 Result Details form has similar problems

Screenshot of the issue found: obtained and expected are not clearly distinguished for 1 record, and for

many is event worst.

102

9) Help users recognize, diagnose, and recover from errors: Error messages should be expressed

in plain language (no codes), precisely indicate the problem, and constructively suggest a

solution.

Module Strengths found Flaws found

Edition  None  None found. However, an in-
depth analysis through other
methods can identify risks and
kinds of failures that could be
produced.

Execution  Typical suite execution errors are
explained with a possible solution

 Log window provide details in case
of runtime failure

 Device validator find and inform the
user about several kinds of modeling
errors

 No Auto save during suite
execution
(Non-implemented requirement,
despite ATM reboots are not
rare)

10) Help and documentation: Even though it is better if the system can be used without

documentation, it may be necessary to provide help and documentation. Any such information

should be easy to search, focused on the user's task, list concrete steps to be carried out, and

not be too large.

Module Strengths found Flaws found

Edition  Selected forms provide examples
and instructions (event step
edition form)

 (No documentation) Documentation
available is limited to configuring
new devices

Execution 

7.7.4 RECOMMENDATIONS

From the diagnostics obtained, we now propose the following suggestions for development in

priority order (to be reviewed by users):

a. Auto-save results and show last save time (as it is used for the test suite in Edition)

b. Support undo and redo in the test suite editor

c. The execution view should differentiate the test cases that are done from the

pending ones (in the global view).

d. Support actions in batch: copy, cut, move, paste

e. Create accelerators for creating a test case quickly, with a key action and baseline

(for instance in 3 clicks)

103

f. Simplify the presentation of test steps results (less text more icons)

7.8 USABILITY TEST 5: EFFORT REQUIRED IN A REAL CERTIFICATION BY NON-
EXPERTS

Test date: 2016-06-01

Session duration: 1h 48’

Version tested: Iteration 23 build (latest version)

Device tested: Card reader

Participants: 1 User

 The app was fully unknown for him

 He has never made a certification before

 He knows the process at a high level

7.8.1 GOAL

The goal of the test was to measure the time it takes to perform the certification of a single

financial device, for a user who never has made a certification before.

7.8.2 ACTIVITIES

The usability test consisted on performing the following activities for certifying the Card Reader

unit on a NCR-5886 ATM located in the lab:

 Creating a Test Suite (user 1)

 Running the Test Suite (user 2)

 Generating the report (user 2)

They corresponded to real tests on the ATM device, but were delimited to a subset of the

certification test cases because a full certification would be too long (many hours or days for

novices). From the 17-page long test suite we selected a 2-page fragment (i.e., 11% of the real

case) for designing the activities. The first activity (creation of the Test Suite) was performed

with a different user (the developer) to reduce the amount of work and session time for the

second user.

7.8.3 USABILITY ISSUES FOUND

7.8.3.1 EFFICIENCY OF USE

The indicator measures the time spent by the user (minutes) versus an estimate for novice

users.

104

 Activity 1 Activity 2 Total Comments

Estimated
time

50’ 10’ 60’ Estimated time for a user who is novice in
certifications.

Time
spent

90’
(11:10)

18’
(12:44)

108’
(1:02)

The test delays correspond mainly to lack of
information for performing ATM manipulations as
required for test cases. And also for lack of
knowledge on recovering the device to normal state
after an error.

7.8.3.2 EFFECTIVENESS OF USE

The indicator measures the level of completion achieved by the user in each activity.

 Activity 1 Activity 2 Total Comments

% completion 75% 100% 87,5% The activity was stopped due to the time limit was
exceeded.

7.8.3.3 ERROR RATE

Errors made by the user while using the application. We consider four different error types.

 User error: If the user consciously makes a wrong decision, follows a different

procedure, receive a different response, or is blocked and cannot finish the task. This is

considered a usability issue.

 Accidental input errors: These correspond to accidental keystrokes and other input

actions. This is not considered a usability issue, except if it’s too recurrent or generalized

 Issues and questions: Any other issue found is counted here, along with help requested

by the user, questions made, and things he tried but did not worked (e.g., inexistent

shortcuts).

 Bugs: Application errors are counted here.

 Activity 1 Activity 2 Total

User errors 6 4 10

(Accidental) Input errors 0 0 0

Issues / questions 2 4 6

Bugs 0 0 0

The details of the errors found are not described here for the sake of brevity. However, they are

really good points of improvement for the tool.

7.8.3.4 USER SATISFACTION

105

At the end of the session, we asked the user to fill the UEQ questionnaire8, and then we used

the data analysis tool to summarize the results. This questionnaire measures six user

satisfaction categories through 26 questions. Below we show the results along with the

meaning of the categories assessed (according to [11]).

FIGURE 50. UEQ Satisfaction questionnaire results

Attractiveness: Overall impression of the product. Do users like or dislike is?

Neutral.

Perspicuity: Is it easy to get familiar with the product?

Negative.

Efficiency: Can users solve their tasks with the product without unnecessary effort?

Good.

Dependability: Does the user feel in control of the interaction?

Neutral.

Stimulation: Is it exciting and motivating to use the product?

The user strongly disagrees. He feels discouraged.

Novelty: Is the product innovative and creative?

Very positive.

The negative perception of stimulation –and neutrality in other categories- reflect the lack of

support perceived by the user each time he had no enough information for continuing the

tasks. Moreover, keyboard navigation was painful and extremely slow, as he did not use

shortcuts and the number of tasks was very high.

Talking with the user after the questionnaire, he emphasized that it was the lack of information

and knowledge for doing the tasks what produced so many difficulties when performing the

8 http://www.ueq-online.org/

106

activities, however, he recognizes the software was not implied directly in the issues, except for

the costly navigation through the keyboard.

107

8 RESULTS

The resulting application is composed by the following functional modules:

FIGURE 51. FUNCTIONAL MODULES OF THE APPLICATION

The view shows each module with its corresponding responsibility and sub-modules. These

modules coincide with the main use cases: Edition of test suites, execution of test suites and

commands, and elaboration of reports.

Regarding project goals, the product was ready on time (and budget) and provided a suitable

usability and user experience which was measured through several usability tests made by real

users in the expected context of use of each task (this is discussed in Chapter 7).

8.1 APPLICATION FUNCTIONAL MODULES

In this section we provide an overview of the main features implemented in the final product.

Edition of Test Suites. Differently to the previous process which required up to 9 or 10

software utilities to perform a single action, the new application provides a unified user

interface designed to ease both modeling and execution of test cases. Before, a single

test could require several steps which needed to be repeated once an again. However,

Test Suite
edition

Create and
edit test

suites

Test suite
editor

Parameters
editor

Test Suite
execution

Run and
review test

suites

Execution
view

Results view

Certification
Reports

Generate
certification

reports

New report
wizard

Report viewer

Command
runner

Run ActiveX
commands at

any time

Command
runner

Device
manager

Create
&validate

device plugins

Device
validator

Event handler
generator

Device creator

108

with the new tool, test cases can be written once and reused and ran as many times as

desired.

FIGURE 52. TEST SUITE EDITOR

Execution of Test Suites and Commands. It is no longer required to take notes of

commands results or events, as everything is recorded by the tool during the execution.

System information, registry dumps and other contextual information (test date, test

suite version, etc.) is automatically collected by the tool, even when these settings are

modified along the session.

109

FIGURE 53. TEST SUITE EXECUTION

FIGURE 54. COMMANDS CONSOLE (COMMAND RUNNER)

Certification Reports. The reports module was designed to provide the following benefits

(which solve the problems mentioned in the introduction):

 The report is automatically generated (as a local web page)

 It is an interactive report with navigation by devices and commands

 It provides a separate view for the failed tests

 Results of different sessions are controlled and easily managed by the application

110

FIGURE 55. CERTIFICATION REPORT

Device manager. This is a product feature that allows the extension of the tool to support

future devices without the need of programming or re-compilation of code. Thanks to the

architecture used, which follows the principles of Model-Driven Engineering, the ATM’s

financial devices are modeled as platform independent models using the JSON data

format. This extensibility mechanism was an important requirement for easing product

maintenance and evolution along time with a low cost. The feature provides functions to

create a device, to check the model syntax, and to make a connection test with the AX

platform.

111

FIGURE 56. DEVICE MANAGER

Finally, the product supports 10 ATM devices, which makes it ready to be used in real

certifications.

8.2 PROJECT BENEFITS

8.2.1 TRACKING THE EFFORT REQUIRED BY THE NEW SYSTEM

The primary goal of this usability test was to gather realistic metrics for the effort required by

the Certification Process in a realistic scenario. In this section we summarize the times required

by each activity and then we extrapolate this numbers for getting the effort of a full

certification for a single ATM device.

Activity Duration
(minutes)

Idle
time

Effective
time

%
Finished

% Full
certification

Extrapolation
to full

certification
test suite
creation

105’ 10’ 95’ 100% 11% 863,6’

test suite
execution

90’ 46’ 44’ 75% 11% 533,3’

Report
generation

18’ 0’ 18’ 100% 100% 18’

 Total 1414.9’
TABLE 6. Effort required by a full certification with the new tool

The results show that an inexperienced user will spend 23.5 hours in creating a test suite,

executing it and getting the certification report for a single device.

112

However, if the user does not start from scratch but reuses and existing test suite, then he will

spend 9.19 hours for getting the same results. Notice that a novice user always will require a

previously created test suite; otherwise he or she will not be able to perform the process.

Therefore, the average efforts for certifying one ATM’s device are respectively:

Before the project: Effort = 15.3 man-hours (for expert users)

With the new tool: Effort = 9.19 man-hours (for novice users)

Therefore, the tool produces a saving of 39.9% in time, which could be increased when the

process is performed by an expert (which will be always the case, as certifications are only

performed by experts).

8.2.2 EXPECTED BENEFITS PER YEAR

After introducing the tool in the Certification Process we can compute the expected benefits

during a year based on the statistics of last year (2014-2015), as shown in the following table.

The total efforts were computed according to the average time required for certifying a single

device (which is 15.3 man-hours).

Customer Devices/ATM Hours

Client 1 7 107.1

Client 2 6 91.8

Client 3 8 122.4

Client 4 8 122.4

Client 5 5 76.5

Total effort (2014) 520.2

TABLE 7. Certifications made by the company during last year

We can see that the company performed 5 certifications during last year, which summed 520.2

man-hours (specialist’s effort). Now, we can compute expected benefits in terms of time as

follows:

Time savings = 520.2 hours * 40% = 208 hours/year

113

Similarly, using a base salary per hour9 we can compute expected cost savings:

Cost savings = 8323 EUR/year (*)

Finally, other business benefits are not computed here but are also expected, such as higher

quality, in terms of:

 Reduced risk of incomplete, inconsistent or missing tests during test execution.

 Elimination of inconsistencies between runtime traces and the final report.

 Reduced manual work (and rework) in both version control and merging of results

obtained along several test sessions.

9 A base salary rate per hour is tricky to compute (cost for the company is different to the cost
for the customer), moreover this is sensible information. So an estimate of 40 EUR/hour was
used based on public information on the internet.

114

9 DISCUSSION

9.1 CRITICAL ANALYSIS OF THE INTEGRATION OF UCD AND AGILE METHODS

Some questions arise regarding the real advantages of using user-centered design (UCD) in a

project instead of using agile software methods best practices alone, such as user focus, user

involvement, continuous iteration, incremental evolution, frequent testing, etc. If Agile

Methods (AM) promotes principles similar to UCD [24], what difference did we find on using

UCD instead AM alone?

First, UCD and AM are more and more jointly adopted in industry [24], so it is reasonable to

think that their principles and practices will evolve and converge into a set of best practices that

cannot be considered as fully independent from each other. In this sense, the benefits reported

by using AM can also be reported as benefits produced by applying UCD.

On the other hand, Agile Methods usually say what to do, but not how to do it. For instance,

Scrum promotes regular meetings for getting feedback from users, but it does not propose

methods or tools to guide the meeting and achieve a goal. UCD has a large variety of concrete

usability methods that effectively indicate the steps to perform analysis, design and evaluation.

Moreover, UCD offers methods for different kinds of projects and contexts. In this sense, UCD

and AM is a lot richer than AM alone.

Finally, two additional perceived benefits of using UCD along agile methods were increased user

engagement and higher added-value. The former is because users feel owners of the product –

as they were involved during analysis, design and evaluation. This promotes a positive attitude

towards the product, eases users’ feedback and favors improvement. The second benefit –

greater added value- can be explained by the continuous usability evaluation. This is far better

than a single final user acceptance test. As stated in the IEEE’s definition of software quality,

quality is not abstract, but needs to be measured against real users’ needs and expectations

along with the specified requirements.

9.2 CRITICAL ANALYSIS OF THE USE OF USABILITY PLANNER

The Usability Planner tool (which was explained in Chapters 2 and 3) offered us several benefits

which we discuss here along with its possible drawbacks. The benefits we perceived were:

 At the beginning of the project, as it is expected in many projects, we did not know how

to start developing the product, and less how to start the user-centered design

activities, under so much uncertainty. Here, from just a basic understanding of the

project (the goal and actual resources), Usability Planner gave us (almost) immediately

115

concrete suggestions of UCD activities that could be proposed to the customer (or users)

and which could be supported with justified reasons: Make observations, research on

similar products, and paper prototypes. And these were effectively what we did.

 As a non-expert usability engineer proposing UCD in a work environment where UCD

had not been introduced, this tool really eased the adoption of UCD in practice. It made

the first step of UCD for free: The method selection.

The drawbacks and possible enhancements we find in the tool are:

 As a drawback, both Budget and Time constraints are tricky to interpret correctly (there

is ambiguity), because almost any project has a limited budget and time. So we can

interpret them as: “A project with limited or too limited budget” and the same for the

time. But we also can understand them as “A project with or without a limit of budget”

(and the same for the time). The fact is that we find examples that exist in all cases (for

instance, a company that provides a product for the massive market launching

continuous versions through time will not have a “limit of money” as it will if it were a

specific project. In the case of our project, we considered the first interpretation: Highly

restricted vs loosely restricted.

 As an enhancement, a new method can be added, which certainly is outside UCD but is

a complementary practice: “Make a proof of concept of technology”. The method can

be recommended whenever the search criteria includes “the developer is not expert in

the intended UI technology or the latter is too constrained.

9.3 CRITICAL ANALYSIS OF THE USABILITY METHODS APPLIED

The usability methods we applied during the project were selected on the fly throughout the

project development. And now, once the development has finished we want to discuss the

contributions of the most relevant:

Ethnographic observations: Seen as a type of field study the first perception is that the

method is costly: it requires big upfront design, resources, a place, sample content and

several people. However, we find it one of the cheapest and more worthy methods for

analysis. Differently from other methods, this actually did not require previous planning

or design. After its application, we summarized the findings and presented them to

users to verify the coherence and validity of observations.

Paper prototypes: At first we used paper prototype as a quick and dirty design method

for internal (developer) purposes: to print several ideas on paper choose the most viable

and then present it to users in the form of a wireframe. However, it was a

misconception of the method. As the method is for analysis and requires the interaction

116

of users. Therefore, it is a method that does require planning, elaboration and

evaluation. So it is not that cheap to be used for validating 10 different UI designs.

Usability laboratory tests: Usability laboratory tests were the primary method of

evaluation, and the feedback obtained was abundant. At first we saw it as a simple-to-

apply method once you have the place and resources (i.e., the laboratory) and the

people’s time (users). However, our first experience was a “failed” test, and the latest

was challenging and a bit discouraging. Now we have a broader view of the method

costs and benefits. The preparation of test’s activities was the most critical and costly

step. Before designing the test you need to understand in depth how users work in

practice (know-how), and the more you know it the better the test script will be. This

suggests that usability tests require intensive work making observations beforehand (or

using any equivalent method for task analysis).

On the other hand, especial care must be taken regarding usability metrics. Not all

evaluation methods are appropriate for all the metrics. Care is also required for

designing short and meaningful activities, to save users time but also to find the most

critical usability problems. Finally, the selection of users and their distribution for future

tests requires careful planning, especially if it is difficult to access users or they are a

very small group. Finally, we need to plan the sessions in advance, as users usually have

a tight schedule.

117

10 CONCLUSIONS AND FUTURE LINES OF WORK

The project consisted in the development of an ATM application for assisting users in the AX

Certification Process, a software support service that NCR provides to its customers.

Once the project has finished, we ask ourselves: Is the product going to produce real business

benefits? How can we measure them? How can we validate the product?

These questions were covered in part in Chapter 7. On the one hand, it is clear that there is no

definite evidence on the business benefit yet, as the software has not been used with real

customers. On the other hand, we certainly know from the results of usability tests, that the

product fulfills the user requirements and users are satisfied with the usability of the product.

Now we analyze more in detail the goals achieved, the benefits of applying UCD during the

project and the future lines of work.

10.1 ACHIEVEMENT OF PROJECT GOALS

In the Introduction, we stated the goal of developing a software product for assisting users in

the Certification Process by solving the process issues. The solution that the final product offers

to each issue is presented in the following table.

Current process problems Solution implemented

Many process tasks are
carried out manually and are
error-prone and costly.

Several tasks were automated:

 Execution of test cases

 Automatic collection of runtime traces

 Automatic generation of the certification report

Tasks that require user
interaction require high user
efficiency and accuracy

The context of use was studied and the solution took into
account the most important constraints:

 Tasks are grouped by activity: Edition, Execution, and
Reporting (each activity is performed in a different
context)

 The tool is fully accessible through keyboard.

 The tools is self-contained and portable (no installation
requirements)

 And efficiency and error rates were measured and
continuously improved through usability tests.

Users can certify only the
devices they know. The
know-how for efficient
testing depends on each
specialist and it is not

The test suites for certifications are modeled by experts, but
can be executed by any user.
Test cases guide the users with instructions and provide the
information they need to perform each activity.
The know-how is now explicitly written in the Test Suites.

118

explicitly documented.

Very old and new ATM
models can require
certification and need to be
supported

The software is extensible: It can support old and new ATM
devices through device models without requiring
programming.
Moreover, the software works on .NET 4.0, which is
supported by all the operating systems in the project scope

TABLE 8. Achievement of project goals

10.2 BUSINESS BENEFITS OF AUTOMATION

The expected project benefits were the efficiency and quality improvement of the Certification

process. That is, an improvement of a real process in a real company. This makes the project

worthy and interesting. As it impacts users (employees), customers and the business as a

whole.

Companies like General Electric (GE) have proven the power of 1% of efficiency improvement in

other industries. They say that an industry can report impressive savings even with 1% of

efficiency improvement, because savings are proportional to the economical size of operations

along several years.

In our case, the efficiency improvement was 40%, and although the size of operations is not

comparable to sectors like avionics or mining, this paves the way for bigger process

improvements in the future.

10.3 LESSONS LEARNED ABOUT OUR USE OF UDC

From our experience using UCD along the project we conclude several aspects. First, UCD is not

technology-agnostic (in the sense of “fully independent”). The programming language and

underlying technology can provide advantages or impose important restrictions for achieving

good usability. Moreover, without proven skills in software architecture and user-interface

implementation the designs cannot become a reality. Therefore, it is important to continually

build functional proof of concepts using the implementation technology before investing too

much effort on interaction design. Otherwise, implementation will be too expensive or even

out of the developers’ scope.

Second, UCD methods can be easy to apply but it is also easy to apply them wrongly. Some

methods seem equivalent but their purposes and the procedures are totally different. For

instance:

 Paper prototyping Vs. wireframes

 Observations Vs. training sessions

119

 Usability tests Vs tutorials

In particular, we lately discovered that our use of paper prototyping was incomplete, because

we use it as a wireframe to illustrate a design and present it to users before any coding.

However, users need to interact and use the paper prototypes, and only after this, design

decisions can be made. The developer must be an observer and facilitator.

Third, we learned that is better to focus the main UCD effort on critical user activities first. In

our case, the execution of certification tests was the critical activity; it required a lot more

iterations until getting a feasible and usable implementation (more than 12 different designs).

So usability is important but it has a cost, so focus helped us to use our resources and time

better.

Fourth, as a developer is often difficult to approach users to make them part of the

development team. There is always a fear on showing a product that objectively can be

minuscule and unworthy (as unfinished software). And this is an obstacle for getting early and

frequent feedback. In our case, UCD helped to involve users more naturally along product

design and evaluation. And users also found UCD worthy, interesting and motivating.

10.4 BENEFITS AND COSTS OF USABILITY EVALUATION

Our main evaluation method was the laboratory usability test. We discovered important

advantages of applying it, like the strengthening of user commitment and collaboration.

Moreover, it proved to be a very objective feedback method. On the other hand we also

discovered the real cost behind usability tests, especially in the design of the activities (as

mentioned in Chapter 9).

Doing a retrospective of the last usability test which was the most exhaustive test, and

produced somehow “disappointing” results, let us learn several lessons.

We've discovered that the way the expert user makes the real activity is different from how the

usability test was designed, which was based on the certification template. We assumed that a

certification test suite could be designed with just that template. And the result was that the

participant needed to perform too much tasks for getting a small number of tests done, while

the expert usually groups similar tests in a single test case so he or she does not need to repeat

the same flow of actions for each one. Of course, the efficiency achieved is very different.

So a first lesson was that usability tests are more realistic if they are prepared with expert

users.

120

Then, after discussing this fact with other users, they said that each one has a different

approach for doing (and modelling) the certification tests. So it is not required to model the

tests exactly as described by one user. What is important is that the tool allows everyone to

model Test Suites the way each one wants. So the second lesson was that users must be

involved, not only individually but also as a group, before making decisions that can be biased.

In conclusion, we acknowledge the important feedback usability evaluation gave us during

development. But also we discovered that the design of these tests requires real insight in

users’ practices which cannot be deducted just by asking users or by looking at report samples.

In our case, additional observations could have anticipated this discovery and help design more

adequate usability test activities.

10.5 FUTURE WORK

The AX Certify software can be improved and enriched a lot. Effectively, it requires extensive

testing in several platforms, to enhance the support to all current ATM devices and ultimately it

can be improved after its use in real AX Certifications.

Moreover, the biggest drawback of the software is that it requires all ATM tests be perfectly

modeled in test suites before each testing session. The number of test cases that needs to be

written is huge and this intimidates users to not use it in practice. A solution for this is to

generate the certification test suites from previous testing traces (e.g., logs). These logs usually

have all the information required to reconstruct a model of a test suite.

Another focus of work is on standardizing the certification test suites through guidelines. These

can involve conventions for test case naming, minimum and maximum size of textual

descriptions, a general approach for modeling the tests according to best practices, etc. The

final goal of this is making explicit the underlying knowledge of each specialist in a way that can

be used by non-experts and new employees.

A final feature that lacks the software is testing metrics. Good practices in software testing

involve measuring key factors such as test coverage, performance profiling, etc. Thus, a

certification report that shows 100% passed tests with 90% of function coverage is better than

another that shows 100% passed tests with 50% of function coverage.

Additional improvement ideas can be generated by involving users through analysis sessions

and continued use of the software.

121

11 REFERENCES

[1] Bevan, N. (2009). Criteria for selecting methods in user-centred design. I-USED'09

Workshop, INTERACT 2009, Uppsala, Sweden.

[2] Ferré, X.; Bevan, N. & Antón Escobar, T. (2010) UCD Method Selection with Usability

Planner. Proceedings of NordiCHI 2010, Reykjavyk, Iceland.

[3] Ferré, X.; Bevan, N. (2011) Usability Planner: Development of a Tool to Support the Process

of Selecting Usability Methods. Proceedings of INTERACT 2011.

[4] Usability Planner web application

http://raptor.ls.fi.upm.es/usabilityplanner/activities/

[5] Silva da Silva, T.; Martin, A.; Maurer, F.; Silveira, M., "User-Centered Design and Agile

Methods: A Systematic Review," Agile Conference (AGILE), 2011, vol., no., pp.77, 86, 7-13 Aug.

2011 (doi: 10.1109/AGILE.2011.24)

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6005488&isnumber=6005485

[6] Chamberlain; Sharp; Maiden. Towards a Framework for integrating agile development and

user-centered design. Springer-Verlag. p143-153. 2006

[7] Nigel Bevan. UsabilityNet Methods for User Centred Design. Volume 1 of the Proceedings of

HCI International 2003, 434-438. Lawrence Erlbaum. 2003

http://www.nigelbevan.com/papers/Usability_methods.pdf

[8] Usability Body of Knowledge. Context of use Analysis. (online)

http://www.usabilitybok.org/context-of-use-analysis [Accessed on December of 2014]

[9] Deborah J. Mayhew. The Usability Engineering Lifecycle: A Practitioner's Handbook for User

Interface Design. 1999.

[10] Tellez, Leonardo; Ferré, Xavier. NCR ActiveX Certifier Software Project. May, 2015.

[11] UEQ User experience questionnaire.

http://www.ueq-online.org [retrieved on June 2015]

[12] Nielsen, Jacob. Discount Usability: 20 Years. 2009 (online)

http://www.nngroup.com/articles/discount-usability-20-years [retrieved on June 2015]

http://raptor.ls.fi.upm.es/usabilityplanner/activities/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6005488&isnumber=6005485
http://www.nigelbevan.com/papers/Usability_methods.pdf
http://www.usabilitybok.org/context-of-use-analysis
http://www.ueq-online.org/
http://www.nngroup.com/articles/discount-usability-20-years

122

[13] Nielsen, Jacob. 10 Usability Heuristics for User Interface Design. 1995 (online)

http://www.nngroup.com/articles/ten-usability-heuristics [retrieved on June 2015]

[14] Thinking aloud protocol. Usability Home (online)

http://www.usabilityhome.com/ [retrieved on June 2015]

[15] User testing tips (online)

http://wiki.fluidproject.org/display/fluid/User+Testing+Tips [retrieved on June 2015]

[16] User testing protocol (online)

http://wiki.fluidproject.org/display/fluid/User+Testing+Protocol

[Retrieved on June 2015]

[17] System Usability Scale (SUS) (online)

http://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

[Retrieved on June 2015]

[18] Nielsen Jacob. Why You Only Need to Test with 5 Users. 2000

http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

[Retrieved on June 2015]

[19] Planning a Usability Test (metrics). Usability.gov (online)

http://www.usability.gov/how-to-and-tools/methods/planning-usability-testing.html

[Retrieved on June 2015]

[20] Nielsen, Jacob. Success rate: the simplest usability metric. 2001 (online)

http://www.nngroup.com/articles/success-rate-the-simplest-usability-metric

[Retrieved on February 2015]

[21] Usability metrics and examples (online)

http://www.userfocus.co.uk/articles/dashboard.html

http://www.userfocus.co.uk/pdf/benchmark_report.pdf

http://www.userfocus.co.uk/articles/making-usability-metrics-count.html

http://www.userfocus.co.uk/articles/satisfaction.html

[Retrieved on February 2015]

[22] Measuring Errors in the User Experience. 2012 (online)

http://www.measuringu.com/blog/errors-ux.php

[Retrieved on February 2015]

[23] Nielsen Jacob. How to conduct a Heuristic Evaluation. 1999 (online)

http://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation

http://www.nngroup.com/articles/ten-usability-heuristics
http://wiki.fluidproject.org/display/fluid/User+Testing+Tips
http://wiki.fluidproject.org/display/fluid/User+Testing+Protocol
http://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://www.usability.gov/how-to-and-tools/methods/planning-usability-testing.html
http://www.nngroup.com/articles/success-rate-the-simplest-usability-metric
http://www.userfocus.co.uk/articles/dashboard.html
http://www.userfocus.co.uk/pdf/benchmark_report.pdf
http://www.userfocus.co.uk/articles/making-usability-metrics-count.html
http://www.userfocus.co.uk/articles/satisfaction.html
http://www.measuringu.com/blog/errors-ux.php
http://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation

123

 [24] Stephanie Chamberlain, Helen Sharp, Neil Maiden. Towards a Framework for Integrating

Agile Development and User-Centred Design. Extreme Programming and Agile Processes in

Software Engineering. Lecture Notes in Computer Science. Springer Berlin Heidelberg. 2006

http://dx.doi.org/10.1007/11774129_15 [retrieved on June 2015]

http://dx.doi.org/10.1007/11774129_15

124

APPENDIXES

125

12 APPENDIX A. TIMELINE OF APPLIED UCD METHODS PER ITERATION

In the following sections, we provide a summary of goals, methods and results along the time by iterations. We grouped this

overview by milestones.

Conventions

Analysis Methods:
o TRAIN: Training in the ATM lab
o MEET: Meetings with users
o EXAMP: Reading of written material
o OBS: Ethnographic observation
o COMPET: (Competitors analysis) Research

on similar tools

Design Methods:
o PROTO: Paper prototypes
o MAP: Navigation map

Construction methods:
o WIREFRAME: Wireframes
o IMPL: Software coding

Evaluation methods
o MEET: Present products to users

and get verbal feedback
o UTEST: Usability test
o DIARY: Diary test

12.1 MILESTONE 1: INCEPTION AND PROOF OF CONCEPT

Iter. ANALYSIS DESIGN CONSTRUCTION EVALUATION WORKING PRODUCT PRODUCT DESCRIPTION

1
ATM platforms
(TRAIN)

 - Technical concepts and
business entities

Business process
analysis
(MEET)

 - Process description:
activities, users, outcome,
tools.
- Project goal

Use cases and product
features
(MEET & EXAMP)

Product Concept
(PROTO)

 1st Analysis document

- Use cases and product
features
- Design of product concept

2

Specification of
context of use &
Requirements
elicitation
(OBS) x2

 - Context of use focused on
technical restrictions
- Initial functional
requirements set

 General architecture

design and selection
 Review of analysis

document
1st Design
documentation

-Architectural views:
functional modules and

126

Iter. ANALYSIS DESIGN CONSTRUCTION EVALUATION WORKING PRODUCT PRODUCT DESCRIPTION

of programming
language

(MEET) deployment
-Decision of programming
language

3

 Design of entities and
design of execution of
test suites

Implementation of
proof of concept in C#
(IMPL)

Review of design
document
(MEET)

Windows App in C#
(Proof of concept)

- UML class and sequence
diagrams
- Application for test suite
loading and execution from
a Json file

GUI layout research
(COMPET)

Screen layout
(PROTO)
Screen layout
(WIREFRAME)

 GUI screen layout
design

12.2 MILESTONE 2: FIRST STABLE VERSION

The activities performed during the iterations included in Milestone 2 corresponded to additional observations, competitor’s

analysis, intensive software development, and the first usability tests.

Iter. ANALYSIS DESIGN CONSTRUCTION EVALUATION WORKING PRODUCT PRODUCT DESCRIPTION

4

Analysis of
requirement for
Events
(MEET)

Design of OO classes
& presentation of
Events
(PROTO)
Events view design
(WIREFRAME)

 Review of latest
documents
(MEET)

GUI screen layout
design & business logic
design

5

Research on apps
for testing
(COMPET)

 Setting of
development
environment
(IMPL)

 1st version of the
application

- Build first implementation
version (loading and running
generic test suites)

6

 GUI design for results
visualization
(PROTO)

New GUI with results
visualization
(IMPL)

Validation of
analysis and
requirements
(FIELD)

New GUI with results
visualization

- App with results panel (tests
ok and failed)

127

Iter. ANALYSIS DESIGN CONSTRUCTION EVALUATION WORKING PRODUCT PRODUCT DESCRIPTION

7

Study of 1st ATM
device
requirements
(EXAMP)

Design of dynamically
generated input
forms
 (PROTO)

Input forms coding &
new device
 (IMPL)

Iteration review
(MEET)

Application with
edition forms and 1
fully-supported device

 - App with edition of test
suites
- New device supported: card
reader.
- Input forms allow composite
parameters. Forms are
generated from Json models.

8

 Command runner
window
(WIREFRAME)

- New kinds of input
forms parameters
- New device
- Device validator
(IMPL)

Usability test # 0
(card reader)
(UTEST)

-Revised requirements
doc
-Application with 2
supported devices

- New device supported:
receipt printer.
-The test was “a failure”,
however produced:
- 11 requirements for
improvement
- 2 suggestions

9

 Coding of usability
test findings
(IMPL)

 New application
version

10

 New results view (diff
with baseline).
Big code refactoring
(IMPL)

 New application
version

11

 “Suite execution”
map (MAP)
Full new UI design
(WIREFRAME)
Business-oriented
test case modeling
proposal
(PROTO)

 Usability test #1
(card reader)
(UTEST)

1ST Stable application
version

Usability Test found 14 issues
User perception was very
positive.

12.3 MILESTONE 3: SECOND STABLE VERSION

Similarly, below we describe the methods and results obtained during the iterations encompassed in this milestone.

Iter. ANALYSIS DESIGN CONSTRUCTION EVALUATION WORKING PRODUCT PRODUCT DESCRIPTION

128

Iter. ANALYSIS DESIGN CONSTRUCTION EVALUATION WORKING PRODUCT PRODUCT DESCRIPTION

12

 12 design
alternatives for
execution view
(WIREFRAME)
Review of “execution
view” UIs
(COMPET)
Study of JUnit
architecture

New execution view UI
(IMPL)
State machine for
runner
(Proof of concept)

Review of
execution view
(MEET)

Application with 2
new views: Execution
and Results

Fully renewed execution view

13

 Change to execution
results: Event traces
(IMPL)
Command runner
(IMPL)

 Application with
Command runner

14

Report requirements
(MEET/EXAMP)

 Proof of concept for
Reports HTML
(IMPL)
Json (Device) generator
macro
(IMPL)

 Guide for generating
new devices (doc)
Macro for creating
device models (VBA)
Report requirements
(doc)

Preparation of tools for giving
users ways for creating new
devices

15

Users presentation
for creating devices
(MEET)

 Devices DLL generator
(IMPL)

 Automation of steps of adding
devices to the application

16

 Design of reports
Design of report
generator
(WIREFRAME)

Report generator
Report viewer (JQuery)
New device
(IMPL)

 1st working version of
reports
Application now
supports 3 devices

- New device supported: cash
dispenser

17

 Design of report
versioning

Integrate user-made
new device
(IMPL)

Usability Test #2
(cash dispenser)

Application now
supports 4 devices

- New device supported: note
acceptor

18

 4 designs for test
case execution and
results
(WIREFRAME)

Coding of usability
tests findings.
Integrate 2 user-made
devices.

Analysis of
previous usability
test

Application now
supports 6 devices

- Usability test findings: 18
issues (command runner was
not usable).
- New devices supported: SIU
& PINPAD.

129

Iter. ANALYSIS DESIGN CONSTRUCTION EVALUATION WORKING PRODUCT PRODUCT DESCRIPTION

19

 New suite wizard
(test case generator)
(PROTO)

New report sections.
New command runner
UI.
Device validator from
IDL (proof of concept).
(IMPL)

20

 Change of report
section (capabilities).
Coding of user test
findings.
Device creator from AX
DLL.
(IMPL)

Test of suite
edition
(DIARY)
2 developer
usability tests
(UTEST)

 - User test was performed in a
single day without direct
observation: 2 issues found.
- A full device can now be
generated with minimal
manual effort.

21

Requirements for
new internal report
(MEET)

 New report section
New device validation
rules
(IMPL)

 -All existing devices were
reviewed against the new
validator

22

 New input form
parameter types
All device models are
fixed
(IMPL)

2 developer
usability tests.

2ND Stable
application version

2 devices are now “fully
supported”

23

 Coding of user test
findings.
Integrate 2 user-made
devices.
(IMPL)

Usability test #3
(cash dispenser).
“Thinking aloud”
test (reports).

 Usability tests results:
- developer test: 3 issues
- user tests: 7 issues

 Final application
version

Devices supported: 10
Report types: 1

This milestone produced the latest application version that ultimately was used in the evaluation test for measuring the project

benefits. The resulting application is presented in Chapter 8.

130

13 APPENDIX B. INTERACTION DESIGN ITERATIONS FOR

OTHER MODULES

In this appendix we show the process of interaction design of additional features of the product

not discussed in the document: Edition view, Reports, Device Manager, and others. We

describe this evolution by grouping the results in product features. The description is rather

visual through images, because of the large number of small changes. We describe and

highlight the most important user interface variations in the captions of figures.

13.1 THE EDITION VIEW

This section describes the evolution of the edition view. This view consists on the presentation

of test cases and the edition options available

Iteration 5: basic
layout and main
toolbar

Iteration 6

131

Iteration 11. Wireframe (mono-panel)

Iteration 12. Important changes are highlighted: Run and stop functions. Log panel now is a separate
tab, last save label (most of them added in Iteration 10)

132

Iteration 17 (Stable version: Contextual menus and add button) Iteration 19 (current state visible)

Iteration 20 (test case header) Iteration 22 (new add button)

133

13.2 COMMAND STEP EDITION FORM (DYNAMIC UI)

Iteration 7

Iteration 8 (parameters with linked edition forms)

Iteration 18 – Layout issues

134

13.3 EVENT STEP EDITION FORM

Iteration 19 (First of two screens for setting the test step)

Iteration 22. Simplified single edition window

135

13.4 REPORT VIEWER

Test case

Key action result Group by Key action Expected value Comparison

Iteration 14. Concept of report (taken from real report sample)

Iteration 14. First proof of concept integrated to the app

Iteration 16. New implementation using the
Bootstrap framework

136

Design alternatives for the customer report

For displaying results by owner and error level we have the following key concerns:

 Build a concise content unit which can be fluently read or event be printed

 Promote easy navigation for reading the full report and also for going directly to issues

 Avoid content repetition: a test case can appear in the list of test cases and the list of

failed test cases (this is the problem of having a single page)

Iteration 16. Paper prototypes of Report

137

Device1 Device2 Device3 >>

Lector de tarjetas (IdCardUnit)

+ Overview

 NCR Manufacturer

Errors

Warnings

+ Capabilities

+ Commands

+ Events

Iteration 16 Wireframe of full certification report (multi-device)

Iteration 16. Implementation of multi-report

138

13.5 REPORT GENERATOR

Iteration 19. The wizard requires 2 steps

Iteration 16. Wireframe of New report wizard

139

Iteration 17
Iteration 19

140

13.6 DEVICE MANAGER

Iteration 7 Iteration 8

Iteration 13 Iteration 15

141

Iteration 20 – Generator of devices (paper prototype and implementation)

142

13.7 START SCREEN

Iteration 11. Wireframe proposal for starting screen. But it was not approved by users.

Iteration 7 Iteration 6

143

14 APPENDIX C. SUMMARY OF THE FIRST ETHNOGRAPHIC

OBSERVATION

Date: 2014-12-04

Duration: 5 hours

User goal: Certification of the PIN Keypad

Participants: One specialist and one observer

Place: Customer facilities (basement)

The activities carried out were:

5) Observation (taking notes)

6) Summary of findings

7) Presentation of findings to and getting feedback from users

8) Review of requirements specification, process analysis and documentation according to

the findings.

Below we provide the result of step 2 (in Spanish).

Entorno físico

Sótano amplio con 11 cajeros, mesas, y sillas disponibles. Sin WI-FI o puntos de red para
visitas. Teléfono disponible. Toma corrientes limitadas.
El Cajero está preparado de la siguiente forma:

 Encendido y destapado en ubicación de fácil acceso.

 Puerto USB disponible.

 Pantalla no táctil y sin ratón. Pantalla sin película de privacidad.

 Teclado disponible pero sin lugar para apoyarlo. Se debe operar desde la parte
superior del cajero.

 Razón de la homologación: cambio de sistema de operativo (Windows XP a Windows
7 pro)

Herramientas

 Portátil para editar el reporte de homologación (documento Word)

 Hoja de claves (llaves) de prueba

 Hoja con mapa de teclas del Pinpad

 Memoria USB con aplicaciones para las pruebas: WOSA tool, Container, Pinpad Test
(tester Activex), etc. Los logs deben iniciar en blanco. Se conecta la memoria al cajero.

 El inventario del cajero está disponible en un fichero inventario.ini.

 Plantilla de homologación en blanco lista para edición en el portátil

 Móvil

144

Actividades de ejecución de tests

 Se lee la descripción de la prueba en el reporte (portátil) y luego se ejecuta usando
Pinpad Test.

 Si hay un error: Ver detalles en el log; ejecutar otros comandos para tener más
información (capabilities, status, etc.); ejecutar otras aplicaciones (WOSA tool, COM
container, aplicaciones del cliente, etc.) para ver más detalles y corroborar si es un
problema real, si es de ActiveX o si es de XFS, etc. También está la opción de
preguntar al personal disponible y llamar para consultar con NCR. Es indispensable
conocer el inventario del cajero y su historial.

 Para agilizar las pruebas y evitar repeticiones se agrupan pruebas en pequeños lotes
que parten de estados iguales.

Conclusiones

Sobre el desarrollo de las tareas:

 La ejecución de comandos en el cajero debe poder hacerse sin usar ratón o pantalla
táctil.

 Es muy frecuente la consulta de logs, la búsqueda de texto en el log, y el reabrir el
fichero para ver los cambios.

 El uso de varias herramientas (además de Pinpad Test) es común: Wosa tool, COM
Container, bloc de notas, y la búsqueda de ficheros en el disco duro y en la memoria.
Sumado a la falta de ratón hace que se tengan que abrir las mismas ventanas y
ficheros varias veces. Lo cual es muy ineficiente.

 Hay pruebas que parten con el mismo estado inicial: Y por tanto se pueden agrupar.
Sin necesidad de repetir la misma prueba varias veces (sin afectar el resultado de la
prueba).

o Por tanto la ejecución de las pruebas se basa en el orden del reporte pero no
sigue el mismo orden estricto.

 Los resultados específicos de los comandos se escriben de forma resumida en el
reporte Word, los datos específicos se dejan para ser copiados luego de los logs. Pero
como el orden de ejecución varia bastante, hace que luego la tarea de conciliar datos
sea más compleja y requiera más tiempo.

 El uso de Word para orientar la ejecución de la prueba en un portátil aparte tiene
muchas limitaciones:

o Necesidad de buscar enchufes (lo cual es tiempo adicional)
o Es difícil navegar el documento hacia atrás o adelante (para buscar comandos

similares, verificar pasos anteriores, pasos faltantes, etc.).
o Al estar particularmente lento implicó tiempo adicional para buscar la causa

del problema, lo cual fue un distractor importante e implico retrasos por
varios reinicios del ordenador.

Sobre los requisitos de la aplicación de pruebas:

 Eventos:
o La captura de eventos debe mostrar cada evento con su nombre y los valores

de todos sus parámetros (pueden ser varios parámetros).
o Los mensajes de llegada de eventos se deben encolar: Esto permite por

145

ejemplo que se puedan teclear 10 caracteres en el pinpad de forma continua,
y al final confirmar los mensajes de llegada de los 10 eventos. Es decir, la
aplicación no debe interrumpir la entrada de datos para pedir al usuario que
confirme tecla por tecla.

 Formulario de entrada de parámetros de comando:
o Valores por defecto (ej.: flags activados por defecto).
o Soportar parámetros con valores tipo “flags”
o Soportar parámetros con valores de selección múltiple
o Botón para mostrar ultima ventana abierta (ultimo comando usado con

últimos datos usados)

 Logs
o Debe trazarse el máximo nivel de detalle posible con posibilidad de filtrar por

nivel (para evitar cambiar la aplicación para ver más detalles de un dato, un
tipo de error, etc.).

 Posibles herramientas adicionales:
o Notas de datos usados frecuentemente: Clave maestra, clave de pin, dato a

encriptar/desencriptar (usado en pruebas de todos los algoritmos
soportados)

o Imagen con mapa de teclas de pinpad de todas las marcas soportadas

146

15 APPENDIX D. SOFTWARE ARCHITECTURE

15.1 APPLICATION FEATURES

The application is composed by five features: Edition, Execution, Reports, Command Console,

and Device Manager. These features are composed by the functional modules shown in the

figure below:

The responsibilities of these modules are as follows:

 Edition of test suites: The test suite editor allows the modeling of test cases. While the

parameters editor is a runtime generated editor for editing test steps on any selected

device (ActiveX component).

 Execution of test suites: The execution view allows the execution of Test Suite models

through a generic interpreter (Runner) of test step actions. The results view is the UI

component for visualizing and editing test case results.

 Command console: The command runner is a separate module for running only

commands on demand. This component is built on the interpreter of test steps and

implements its own UI view.

 Certification reports: The Report Wizard allows the composition of several Test suite

results models into a single report model. The report viewer is the HTML content

generated by the wizard through code templates.

15.2 STAKEHOLDERS CONCERNS

Test Suite
edition

Test suite
editor

Parameters
editor

Test Suite
execution

Execution
view

Results view

Certification
Reports

New report
wizard

Report viewer

Command
Console

Command
runner

Device
manager

Device
validator

Event handler
generator

Device creator

147

The main architectural design decisions were done according to the following concerns:

 Compatibility: The application must be compatible with every operating system

supported by the ActiveX middleware (AX). Actually this corresponds to WXP and W7

versions.

 Maintainability: The application must support always the latest AX version (that is, any

future version). And this should not imply programming effort.

 Extensibility: If new devices (ATM peripherals) are supported by the AX, the application

must allow the addition of the new devices. Again, this should not imply programming

effort.

To find solutions, we followed the Model-driven development paradigm along with several

Gang of Four design patterns.

15.3 MODEL-DRIVEN DEVELOPMENT (MDD)

The model-driven development (MDD) paradigm allows us to build an application around high-

level models, which are technology independent. The main idea is to define the core data

entities as models, so the application functionalities are defined in terms of model interpreters:

to perform queries and manipulate models.

Because models are defined in business terms, not in technology-specific terms, users can

create, modify, analyze and execute models without requiring programming effort.

Extensibility. ActiveX Certify has two core business entities: Test Suites and Devices. The

catalog of devices is known at compilation time. But it needs to be extensible (after

application deployment) to accept new devices in the future.

On the other hand, Test Suites are documents or scripts that are written by the user to

test a specific Device (depending on the AX installed in the ATM). Thanks to MDD, we

can create Test suites that references any Device model, despite it was created after

compilation.

Multiplatform execution: Through a model interpreter, execution of test suites is done

in high-level steps which are translated to concrete function calls at runtime through

reflection. This requires dynamic library loading, which is straightforward in .NET, and

avoids the use of code generation and compilation. This way, the application is multi-

platform (or platform independent), where the platform is the specific version of AX.

The following picture shows the models of Test Suites and Devices along with different classes

required for processing them.

148

FIGURE 57. Test suite and device models (functionalities are implemented through model interpreters)

The classes required for model manipulation and interpretation are the following:

Parser and loader. Models need to be persisted and loaded. We selected the JSON

format, because is human-friendly and it is fully supported in the development

framework (.NET). Below we show the elements and the process around model loading

and persistence.

FIGURE 58. Parsing and loading of Test Suite models

Name Solver. Test suite and device models are fully decoupled so a test suite uses URIs

to refer to device elements (as the syntax for full name scoping). These cross-references

are solved at runtime by a Name Solver. An example of a Command Test Step is:

Command: /CardUnit/DeviceCapabilities

Where, the syntax is: “/Device/Method”.

Parser Loader+Solver

Json doc
Json model Business model

Editor,
Runner,

Validator,
Generator

149

Runner. This class is responsible for the multi-platform execution of test steps, as

explained in the previous section.

Editor: This class allows the edition of Test Suites by manipulating the model.

Validator and Generator: Classes required for supporting the extensibility of new Device

models. The Generator performs code generation internally to add support for event

subscription to new devices.

15.4 DATA MODEL

The business entities that encompass the core application concepts which the business logic is

built upon are: Devices, Test Suites, Test Suite Result, and Test Suite Reports.

 A Test Suite is a container of test cases modeled by the user. A Test Suite is associated

to a financial device (peripheral).

 A Test Case is the execution unit of test suites, which is composed by actions (test

steps).

 A Device is a model that describes the ActiveX API that controls a physical device. Test

cases test these API functions.

 A Test Suite Result is a detailed execution trace of a Test Suite, containing the results of

the test cases executed by the user.

 A Test Suite Report is a summary of a Test Suite Result, containing aggregated data of

the result of a Test Suite.

 A Report Group corresponds to a Certification Report. It groups reports of several

devices (different Test Suite Reports)

150

 FIGURE 59. Class diagram with Test Suite, Device, TestSuiteResult and TestSuiteReport entities. Each entity is

persisted in Json files (with different filename extensions).

In order to model a test case –where we like to test a device command- we need three things:

A. The starting device state

B. Execution of the device command under test

C. Assertion of the command result (against the expected result)

For modelling the device state (A), we need to prepare the device through previous commands

and possibly we require user intervention. ATM peripherals are input and output devices that

need to interact with the user in an expected or unexpected way. For communicating

instructions to the user we need test steps for displaying user messages and also test steps for

accepting user input. For command execution (B), we just need to a test step that runs a

command with the desired parameters. Finally, for allowing assertions (C), we defined that a

command step has an expected value. So at runtime, we check the output (a string) against the

expected result (another string).

Moreover, a device uses inter-application notifications through events. We need to trace what

events were received chronologically. In test cases, we also need to check that the events

received match with the events expected –according to the API specification.

Suite.json Suite.results Device.json

ReportData.js
(Report of 1 device)

ReportGroup.json
(References several ReportData)

151

In summary, we defined that Test Steps can be user inputs, user messages, commands

execution, and events waiting. The class model is shown below:

FIGURE 60. Test step class diagram

15.5 DETAILED SOFTWARE DESIGN

In the figure below we provide a class diagram with the main application classes and the design

patterns applied.

First, to implement the GUI we used the Model-view-controller (MVC) pattern. The view is a

class that inherits the Form class (which is the class for implementing windows in Windows

Forms .NET). User interface actions are designed with the Command pattern.

The controller is a singleton class that receives UI requests and delegates the tasks to the Model

classes, which implement the business logic.

Model classes are mainly the TestSuiteEditor and the TestSuiteResultEditor. The first

implements the functionalities for the Test suite edition feature, while the second implements

the functions of the Test suite execution feature.

Second, to manage properly the state of the application and allow or disallow user actions in

the Models, the Controller and the View, we introduced a state machine. The state machine is

composed by two state machines, the first for the editor and the second for the execution

module.

The execution of test cases is performed through an iterator of test steps. So each step can be

executed with a common Runner. The Runner is a visitor that is able to run any test step,

independently of its type.

The event controller is used by the runner to execute Event test steps. The ActiveX Runner is

used for running Command test steps. And the View is able to execute user test steps

(messages and inputs).

The event controller implements the observer pattern to get notified whenever an AX event is

produced. And the Default Assembly Runner is the concrete class that is able to dynamically

load an assembly (dll) and run any function on it through reflection.

UserMessage EventStep CommandStep UserInput

TestStep

152

The Name Solver is a class for querying the device catalog (as explained before). So it is a

singleton.

FIGURE 61. Main application classes and the design patterns applied

Finally, the application has other modules and classes such as the GUI Command Runner, the

Device Manager and the Reports module. However, most of them are built on top of the

mentioned core classes.

15.6 DEPLOYMENT VIEW

The software implementation is a standalone desktop GUI application for MS Windows. The

application –once it is deployed- consists on several assemblies:

 ActiveX Certify.exe: The application entry point

 ActionParametersForms.dll: The assembly that dynamically generates input forms for AX

commands.

 Devices.dll: The assembly whose code is automatically generated at maintenance time each

time a new version of the AX platform is released or a new Device is supported.

AppState

Manager
ResultEditor

Runner

SuiteEditor

ActiveX Interop

UIController

EventController

<Observer>

SimpleEventController

<Observable>

* ActiveXRunner

Default
AssemblyRunner

<External DLL>

NameSolver

<Singleton>

Device

Start Screen

<View>

<Controller>

<Model> <Model>

<Visitor>

<StateMachine>

Utils

JsonLoader
BO2JsonConverter
FormFactory

Constants

FileUtils

Log4Net
Other Components:
CommandRunner
DeviceManager
ReportGroup

153

 And the set of interop assemblies for invoking registered ActiveX components: These libraries

are automatically generated for bridging .NET applications and ActiveX components.

All the deployment artifacts are installed in the ATM. The basic requirement for execution is the

.NET Runtime 4.0 or higher, which works on Windows XP SP3 and later Windows versions. The

figure below shows the deployment view.

FIGURE 62. Deployment view (executables and assemblies)

154

16 APPENDIX E. SATISFACTION QUESTIONNAIRE

After each usability laboratory test we measured user satisfaction by using the UEQ

questionnaire10 where we asked the user to evaluate the product through 26 questions. Each

question presents two opposite qualities in a scale of 7 points. The results were collected and

analyzes through the data analysis tool that comes along with it. This questionnaire measures

the following six user satisfaction categories:

Attractiveness: Overall impression of the product. Do users like or dislike is?

Perspicuity: Is it easy to get familiar with the product?

Efficiency: Can users solve their tasks with the product without unnecessary effort?

Dependability: Does the user feel in control of the interaction?

Stimulation: Is it exciting and motivating to use the product?

Novelty: Is the product innovative and creative?

Table 9. User satisfaction categories measured by the UEQ questionnaire.

The paper delivered to users is reproduced in the next page (in Spanish).

10 http://www.ueq-online.org

http://www.ueq-online.org/

155

Por favor denos su opinión
Con el fin de evaluar el producto, por favor, rellene el siguiente cuestionario. Se compone de
pares opuestos de las propiedades que pueden tener el producto. No hay "correcto" o
"incorrecto" como respuesta. Su opinión es personal.
Ejemplo:

atractivo        Feo

Por favor, marque sólo un círculo por línea.

 1 2 3 4 5 6 7

desagradable  agradable 1

no entendible  entendible 2

creativo  sin imaginación 3

fácil de aprender  difícil de aprender 4

valioso  de poco valor 5

aburrido  emocionante 6

no interesante  interesante 7

impredecible  predecible 8

rápido  lento 9

original  convencional 10

obstructivo  impulsor de apoyo 11

bueno  Malo 12

complicado  Fácil 13

repele  Atrae 14

convencional  Novedoso 15

incómodo  cómodo 16

seguro  inseguro 17

activante  adormecedor 18

cubre expectativas  no cubre expectativas 19

ineficiente  eficiente 20

claro  confuso 21

no pragmático  pragmático 22

ordenado  sobrecargado 23

atractivo  feo 24

simpático  antipático 25

conservador  innovador 26

	ABSTRACT
	1 INTRODUCTION
	1.1 ATM software layers
	1.2 ATM software layers
	1.3 The AX certification process
	1.4 Problem statement
	1.5 Project goal
	1.6 Solution Proposal
	1.7 Expected benefits
	1.8 Contents of the document

	2 SELECTING USABILITY TECHNIQUES IN SOFTWARE PROJECTS
	2.1 Usability techniques for agile projects
	2.2 Usability Planner
	2.3 Integrating UCD with agile methods

	3 THE AX CERTIFICATION PROCESS
	3.1 NCR AX Middleware
	3.2 Business process model
	3.3 Activities and performers
	3.4 Process issues
	3.5 Analysis of effort required by the current process
	3.5.1 Time by activity (hours required by an expert)

	4 SELECTION OF USABILITY METHODS IN THE PROJECT
	4.1 Methods selection with Usability Planner
	4.1.1 Activities
	4.1.2 Method selection
	4.1.3 Methods for design
	4.1.4 Methods for evaluation

	4.2 Usability plan

	5 SPECIFICATION OF THE CONTEXT OF USE
	5.1 User profiles
	5.2 User tasks
	5.2.1 Test execution tasks
	5.2.2 Test reporting tasks

	5.3 Physical environment
	5.4 ATM technical restrictions
	5.4.1 Hardware restrictions
	5.4.2 Software restrictions

	5.5 Preliminary conclusions

	6 INTERACTION DESIGN PROCESS
	6.1 Milestone 1: Inception and Proof of concept
	6.1.1 Analysis of the AX certification process and training on ATMs platforms
	6.1.2 Product concept
	6.1.3 Definition of main product features
	6.1.4 Bringing concepts from software testing discipline
	6.1.1 First research on similar products (Competitor analysis)
	6.1.2 Functional and non-functional requirements
	6.1.3 First UI design (wireframe)
	6.1.4 First proof of concept
	6.1.1 Selecting the product name
	6.1.2 Evaluation

	6.2 Milestone 2: First stable version
	6.2.1 Ethnographic observations
	6.2.1 Second research on similar products (Competitor analysis)
	6.2.2 Construction of the first application version
	6.2.3 First usability test
	6.2.4 Design concept of the command runner
	6.2.5 Second usability test
	6.2.6 Improvements after the usability test
	6.2.7 Navigation map: optimizing the navigation of the execution view

	6.3 Milestone 3: Second stable version
	6.3.1 Implementing a new execution view
	6.3.2 Third usability test
	6.3.3 Design of a new test case summary view
	6.3.4 Giving full control to the user: Pause and Resume
	6.3.5 Implementation of a new Command Runner
	6.3.6 Making usable dynamically generated UI forms
	6.3.7 Fourth usability test

	6.4 Milestone 4: Evaluating the final application version
	6.4.1 Fifth usability test
	6.4.2 Lines of improvement

	7 EVALUATION
	7.1 Methods, metrics, participants and location
	7.2 Laboratory usability test 1
	7.2.1 Goal
	7.2.2 Activities
	7.2.3 Results

	7.3 Laboratory usability test 2
	7.3.1 Goal
	7.3.2 Activities
	7.3.3 Results
	7.3.3.1 Efficiency of use
	7.3.3.2 Effectiveness of use
	7.3.3.3 Error rate
	7.3.3.4 User satisfaction

	7.4 Laboratory usability test 3
	7.4.1 Goal
	7.4.2 Activities
	7.4.3 Results
	7.4.3.1 Efficiency of use
	7.4.3.2 Effectiveness of use
	7.4.3.3 Error rate
	7.4.3.4 User satisfaction

	7.5 Laboratory usability test 4
	7.5.1 Goal
	7.5.2 Activities
	7.5.3 Results
	7.5.3.1 Efficiency of use
	7.5.3.2 Effectiveness of use
	7.5.3.3 Error rate

	7.6 Thinking aloud protocol for evaluating Reports
	7.6.1 Goal
	7.6.2 Activities
	7.6.3 Results

	7.7 Heuristic evaluation
	7.7.1 Goal
	7.7.2 Activities
	7.7.3 Results
	7.7.4 Recommendations

	7.8 Usability test 5: Effort required in a real certification by non-experts
	7.8.1 Goal
	7.8.2 Activities
	7.8.3 Usability issues found
	7.8.3.1 Efficiency of use
	7.8.3.2 Effectiveness of use
	7.8.3.3 Error rate
	7.8.3.4 User satisfaction

	8 RESULTS
	8.1 Application functional modules
	8.2 Project benefits
	8.2.1 Tracking the effort required by the new system
	8.2.2 Expected benefits per year

	9 DISCUSSION
	9.1 Critical analysis of the integration of UCD and Agile Methods
	9.2 Critical analysis of the use of Usability Planner
	9.3 Critical analysis of the usability methods applied

	10 CONCLUSIONS AND FUTURE LINES OF WORK
	10.1 Achievement of project goals
	10.2 Business benefits of automation
	10.3 Lessons learned about our use of UDC
	10.4 Benefits and costs of usability evaluation
	10.5 Future work

	11 REFERENCES
	12 APPENDIX A. TIMELINE OF APPLIED UCD METHODS PER ITERATION
	12.1 Milestone 1: Inception and Proof of concept
	12.2 Milestone 2: First stable version
	12.3 Milestone 3: Second stable version

	13 APPENDIX B. INTERACTION DESIGN ITERATIONS FOR OTHER MODULES
	13.1 The edition view
	13.2 Command step edition form (Dynamic UI)
	13.3 Event step edition form
	13.4 Report viewer
	13.5 Report generator
	13.6 Device manager
	13.7 Start screen

	14 APPENDIX C. SUMMARY OF THE FIRST ETHNOGRAPHIC OBSERVATION
	15 APPENDIX D. SOFTWARE ARCHITECTURE
	15.1 Application features
	15.2 Stakeholders concerns
	15.3 Model-driven development (MDD)
	15.4 Data model
	15.5 Detailed software design
	15.6 Deployment view

	16 APPENDIX E. SATISFACTION QUESTIONNAIRE

