
A Focused Crawler in order to Get Semantic Web
Resources (CSR)

Barbosa Santillán, Liliana Ibeth Campos Quirarte, Juana Elizabeth Castro Munguı́a, Aldo

Abstract—This paper presents a Focused Crawler in order
to Get Semantic Web Resources (CSR). Structured data web
are available in formats such as Extensible Markup Language
(XML), Resource Description Framework (RDF) and Ontology
Web Language (OWL) that can be used for processing. One of the
main challenges for performing a manual search and download
semantic web resources is that this task consumes a lot of time.
Our research work propose a focused crawler which allow to
download these resources automatically and store them on disk
in order to have a collection that will be used for data processing.

CRS consists of three layers: (a) The User Interface Layer,
(b) The Focus Crawler Layer and (c) The Base Crawler Layer.
CSR uses as a selection policie the Shark-Search method. CSR
was conducted with two experiments. The first one starts on
December 15 2012 at 7:11 am and ends on December 16 2012
at 4:01 were obtained 448,123,537 bytes of data. The CSR ends
by itself after to analyze 80,4375 seeds with an unlimited depth.
CSR got 16,576 semantic resources files where the 89 % was
RDF, the 10 % was XML and the 1% was OWL. The second
one was based on the Web Data Commons work of the Research
Group Data and Web Science at the University of Mannheim
and the Institute AIFB at the Karlsruhe Institute of Technology.
This began at 4:46 am of June 2 2013 and 1:37 am June 9 2013.
After 162.51 hours of execution the result was 285,279 semantic
resources where predominated the XML resources with 99 %
and OWL and RDF with 1 % each one.

I. INTRODUCTION

The web is formed by a great collection of resources linked
with hypertext or hyperlinks. These resources are created,
modified and eliminated continuously. The web as we know
it, its designed basically on html which provides textual and
graphic information features in order to be understandable
by people. This design makes it unfeasible to automatically
manipulate information contained on its pages.

A Web Crawler is an agent that searches and downloads
web pages automatically. [1] A Focused Crawler is a crawler
specialized on some specific subject.[2]

This paper will present the architecture of a Crawler
focused on obtaining semantic resources on the web, and
creating with them a collection which could be used by another
applications or processes.

The remainder of the paper is structured as follows: Section
2 briefly presents the background of our work. Section 3
describes the CSR architecture. Section 4 presents details of
our experiments and the result. Finally, Section 5 presents our
conclusions and future research.

II. FOCUSED CRAWLERS

A Web crawler is an algorithm which inspects web pages,
methodically and automatically, with the purpose of download-
ing hyperlinks; and other resources like text, images, videos,
etc. from each of this pages. [1]

A crawler stars by listing a group of URLs (Uniform
Resource Locator) seeds, which form the queue frontier or
waiting list. In this frontier the URLs are stored and prioritized
according to the different algorithms. From this queue, and in
a predefined order, the crawler obtains an URL, downloads
the page, and from this pages it recovers any hyperlink that
is contained within its code. These hyperlinks are stored to be
part of the frontier. This process can be repeated indefinitely or
until the crawler decides to stop according with a parameter:
time, quantity, storage space, etc. The downloaded and stored
pages form a repository which will be later used by other
applications. [1].

The crawlers utilized by general purposes search engines,
return an enormous number of web pages independently of
the topic. The focused crawlers calculate and assign a higher
priority to the pages with greater probability of be relevant
according to a specific subject. According to [3] the focused
crawlers can be classified as follows:

• Classic focused crawlers: The initial seed group or
URLs can be generate by the user as result of a
search engine replying an inquiry about the subject
[4] [5] [6] [7]. And its then when they lead the search
to interesting pages. It utilizes predefined criteria to
assign high download priority values to the links,
based on the probability of guiding to new pages that
refer the topic. The pages with the highest priority are
downloaded first [8].

• Semantic crawlers: This is a variant of the focused
crawlers. This crawlers use standards of semantic sim-
ilarity to assign the download priority, which means;
a page and a subject can be relevant if they share
conceptually (although not necessarily lexical) similar
terms. [9]

• Learning crawlers. This crawlers use training process
to assign priority to the web pages and guide the
crawlers tracing. Usually the learning crawler is given
a group of training web pages relevant and non-
relevant which are used to accomplish the crawlers
learning, assigning high visit priorities to links ex-
tracted from web pages classified as relevant to the
topic and low priorities to the links extracted from
non-relevant pages.[6]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148675272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The main problems faced by Web Crawlers are:

• The webs size. At a given time, the crawler can only
access a small portion of the web; hence it is essential
to give priority in order to select the most important
URLs and visit them.

• The speed at which the web changes. It is necessary
to have a parameter that marks the frequency at which
the pages must be revisited since there is a high
probability that when the download of a group of
URLs is finished, the visited pages have already been
changed, eliminated or pages of mayor interest have
been generated.

• Dynamism on the web. The content of most of the web
pages is generated in a dynamic manner, that is to say,
according with the specific requests of the user after
taking forms or surveys designed to be answered by
humans, which makes access to said pages or contents
hard for an automatic program.

In order to counteract this problems the crawlers use
different alternatives or models which allow to calculated
the: policies of selection (Rank the pages of the frontier
to choose which URLs to visit), Policies of review (select
how often to update the data collection, and how), Policies of
courtesy (calculate the parameters of courtesy in order to avoid
overloading the servers such as waiting time limit, maximum
time of connected, bandwidth usage, etc.) and policies of
parallelization (manages and marks the URLs of the frontier
so it prevents two different process from visiting the same
page)

Utilizing selection policies, the crawlers try to lead the
process of tracing pages relevant to the topic. [10] [11] The
efficacy of the crawler depends of the good selection of seed
pages (initial pages). Good seed pages can be pages relevant to
the subject of pages with access to the pages of interest with
a small number of router hops. For example, if the subject is
children books, a good seed page could be the page of the
Publisher of an author of children books. But it could also be
the authors personal page; that although it could not have any
publications, it could guide to pages that contain the wished
results.

Some of the most used selection policies are:

• Breath First. This scheme was utilized by the first
crawlers, it consists on tracing a domain starting from
the root, downloading all the documents on that depth
level, before downloading any link on another level.
In other words, it starts by visiting the home page of
every seed web sites and the new pages are added at
the end of the list [1].

• Depth First. Consists on tracing a domain starting
from the root or seed, downloading first all the doc-
uments available through a URL in particular, before
moving on to another link on the list [12].

• Fish-search focus [13] assigns binary values of priority
(1 for relevant, 0 for non-relevant) to the pages can-
didate to be downloaded trough a simple comparison
of words. Therefore, all the relevant pages have the
same priority value .

• Best-First Crawlers assigns priority values to the can-
didate pages calculating the similarity of its text with
the subject and valuating the frequency of occurrence,
applying VSM (Vector Space Model). It does not
utilize the inverse indexing since this is problematic
due not only to the necessity of calculating the vectors
on each step of the tracing but also, on the first stages
of the process, the values are very inaccurate due to
the number of documents being to small. Best-First
is considered the most successful approach to focused
tracing due to its simplicity and efficiency [14].

• Backlink-count. This scheme consists on tracing first
the pages with the highest number of links directing
to it, this way the next page to be analyzed is the
one most directed to from the previously downloaded
pages [15].

• PageRank. This metric can only be utilized when the
user already have a subset of pages available in the
collection or in the revisits. It consists on defining
recursively the importance of a page as the weighted
sum of the previous pages with links to it[1].

• The Shark-Search method [16] suggests using the
Vector Space Model(VSM) [17] to assign non-binary
priority values to the candidate pages. The priority val-
ues are calculated taking on consideration the content
of the page, hyperlinks, text surrounding the links and
the priority value of the parent pages (pages that direct
to the page that contains the link).

• The N-Best-First crawling [8] its a generalized version
of the Best-First crawling: on each step, the N-pages
(instead of just one) with the highest priority are
selected for the expansion.

• The Smart Tracing [18] suggest to combine the content
of the page, information of the URL chain, sibling
pages and statistics about the relevant and non-relevant
pages to assign priorities to the candidate pages. This
results on a highly effective tracing algorithm that
learns to trace without direct training [1].

III. ARCHITECTURE

This chapter will explain the architecture and the functions
of the crawler and each component. CSR crawler is based
in a Open source Project that provides a quickly structure to
explore the Web, which allows to execute multiple threaths to
reduce the time of searching.

The most processing of the crawler is in the engine which
is composed by two layers (CSR Layer and Crawler layer), is
intented to get as many data file as the user determined by the
number of seeds.

Fig. 1. Architectur of CSR

The storage directory is the specific path to the storage
unit on the hard disk; this path will gather all the documents
obtained by the crawler during the task.

The threads are instances of a process, which perform a
specific task, in this case the search for semantic resources,
which reduces the time significantly. The user must try to not
overload the system and cause and unexpected termination of
the crawler.

The depth is the link levels that a seed can have, then if a
seed has another link embedded in the body of the web this
will conduct a search on this link, and so on up to the number
of levels configured on the system. It is important to note that
in unlimited number of levels can take months of processing
in multiple threads.

The seeds will be brought to the engine by a simple text
file, which will be analyzed and manipulated by the engine,
this is the point of departure for the CSR, once the validation
is complete will be added to the list to be crawled. The system
is divided into three layers: User Interface, Focus Crawler and
Basic Crawler as shown in Fig. 1.

A. User Interface Layer

It is the interaction to the user, who can enter the data
required to specify the seeds, the number of threads and the
depth of the crawling, it is important to note that once the
system is configurated there is no relevant information that
the user may need, when the system complets the crawling it
will display a message generated by the following layers and
the process will end.

The interaction between this layer and the next layer will
be made by sending the required as parameters, if any of these
are missing the process can not continue.

B. Focus Crawler Layer
Is where the most of the development of this work is done,

containing the seed handling and the subsystem to check the
already searched pages.

The validator is the first thing that will be run with the
input data, once the data is validated, it start storing the seeds
in a temporaly program variable, which has a mximum of
300 thousand seeds per execution, this is to avoid overloading
the processing and not overflow the memory computer, this
process will only check the right structure in the seed.

The inspection process on the web takes a lot of processing,
seed files can take days, weeks or months to be procesed, its
really important that the crawler avoid check for second time
a seed that was already checked, all the pages insepected are
going to be stored in a temporaly file.

The controller is the part that handles the logic of the
crawler, it will use all the packages and utilities provided by the
Basic Crawler Layer, initialize, review and stop the execution
threads, it is the brain for the operation .

The filters are going to be used to select those files and
documents that have relevant data for further analisys, if the
data doesnt containt important data will be ignored. Each data
structure has its own algoritm to filter and will interact with
the lowest layer of the crawler.

C. Basic Crawler Layer
Last layer in the Project, created by Yasser Ginjisaffar in

the 2008, will provide an API to the Focus Crawler layer to
crawl the web [?].

IV. EXPERIMENT AND RESULTS

In order to obtain semantic resources we have specified
three data structure which are the resources that the CSR
crawler searched:

The main objective of this experiment was to obtain as
many semantic resource files from a seed file. RDF, XML
and OWL files are considered semantic resources files, wich
contains relative information about the data, at the end of the
experiment we expect to have a database containing semantic
resources files wich can be analyzed for future use. An example
of each file is show above, the structure of the files are very
similiar.

A. Experiments

The main objective of this experiment was to obtain as
many semantic resource files from a seed file. There are
important variables that need to be measured to determine
the importance of our experiment, these are how many seeds
are inserted, how many are crawled, how many respond an
error, how many threads are used , the deepth of the crawling,
downloaded files, total files and their space on disk in a specific
time. For both experiment we use the configuration as shown
in Table I:

Parameter Value Comment
Resume False Resume a previously

crashed crawl
Depth Unlimited Maximum depth of

crawling
Robotstxt True Should the crawler

obey the Robots.txt
Threads 5 Max running threads
Format RDF/XML/OWL Default ontology for-

mat
Socket timeout 20000 Socket timeout in

miliseconds
Connection timeout 30000 Connection timeout

in miliseconds
Max download size 1048576 Max size of a file is

1Mb
User agent Crawler4j User agent
Politeness delay 200ms Time to crawl other

page in the same
server

Follow redirects True Should the crawler
follow redirects?

The Focus CSR crawler uses multi-thread to download data
of web, visit, calculate and filter at the same time. There are
5 threads working in the first execution.

1) First Experiment: The first experiment starts on Decem-
ber 15 2012 at 7:11am and ends on December 16 2012 at 4:01
am, in this we get 426.34 Mbs (448,123,537 Bytes) of data.
The CSR crawler finish by itself after analyze an approximate
of 80,4375 seeds whit an unlimited depth.

For this experiment the seeds were randomly selected
from a database of previously generated, not perform any
prioritization of the seeds. These are someof the results:

Example of the seed file:
<http://www.johngoodwin.me.uk/family/I0377>
<http://purl.org/vocab/relationship/grandparentOf>
<http://www.johngoodwin.me.uk/family/I0456>
<http://www.johngoodwin.me.uk/family/I0377>
<http://www.johngoodwin.me.uk/family/I2566>
<http://www.johngoodwin.me.uk/family/I0377>
<http://www.kanzaki.com/ns/music\#Musical_Work>
<http://www.w3.org/2002/07/owl\#Class>

<http://www.kanzaki.com/ns/music>
<http://statistics.data.gov.uk/id/country/921>
<http://statistics.data.gov.uk/def/electoral-
geography/ward>
<http://statistics.data.gov.uk/id/electoral-
ward/18UHGW>
<http://statistics.data.gov.uk/def/electoral-
geography/ward>
<http://statistics.data.gov.uk/id/electoral-
ward/00MENX>
<http://statistics.data.gov.uk/doc/country/921>

This kind of seeds were introduced into the CSR crawler.
After crawls 22.5 hours we save 16,576 semantic resources
files, in these case the Resources Data Framework file was
de predominance file with the 89 percent of the files obtained
(14,825) leaving the XML file as second place with 10 percent
(1736) and finally the Ontology Web Language resource with
one percent (15 files).

Files:

XML Files RDF Files OWL Files Summary
1736 14825 15 16576

Data:

XML Files RDF Files OWL Files Summary
152MB 2735MB 1.34MB 426.3 MB

2) Second experiment: The second experiment was based
on the work of Web Data Commons, created by the Research
Group Data and Web Science at the University of Mannheim
and the Institute AIFB at the Karlsruhe Institute of Technology
this project extracts all the embedded structured data describ-
ing products, people, organizations, places or events into their
HTML pages from several billion web pages. Unlike this
project, we are looking for the entire file of semantic resoruces,
Web Data Common were looking for specific data embedded
in a HTML document

This project provides us whit a huge base of seeds that
we can use to crawl the web, this information is compress
into N-Quads and it can be downloaded from their official
server. There are 410 N-Quad files with a size approximately
of 100 MBytes each. Uncompressed this kind of file could
reach 1.5 Gbs with 9,278,514,430 seeds to crawl. In this case
was necessary to standardize the nq file to use them in our
seeds protocol as shown in example .

Example 1 of the NQ file from WebData commons
project before normalization.

<http://turcanu.net/blog/2008/07/16/honglaowai-
if-there-were-no-communist-party-then-there-
would-be-no-new-china/>
<http://creativecommons.org/ns#attributionURL>
<http://turcanu.net>
<http://turcanu.net/blog/2008/07/16/honglaowai-
if-there-were-no-communist-party-then-there-
would-be-no-new-china/>
<http://turcanu.net/blog/2008/07/16/honglaowai-
if-there-were-no-communist-party-then-there-
would-be-no-new-china/>
<http://creativecommons.org/ns#attributionName>
"Sergiu Turcanu"
<http://turcanu.net/blog/2008/07/16/honglaowai-
if-there-were-no-communist-party-then-there-

would-be-no-new-china/>
<http://www.telemac0.net/marketing-50/>

Example 2 of the NQ file from WebData commons
project after normalization.

"http://turcanu.net/blog/2008/07/16/honglaowai-
if-there-were-no-communist-party-then-there-
would-be-no-new-china/"
"http://creativecommons.org/ns#attributionURL"
"http://turcanu.net"
"http://turcanu.net/blog/2008/07/16/honglaowai-
if-there-were-no-communist-party-then-there-
would-be-no-new-china/"
"http://turcanu.net/blog/2008/07/16/honglaowai-
if-there-were-no-communist-party-then-there-
would-be-no-new-china/"
"http://creativecommons.org/ns#attributionName"
"http://turcanu.net/blog/2008/07/16/honglaowai-
if-there-were-no-communist-party-then-there-
would-be-no-new-china/"
"http://www.telemac0.net/marketing-50/"

After this file was normalized to be an input of the CSR
crawler, the CSR crawler was set with the default configuration
and start crawling, this experiment was realized between
04:46AM of 02 June 2013 and 01:37AM of 09 June 2013,
the project crawl 162.51 hours, the results of these crawling
session were 285,279 of semantic resources retreive from the
Web In this case the predominance file was the Extensible
Markup Language with the 99 percent of the saved files
(285279 XML files), leaving RDF files and OWL with .1
percent each.

In this experiment more that 60 percent of the seeds files
weren’t crawled, this may be because the page was moved,
removed or the robots policy donot allow to crawl this URL.
Results:

Files:

XML Files RDF Files OWL Files Summary
284922 325 32 285279

Data:

XML Files RDF Files OWL Files Summary
3150MB 19.5MB 5.1MB 3175 MB/3.1 GB

V. CONCLUSION

The semantic web resources are growing nevertheless not
all the web sites use them. The results of CSR showed that
the XML and RDF resources are more frequently In contrast
to OWL that does not have much presence. However with the
update of the web sites to the semantic Web they will use this
kind of resources.

CSR used a X policie for focused crawlers for the two
experiments. The most important part was in the cleaning and
normalization of the seeds. On the one hand was with open

seeds and and on the other with seeds provided by the project
of Web Data Commons del Research Group Data and Web
Science at the University of Mannheim and the Institute AIFB
at the Karlsruhe Institute of Technology. Future work is to
parallel the CSR tasks in order to obtain as many semantic
resources as possible in a period of time for a later process.
Another major challenge is automatically check the quality of
the results.

ACKNOWLEDGMENT

The authors would like to thank PROMEP for funding this
research project.

REFERENCES

[1] J. Cho and H. Garcia-Molina, “Parallel crawlers,” pp. 124–135, 2002.
[2] A. A. Barfourosh, H. M. Nezhad, M. O’Donovan-Anderson,

M. Odonovan-Anderson, A. Kabir, and D. Perlis, “Alii: An information
integration environment based on the active logic framework,” 2002.

[3] S. Batsakis, E. G. M. Petrakis, and E. Milios, “Improving the perfor-
mance of focused web crawlers,” Data Knowl. Eng., vol. 68, no. 10,
pp. 1001–1013, 2009.

[4] F. McCown and M. L. Nelson, “Agreeing to disagree: search engines
and their public interfaces,” pp. 309–318, 2007.

[5] R. Kraft and R. Stata, “Finding buying guides with a web carnivore,”
pp. 84–, 2003.

[6] G. Pant and P. Srinivasan, “Learning to crawl: Comparing classification
schemes,” ACM Trans. Inf. Syst., vol. 23, no. 4, pp. 430–462, 2005.

[7] S. Bao, R. Li, Y. Yu, and Y. Cao, “Competitor mining with the web,”
IEEE Transactions on Knowledge and Data Engineering, vol. 20,
no. 10, pp. 1297–1310, 2008.

[8] F. Menczer, G. Pant, and P. Srinivasan, “Topical web crawlers: Evalu-
ating adaptive algorithms,” ACM Trans. Internet Technol., vol. 4, no. 4,
pp. 378–419, Nov. 2004.

[9] M. Ehrig and A. Maedche, “Ontology-focused crawling of web docu-
ments,” pp. 1174–1178, 2003.

[10] A. Pivk, P. Cimiano, Y. Sure, M. Gams, V. Rajkovič, and R. Studer,
“Transforming arbitrary tables into logical form with tartar,” Data
Knowl. Eng., vol. 60, no. 3, pp. 567–595, 2007.

[11] C.-H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan, “A survey of
web information extraction systems,” IEEE Trans. on Knowl. and Data
Eng., vol. 18, no. 10, pp. 1411–1428, Oct. 2006.

[12] H. Ali, “Effective web crawlers,” March 2008.
[13] P. D. Bra, G.-J. Houben, Y. Kornatzky, and R. Post, “Information

retrieval in distributed hypertexts.” pp. 481–493, 1994.
[14] J. Cho, H. Garcia-Molina, and L. Page, “Efficient crawling through url

ordering,” Comput. Netw. ISDN Syst., vol. 30, no. 1-7, pp. 161–172,
1998.

[15] C. Castillo, M. Marin, A. Rodriguez, and R. Baeza-Yates, “Scheduling
algorithms for web crawling,” pp. 10–17, 2004.

[16] M. Hersovici, M. Jacovi, Y. S. Maarek, D. Pelleg, M. Shtalhaim, and
S. Ur, “The shark-search algorithm. an application: tailored web site
mapping,” Comput. Netw. ISDN Syst., vol. 30, no. 1-7, pp. 317–326,
1998.

[17] G. Salton, A. Wong, and C. S. Yang, “A vector space model for
automatic indexing,” Commun. ACM, vol. 18, no. 11, pp. 613–620,
Nov. 1975.

[18] C. C. Aggarwal, F. Al-Garawi, and P. S. Yu, “Intelligent crawling on
the world wide web with arbitrary predicates,” pp. 96–105, 2001.

