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ABSTRACT 

We describe a domain ontology development approach that 
extracts domain terms from folksonomies and enrich them 
with data and vocabularies from the Linked Open Data 
cloud. As a result, we obtain lightweight domain ontolo­
gies that combine the emergent knowledge of social tagging 
systems with formal knowledge from Ontologies. In order to 
illustrate the feasibility of our approach, we have produced 
an ontology in the financial domain from tags available in 
Delicious, using DBpedia, OpenCyc and UMBEL as addi­
tional knowledge sources. 

1. INTRODUCTION 
Ontology development methodologies and methods were 

initially based on centralized ontology development settings. 
In contrast, more recent proposals, e.g., DILIGENT [21], the 

Human-Center Methodology (HCOME) [18], and the NeOn 
Methodology for Building Ontology Networks [25] mainly 
focus on decentralized settings, emphasizing the need for 
community engagement in the ontology creation process as 
well as the constant evolution of the knowledge represented 
in ontologies. One of the main challenges to overcome in this 
decentralized context, where different teams collaborate in 
the ontology development, is that of knowledge acquisition. 
This process requires harnessing the knowledge of a group 
of experts and users to extract domain knowledge and rep­
resent it in the form of an ontology. 

In parallel to this evolution in the area of ontology de­
velopment, Social Tagging Systems (STS) have shown great 
success in encouraging users to create, tag, and share con­
tent, what leads to the emergence of folksonomies from user 
annotations. Folksonomies are lightweight conceptual struc­
tures that associate users terms (tags) to Web resources, fa­
cilitating their classification and organization [14]. Within 
STS the vocabulary used to tag tends to stabilize over time 
[11] since using existing tags is more frequent than generat­
ing new ones [24]. Facilitating in this manner the standard­
ization in the use of a particular term in relationship to a 
tagged resource. It has also been reported that tag-based 
vocabularies from socially connected users, communities of 
practice, overlap more significantly than those of randomly 
selected users [19]. 

These emergent vocabularies turn folksonomies into inter­
esting knowledge sources from which ontologies can be de­
veloped. In fact, several approaches have been proposed for 
deriving ontologies from folksonomies, as described in Sec­
tion 2. However, results remain limited, given the inherent 
problems of polysemy, ambiguity, and misspelling that are 
present in user-based annotations. Besides, most of the ap­
proaches focus on delivering clusters or hierarchies of terms 
rather than ontologies; and the distinction between classes 
and instances is restricted. 

In our approach, we share the view of eliciting knowledge 
from folksonomies, but go a step further, relating them to 
existing knowledge bases in the Linked Open Data cloud 
[4]. We generate a baseline domain ontology from a folk-
sonomy in a STS, i.e. draft version containing an initial 
vocabulary organized within a structure of classes and rela-
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tionships. We emphasize that it is a baseline ontology in the 
sense that it is possible that domain experts and ontology 
engineers need to prune or complete the ontology at the end 
of the process. We think our approach may save time to 
ontology engineers since the ontology is automatically gen­
erated and allows them to understand the domain at hand 
with a limited participation of domain experts. 

Our method starts by selecting the part of the folkson-
omy that we will initially process: we use relevant Web sites 
previously identified by domain experts, then we retrieve 
annotations from those sites and related sites in the folkson-
omy following a spreading activation strategy [7]. The ini­
tial terminology is then refined; classes and relationships are 
identified by examining that controlled vocabulary against 
existing knowledge bases. This method can be seen as the 
process to extract domain knowledge from large and generic 
knowledge bases which is driven by the domain terminology 
in the folksonomy. Benefits of this selection includes smaller 
and more focused ontologies which are potentially easier to 
understand and to maintain. In addition, complex queries 
and reasoning task may execute faster on smaller data sets. 

In observance of methodological practices, our technique 
harvests community knowledge and reuses existing ontolo­
gies. As a result of the application of our method a domain 
ontology is generated; with the advantage that such ontology 
has also links to external classes and relationships available 
in the Linked Open Data cloud. 

To illustrate the feasibility of our approach we present a 
case study where we generate an ontology in the financial 
domain by first harvesting domain terminology from anno­
tations in Delicious1, and then enriching semantically that 
terminology with classes and relationships contained in DB-
pedia [5], OpenCyc2 and UMBEL3. We evaluate this ontol­
ogy using a gold standard ontology, and analyze the content 
of the ontology with the help of automatic tools such as 
the partitioning tool PATO [23] to identify modules in the 
ontology, and SWAT4 to express the ontology in natural lan­
guage sentences so that domain experts can easily evaluate 
the ontology content. 

This paper is organized as follows. In section 2 we present 
the related work. Next, in section 3, we describe our ap­
proach to generate domain ontologies from folksonomies and 
linked data. Then, in section 4, we present the evaluation 
and analysis of ontologies in the financial domain generated 
with our method. Finally we present our conclusions. 

2. RELATED WORK 
Approaches aiming to obtain ontologies from folksonomies 

can be classified in two categories: approaches tapping into 
the network structure of folksonomies [3, 13, 20, 14] which 
rely on tag similarity measures [6, 17], and approaches using 
lexical resources or ontologies to specify the meaning of tags 
[1, 2]. Some of these approaches rely on specific techniques 
such as clustering [3], social networks metrics [13], formal 
concept analysis [14], mappings between tags and lexical 
resources [1] or ontologies [2], while others use a combination 
of them [20]. For an extensive review of the state of the art 
regarding folksonomies as source of knowledge we refer the 

1https://delicious.com/ 
2see http://sw.opencyc.org/ 
3see http://www.umbel.org/ 
4http://swat.open.ac.uk/tools/ 

reader to [10]. 
In [3] authors explore different clustering techniques to 

find related tags. They propose a graph of co-occurrent 
tags that is partitioned by using cluster techniques; tags are 
listed in decreasing order to facilitate the selection of the 
top N similar tags. Heymann and Garcia-Molina [13] use so­
cial networks metrics to produce a hierarchy of tags accord­
ing to the similarity between tags. Similarity is calculated 
based on co-occurrence of tags when annotating resources. 
Mika [20] creates networks of tags and clusters relying on 
co-occurrence of tags. Tags are arranged in hierarchy of 
broader and narrower terms. Trias [14] is a semi-automatic 
approach that apply formal concept analysis to mine com­
mon conceptualizations. Conceptualizations are defined by 
groups of users that have used some tags to annotate a group 
of resources. These conceptualizations are used to create a 
hierarchy of tags. 

On the other hand, Folk2Onto [1] propose to use Word-
Net to map tags to synsets so that they can filter out tags, 
identify synonyms, and assign categories to tags. This pro­
cess is semi-automatic since the system must be supervised 
to learn how to map automatically. In [2] the semantics of 
tags is defined by associating them with ontology entities. 

In short, all of these approches generate group of tags 
that may or may not be hierarchically organized. However, 
determining the nature of the relationships between tags is 
difficult. The semantics of tags and of relationships between 
them is not always explicitly defined [3, 13] albeit it is some­
times suggested [14], or defined in a limited scope [1, 2]. 

In contrast to the aforementioned approaches our method 
produces a domain ontology that consists of classes and de­
fined relationships among them, including hierarchical and 
non-hierarchical. Our approach makes explicit the meaning 
of the relationships among the classes of the ontology by 
reusing existing conceptualizations in the linked data cloud. 

3. GENERATING LIGHTWEIGHT 
ONTOLOGIES 

As shown in figure 1 our approach takes as input a set of 
seeds in the form of appropriate domain resources, and pro­
duces as output the corresponding domain ontology. First 
we obtain a domain terminology by traversing a graph de­
rived from the folksonomy. Seeds are used as starting points 
to traverse the folksonomy structure, and as reference re­
sources to search for similar resources in the folksonomy. 
Next we identify the semantics of the domain terminology 
by reusing ontologies in the Linked Data cloud. To do so, we 
relate terms to resources in DBpedia [5], which is considered 
as a data hub in the linked data cloud given the high degree 
of interconnection with other data sets. Then we look for 
classes that are related to those DBpedia resources. These 
classes are not necessarily in the DBpedia ontology; they 
can be in other knowledge bases linked to DBpedia. In ad­
dition, we look for relationships among those classes in DB-
pedia and interconnected datasets. As output we produce a 
domain ontology consisting of classes and relationships that 
are directly linked to classes in the linked data cloud. 

In fact this process can be viewed as the selection of do­
main knowledge from large generic knowledge bases which is 
driven by the domain terminology gathered from the folkson-
omy. Benefits of this selection include a smaller and focused 
knowledge base which is potentially easier to maintain and 
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Figure 1: Eliciting knowledge from folksonomies. 

tune for query performance, and that poses less cognitive 
burdens for users since a smaller amount of information is 
easier to explore and understand. In addition, in smaller 
knowledge bases it is possible to run reasoners in not exces­
sive times given their current performance limitations [26]. 
Thus ontology engineers would be able to check the ontology 
consistency and coherence, or inferring new knowledge [15]. 
Finally since the classes are linked to classes in the linked 
data cloud engineers still may benefit of the interlinked in­
formation. 

3.1 Terminology Extraction 
A folksonomy can be understood as a set of annotations 

AC U x T x R where U, T and, R are sets whose mem­
bers are users, tags and resources, respectively. Thus a 
folksonomy can be represented as an undirected tri-partite 
hyper-graph G = (V, E) where V = U U T U R, and E = 
{(u,t,r)\(u,t,r) e A} [20]. We are particularly interested 
in a graph G' = (V',E') whose vertices V' are the set R 
of resources, and for which there is an edge between two 
resources n and Tj if there is at least a common tag as­
signed to both resources regardless of the user. Formally, 
E' = {(ri,rj)\3((u,tm,ri) G AA(u,tn,rj) e A/\tm = tn)}

5. 
We have chosen this graph because previous studies such as 
[11] showed that tags tend to converge around resources in 
folksonomies. 

By browsing the graph G', we look for domain relevant re­
sources and collect the tags used to annotate those resources 
as valid terms within the domain at hand. Our approach 
requires a set S C R of user-specified seeds. A seed is a folk­
sonomy resource considered highly pertinent to the domain. 
Thus we can compare resources in G' with a seed in terms 
of shared tags; tags of highly similar resources are added to 
the domain terminology. 

In order to traverse the graph G' we use a breadth-first 
search (BFS) strategy and spreading activation [7], a tech­
nique that allows taking decisions over each node visited in 
the graph so that we can gather the tags associated with 
nodes which are relevant to the domain. Spreading acti­
vation is a graph search method initiated by a set of seed 
nodes weighted with an activation value. Each seed’s activa­
tion value spreads through the adjacent nodes in the graph 
by means of an activation function. The spreading stops 
when a node activation value is below a specified threshold. 
When a node is activated more than once, i.e. it is reached 
by the spreading of different seeds, the node activation value 

can be added up. 
The activation value for a node rj is calculated by esti­

mating the rate of shared tags with ri, being ri the previous 
activated node from which we reached rj. 

a'(rj) = 
\{te T\(u,rht) eA}n{teT\(u,n,t) 

\{teT\(u,n,t) eA}\ 
) e A}\ 

5Note that annotations can be made by different users u, 
however, to keep the notation simple we don’t show this in 
the formalization. 

(1) 
The activation function also depends on the activation 

value of the previously activated node n. Thus, a(rj) = 
a'(tj) + a(ri) * \ where 0 < A < 1 is a real number repre­
senting a decay factor. If a(rj) is greater than a threshold 
h, then it is marked as activated and the search continues; 
otherwise the search stops. 

Once all the seeds are processed we we gather all distinct 
tags used to annotate the activated nodes and produce with 
them a list of domain terms. 

3.2 Semantic Elicitation 
We rely on general purpose knowledge bases published 

as linked data to identify the semantics of the terms ex­
tracted from the folksonomy. Linked data are published us­
ing RDF and typed links between data from different sources 
[4]. Throughout this paper we refer to DBpedia [5], Open-
Cyc, and UMBEL, which are general purpose knowledge 
bases published as linked data. 

DBpedia6 contains knowledge from Wikipedia for close to 
3.5 million resources; 1.6 million resources are classified in 
a cross domain ontology containing 272 classes. OpenCyc 
is a general purpose knowledge base; it has nearly 500.000 
concepts, around 15.000 types of relationships, and approx­
imately 5 million facts relating these concepts. UMBEL is 
a vocabulary and reference concept ontology designed to 
help content to interoperate on the Web. This ontology 
has 28.000 concepts and 38 types of relationships. These 
datasets are interlinked among them. DBpedia resources, 
and classes are connected to OpenCyc concepts using owl:-
sameAs, and to UMBEL concepts using umbel#corresponds-
To. Since these data are available in RDF we can query them 
using SPARQL. 

In this process we ground the terms to DBpedia resources 
representing their intended meaning. We then tap into the 
DBpedia ontology and interconnected data sets (i.e., Open­
Cyc and UMBEL) to i) identify which of the terms corre­
spond to ontology classes, and ii) identify the relationships 
between those classes. When searching for relations between 
classes in the linked data set new classes can arise from those 

6see http://dbpedia.org/ 
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PREFIX dbpr:<http://dbpedia.org/resource/> 

PREFIX dbpo:<http://dbpedia.org/ontology/> 

# Query 1. 

SELECT ?resource WHERE { 

?resource rdfs:label ?label . 

FILTER(?label="TagNormalizedVersion"@en) } 

# Query 2. 

SELECT ?m a i n _resource WHERE { 
_ <resource> dbpo:wikiPageRedirects ?main resource .} 

# Query 3. 
_ ASK {?disambiguation dbpo:wikiPageDisambiguates <main resource> } 

# Query 4. 

SELECT ?candidate WHERE { 

<disambiguation> dbpo:wikiPageDisambiguates ?candidates.} 

Listing 1: Queries for identifying DBpedia resources for 
terms. 

relations expanding throughout intermediate classes. With 
the set of classes and relations we generate the domain on­
tology. 

3.2.1 Grounding terms to DBpedia 
For each term we identify in DBpedia the resource that 

better represents its intended meaning. To do so we follow a 
procedure previously introduced in [9] that we summarize in 
this section. This approach benefits of: i) redirections pages 
to deal with tags that represent synonyms or morphological 
variations of a concept, ii) a spelling service to attempt to 
fix misspelled tags, iii) disambiguation pages to identify and 
disambiguate ambiguous tags, and iv) the correspondence of 
DBpedia resources with Wikipedia articles to obtain textual 
descriptions of each resource which can be consume during 
the disambiguation process 

Tags are written without any restriction by users, and 
thus several slightly modified tags can refer to the same con­
cept. Therefore tags needs to be normalized so that different 
tags that indicate the same entity can be identified. We use 
DBpedia resource names as standard names of concepts to 
which tags can be transformed. First we modify the tags to 
turn them into the standard notation of DBpedia resource 
names, which is based on the Wikipedia title capitalization 
style7. Then we verify, using Query 1 in listing 1, if the tag 
normalized version is the label of a DBpedia resource. If the 
tag is not the label of DBpedia resource we pass it through 
a spelling service that suggest DBpedia resource names as 
spelling suggestions and try again the query. Next we check, 
using Query 2 in the same listing, if that resource redirects 
to a main resource. If this redirection triple does not exists, 
then we use the initial resource as the main resource. The 
main resource represents the most frequent meaning of the 
term defined by Wikipedia editors. 

However, for ambiguous terms, the most frequent mean­
ing is not necessarily the meaning of the tag given the con­
text where it was used. Therefore first we need to establish 
whether the resource is ambiguous or not. We use Query 
3 in listing in listing 1 to check if the main resource is dis-
ambiguated by another resource. This disambiguation re-
7http://en.wikipedia.org/wiki/Wikipedia:Article_ 

titles 

sources are extracted from Wikipedia and contains a list of 
resources representing the candidate meanings that can be 
obtained with Query 4 in the same listing. If the resource is 
not related to a disambiguation resource, we consider that 
the term is not ambiguous and therefore we use this re­
source as the one representing the term meaning. On the 
other hand, if the resource is related to a disambiguation 
resource, then we have to select the proper sense among the 
candidates. 

For instance, let us follow the process for the annotation 
BankLoan. We pose the SPARQL Query 1 (see listing 1) 
to search for a resource associated with the term BankLoan. 
This query does not return a resource so we pass the an­
notation to the spelling service that returns Bank_Loan as 
the suggested spelling. We execute again Query 1, and this 
time it returns the resource dbpr:Bank-Loan. Next we need 
to make sure this resource is a main concept and not a 
redirection resource. Thus we use Query 2 and it returns 
the resource dbpr:Loan which is actually the main concept 
since Bank-loans is just considered in Wikipedia as an al­
ternative label to that concept. Then we verify if dbpr:Loan 
is an ambiguous resource. Query 3 returns true, meaning 
that the dbpr:Loan is related to a disambiguation resource 
dbpr:Loan(disambiguation)8. Thus we consider dbpr:Loan 
as an ambiguous resource and retrieve the resources repre­
senting the candidate meanings using query 4. We obtain 
the following candidates: dbpr:Loan, dbpr:Loan_(sports), 
dbpr:-Loanword, etc. 

To select the right candidate for a term we leverage the 
correspondence of DBpedia resources with Wikipedia arti­
cles to obtain textual descriptions of each resource. Thus, 
we calculate similarity between each resource and the term 
by comparing the resource textual description with the term 
context. The most similar resource is selected as the resource 
representing the term meaning. By context we mean other 
tags used together with the ambiguous term when annotat­
ing resources that have been activated in the spreading acti­
vation. In other words, the context of an ambiguous term U 
is the set {t e T\(u,t,rm) eAA (u,U,rn) e AArm = rn}. 

To calculate similarity between the term context and the 
resource description we use vectors to represent them and 
cosine as a measure of similarity. The components of the vec­
tors are the most frequent terms of the Wikipedia articles 
related to each candidate DBpedia resource. To populate 
the vectors representing resources we use term frequency 
and inverse document frequency (TF-IDF) as term weight­
ing scheme [22]. IDF is calculated using only the set of tex­
tual descriptions corresponding to the candidate resources. 
To populate the vector representing the term context we as­
sign a weight of 1 if the vector term appears in the context, 
and 0 otherwise. Then we calculate the cosine of the an­
gle between the vector representing the term with each of 
the vectors representing candidate resources. The candidate 
with the highest cosine is selected as the resource to repre­
sent the term. Details of this procedure can be found in [9]. 
This grounding produces a set of tuples relating terms with 
DBpedia resources from which we obtain a set of unique 
DBpedia resources. 

3.2.2 Getting ontology classes 
At this point we have connected terms to the linked data 

cloud using DBpedia resources. We aim at benefiting from 
8 For space reasons we do not include this query 
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Figure 2: Browsing linked data for classes related to DBpedia resources and relations among classes. 

# Query 1. 

ASK{<resource> <rdf:type> <rdfs:Class>} 

# Query 2 

SELECT ?class 

WHERE{ <resource> ?rel1 ?class. ?class <rdf:type> <rdfs:Class> 

FILTER (?rel1 = <owl:sameAs>) } 

# Query 3 

SELECT ?class 

WHERE{ <resource> ?rel1 ?node. ?node ?rel2 ?class. 

?class <rdf:type> <rdfs:Class> 

FILTER((?rel1 = <owl:sameAs>) && 

(?rel2 = <owl:sameAs>))} 

Listing 2: Queries for identifying classes from DBpedia re-

the DBpedia ontology as well as from linked ontologies to 
identify which of the DBpedia resources obtained in the pre­
vious activity correspond to ontology classes. The most sim­
ple case occurs when a term is grounded to a DBpedia re­
source which represents a class in the knowledge base. If the 
DBpedia resource represents a class then must there exists 
a RDF statement stating that fact. We can look for such 
rdf statement using Query 1 in listing 2, which returns true 
or false if the resource r is defined as a class or not. 

However, there is the case when a DBpedia resource has 
not been defined as a class directly but through other linked 
entities. For instance, the resource dbpr:University is not 
directly related to the class dbpo:University9 (see figure 2a). 
To understand this equivalence we ought to navigate through 
linked data sets following the next path: dbpr:University 

owhsameAs ocyc:University 10 owl:sameAs dbpo:University. 
Furthermore in this subgraph we can identify two more Uni­
versity classes in OpenCyc and UMBEL which are linked to 
the initial DBpedia resource. 

Therefore, to identify classes related to a DBpedia re­
source r we query, using SPARQL, the linked data set in 
order to find paths of sameAs relations and of variable length 
connecting r with a target entity c defined as a class. We fol­
low a similar approach to [12] where queries are used to tra­
verse all the possible paths in the RDF graph connecting two 
entities. We define the path length L as the number of rela­
tionships found in the path linking r with c. For L = 1 we 
look for a pattern containing a relationship relation^ linking 
r with c. As we do not know the direction of relation^, we 
search in both directions: 1) r relation^ c, and 2) c relation^ 
r. Query 2 in listing 2 present one of the two queries. 

For L = 2 we look for a path containing two relationships 
and an intermediate resource node such as: r relation^ node, 
and node relationj c. Note that each relationship may have 
two directions and hence the number of possible paths is 
22 = 4. Query 3 in listing 2 is one of the four queries posed 
for paths of length 2. For L = 3 we have two in-between 
nodes, three relationship placeholders, and the number of 
possible paths is 23 = 8. In general, for a path length L we 
have n = J2i=1 2 possible paths that can be traversed by 
issuing the same number of SPARQL queries on the linked 
data set. 

In short, for each DBpedia resource r and a given value of 
L we pose n SPARQL queries following the above pattern 
to find related classes. Please note that the use of property 
paths in SPARQL 1.1 would allow simplifying this process. 
As a result a set of tuples associating each DBpedia resource 

9 T h e dbpo prefix refers t o http://dbpedia.org/ontology/ 

1 0 T h e prefix ocyc refers t o http://sw.opencyc.org/2009/04/ 
07/concept/en/ 

sources. 
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with ontology classes oc are created. Since a resource can 
be related to more than one linked data class we create a 
unique class, called local class lc, to group the linked data 
classes that the resource is related to . Each local class lc is 
associated, by means of a owl:sameAs relationship, with the 
classes oc identified for the resource. Hence, in this task we 
create an ontology O and then add the local classes lc along 
with their relationships with the classes oc to the ontology. 
From the example, we add to the ontology a local class Uni­
versity and assert that it is owl:sameAs to dbpo:University, 
ocyc:University and umbel:University. 

3.2.3 Finding relationships and new classes 
To look for relationships among the local classes lc we use 

their grouped classes oc to search for relationships among 
them in the linked data set. We carry out a pairwise search 
for relationships among the oc classes of all local classes. 
In order to benefit the most from the linked data graph, we 
need to look for variable length paths of relationships. Thus, 
we follow a similar strategy to the one for finding classes for 
DBpedia resources. Nevertheless, in this case we have a 
concrete source oci and target ocj of the path; given that 
both classes are related to different local classes lci and lcj. 
Classes found in a path linking oci and ocj are added as local 
classes to the ontology O. In addition, for each relationship 
found between oci and ocj we create relationships between 
lci and lcj. 

Figure 2b shows existing relationships between grouped 
classes of two local classes: University and Organization. 
Looking for a path of length 1 between members of both local 
classes in the dataset we find: umbel:University rdfs:subClass-
Of umbel:Organization. Therefore we can assert that Uni­
versity is rdfs:subClassOf of Organization. For paths of 
length 2 we find that dbpo:EducationalInstitution sets a path 
between the classes dbpo:University and dbpo:Organisation. 
In this case we add to the ontology a new class Education-
alInstitution along with its corresponding relationships. 

Of course this strategy of collecting relationships and class­
es may result in adding non relevant domain information to 
the ontology if we set L to a large value or if the path be­
tween two classes passes through abstract or high level con­
cepts. Regarding the path length we think that if we keep 
L small, meaning a short path length, we are still able to 
collect relevant relationships and classes while avoiding un­
wanted information. In fact, in our experiments, presented 
in section 4, we show satisfactory results with short values 
of L that allow us to enrich the initial set of classes while 
preserving the precision of the ontology. 

High level concepts like owl:thing, umbel:RefConcept11 and 
cyc:ObjectType12, or broad relationships such as skos:broader-
Transitive13 are another threat even with a short path length 
since they potentially can connect many unrelated or loosely 
related classes. Nevertheless, these abstract concepts and 
broad relationships can be easily identified since their are 
part of the knowledge base core vocabulary which is usu­
ally well documented (e.g., UMBEL vocabulary14, DBpedia 
Ontology15, and Cyc vocabulary16). Thus, in our experi-

11http://umbel.org/umbel#RefConcept 

12http://sw.opencyc.org/2012/05/10/concept/en/ObjectType 
13http://www.w3.org/2004/02/skos/core#broaderTransitive 
14http://umbel.org/specifications/vocabulary 
15http://mappings.dbpedia.org/server/ontology/classes/ 
16http://www.cyc.com/kb/thing 

ments we create lists of high level concepts collected from 
the knowledge base vocabularies to filter out the paths con­
taining those concepts. More sophisticated solutions can be 
applied to this problem too. For instance we can measure 
the semantic distance between two classes by following Wu 
and Palmer approach [27] where they take into account vari­
ables such as the depth of the class in the taxonomy and the 
depth of the least common subsumer to both classes, or the 
work of Jiang and Conrath [16] where authors propose a se­
mantic distance measure which includes the local network 
density (i.e., subclasses per class), class depth, weights ac­
cording to link types, and the information content of the 
classes and the least common consumer. 

In summary, the result of this process is an ontology cre­
ated out of folksonomy terms and of the reuse of knowledge 
contained in existing ontologies. A initial set of ontology 
classes are identified in the linked data set from folksonomy 
terms, while some others are collected when searching for 
relations among the initial classes. 

4. AN EXPERIMENT IN THE FINANCIAL 
DOMAIN 

In this section we evaluate different ontologies in the stock 
market domain that were generated from a folksonomy ex­
cerpt extracted from Delicious, and linked data from DB-
Pedia, OpenCyc, and UMBEL. Domain experts provided 
relevant websites for the financial domain including sites 
of markets such as NYSE, and NASDAQ, and of informa­
tion providers including Yahoo! finance, among others. We 
used these sites as seeds during the Terminology Extraction 
phase. Our Delicious dataset (Delicious Popular URLs and 
Tags, version 1.0) was comprised of 100,000 URLs; each 
URL had been saved at least 100 times. The ten most com­
monly used tags for each URL along with their annotation 
frequency were available. 

4.0.4 Terminology extraction 
We obtained the graph G' from the input folksonomy 

and then used the seeds as starting points for the spread­
ing activation process. Since the terminology gathered by 
the spreading activation process depends on the threshold 
h, we tested our method with the following h values: 0.5, 
0.6, 0.7, and 0.8. Recall that this threshold is used to 
decide whether the spreading continues or not. We de­
fined 0.5 as the lowest value since it guarantees that at 
least half of the tags are shared between seeds and the re­
sources. To evaluate the relevance of the terminology, we 
compared it to three financial glossaries: Yahoo! Finan­
cial Glossary (http://biz.yahoo.com/f/g/), Investor Words 
(http://www.investorwords.com/), and Campbell R. Har­
vey’s Hypertextual Finance Glossary (http://www.duke.edu/ 
~charvey/). 

We measured the precision of our method as the fraction 
of terms collected by our approach which are found in each 
one of the glossaries. Results are shown in Table 1a. A lower 
threshold allows collecting more terms at the expenses of a 
lower precision, while a higher threshold assure more re­
lation between the activated nodes in terms of the shared 
tags, and hence a smaller set of nodes are activated from 
which a more precise terminology is collected. A threshold 
of 0.8 produces a terminology with the highest average pre­
cision. We compared the terms against the Yahoo! glossary 

http://umbel.org/umbel%23RefConcept
http://sw.opencyc.org/2012/05/10/concept/en/ObjectType
http://www.w3.org/2004/02/skos/core%23broaderTransitive
http://umbel.org/specifications/vocabulary
http://mappings.dbpedia.org/server/ontology/classes/
http://www.cyc.com/kb/thing
http://biz.yahoo.com/f/g/
http://www.investorwords.com/
http://www.duke.edu/


Table 1: Evaluation results of the terminology and classes 
(a) Precision of the terminology using different threshold values 

Th re sho ld T e r m s 
0.5 476 
0.6 220 
0.7 114 
0.8 58 

Prec is ion 
Yahoo! Inves tor W . H . 
46.01% 32.56% 
48.18% 37.73% 
55.26% 40.35% 
94.83% 48.28% 

C a m p b e l l Average 
14.71% 31.09% 
16.36% 34.09% 
17.54% 37.72% 
25.86% 57.32% 

(b) Precision and recall of the ontology classes for different thresholds 

T h r e s h o l d O n t o . Classes Recal l Reca l l* Prec is ion Prec i s ion* 

0.5 
0.6 
0.7 
0.8 

243 
204 
101 
45 

36.21% 
36.21% 
36.21% 
32.76% 

48.28% 
46.55% 
44.83% 
43.10% 

5.35% 
5.88% 
10.89% 
20.00% 

16.05% 
21.57% 
33.66% 
68.89% 

(c) Ontology Modules and precision of the classes 

M o d u l e Classes 
% of Tota l Precis ion 

M o d u l e Classes 
% of Tota l Precis ion 

Organization 
Company 

Person 
Union (Company) 

Banker 
Human 

30.48% 
13.90% 
4.81% 
3.74% 
2.14% 
1.07% 

77.8% 
88.5% 
55.6% 
40% 
100% 
100% 

Stock Exchange.. 
Money Transaction 

Country 
Research 

Driver 
Member 

15.51% 
4.81% 
3.74% 
3.21% 
1.60% 
1.07% 

84.6% 
100% 
100% 
100% 
0% 

100% 

and reached a precision of 94.83%. The result we attained 
when comparing against H. Campbell and Investor’s con­
trolled vocabulary was lower; these thesauri often have terms 
composed of more than two words, for instance Beggar-thy-
neighbor devaluation or Depository Institutions Deregulation 
and Monetary Control Act, as well as specialization of the 
terms, for instance rather than Balance we find Balance on 
goods and services. Such overly specialized terminology was 
not found to be common in folksonomies. 

Please note that although this number of terms, and con­
sequently the number of classes derived from them, may 
not seem significant, the fact that this information is being 
gathered automatically would allow ontology engineer teams 
to save time. Otherwise as stated in ontology development 
methodologies [25] engineers would need to work with do­
main experts to write competency questions from which they 
can draw an initial terminology. In fact, the number of terms 
gathered with the highest precision is not too far from the 
70 classes in the OpenCyc finance vocabulary. 

4.0.5 Semantic elicitation 
For each terminology produced in the previous activity we 

generated an ontology that was evaluated by comparing it 
against an existing financial ontology. For this experiment 
we set L=3 so that we could find relations spanning the 
three linked data sets. 

To evaluate the ontologies we used as gold standard the 
OpenCyc financial and transfer of possession vocabularies. 
From each ontology generated with our method we selected 
only the classes identified from OpenCyc. With this subset 
of classes we calculated precision and recall. Precision is the 
fraction of classes in each ontology that are relevant. Rele­
vant classes are those appearing in the gold standard. Recall 
is the fraction of relevant classes appearing in the generated 

ontologies. We also calculated precision* and recall* using 
another version of the gold standard where we included all 
the subclasses of the classes in the finance and transfer of 
possession vocabularies. Precision* was calculated as before 
while recall* is a relaxed version of the original metric. In 
recall* the set of relevant classes are those in the original 
gold standard though we consider that a relevant class ap­
pears in the generated ontology if we find the relevant class 
or one of its subclasses. Results are presented in table 1b. 

These results show the trade-off between precision and 
recall, particularly between precision* and recall*. A low 
threshold h indicates that we impose fewer constraints to 
collect folksonomy terms and hence we have more classes 
in the ontology. This high number of classes results in a 
higher recall*, 48.28% for h=0.5, though the precision of 
these classes is lower. On the other hand, a high threshold 
h indicates that we enforce more relatedness between the 
nodes in the folksonomy to collect relevant terms and thus 
we have fewer but more related classes. This low number 
of classes yields a higher precision, 68.8% for h=0.8, though 
the recall is lower. As we will see in the following section 
recall values are affected since the produced ontologies focus 
more on the stock market domain, given the set of seeds 
utilized in our experiment, rather than on personal banking 
which is one of the components of the gold standard. 

4.0.6 Inspecting a financial ontology 
In this section we analyze in deep the semantics of an 

ontology generated using our method and present an evalu­
ation, carried out by domain experts, of a domain ontology 
generated with our method. According to our experiments 
h=0.8 produces the most precise terminology consisting of 
58 terms. With this set of terms we executed the seman­
tic elicitation activity. For this experiment we set L=4 to 



Figure 3: Excerpt from the financial ontology showing classes related to Transaction. 

obtain more classes and relations. Our method was able to 
ground a total of 55 terms to DBpedia resources –94.83% 
corresponding to 42 different resources. The difference be­
tween the number of terms and that of DBpedia resources 
exposes that some terms refer to the same resource, yet they 
are different; this can be attributed to the use of synonyms 
or spelling variations. From those 42 resources, 23 corre­
spond to at least one class in the linked data set. In total, 
23 local classes were added to the ontology. We found 378 
relationships and 164 new classes setting a path between 
initial classes. 

The final ontology (see http://goo.gl/0v8zA) consists of 
187 classes linked, by means of the owl:sameAs relationship, 
to 212 classes of three different ontologies in the linked data 
set. The ontology defines relationships corresponding to 8 
different types including: rdfs:subclassOf, owl:disjointWith, 
owl:sameAs, ocyc:SiblingDisjointExceptions. Only ten classes 
were totally disconnected from the others. An excerpt of the 
produced ontology is shown in Figure 3. 

To analyze the knowledge within the ontology, we de­
composed it into modules using the partitioning tool PATO 
[23]. Modules generated by PATO are comprised of nodes 
for which the strength of the connection between the nodes 
inside the module is higher than the strength of any con­
nection to nodes outside the module. A modular ontology 
facilitates analysis and maintenance operations. For our on­
tology, PATO identified eleven modules of interconnected 
nodes (see table 1c) and one module of isolated nodes. From 
these modules we observed that our ontology consists of a 
majority of topics that are relevant to the stock market. 
There are modules describing: 1) financial tasks such as 
Stock Exchange and Money Transactions, and 2) agents par­
ticipating in those activities including Organizations, Com­
panies, and Bankers. 

To assess the suitability of the classes for the stock mar­
ket domain we asked four domain experts to rate classes 
in each module according to their relatedness to the stock 
market domain. Precision was calculated as the fraction of 

relevant classes identified by our approach. A class was con­
sidered relevant if at least three evaluators asserted that it 
was highly related or related. Results of this evaluation are 
presented in table 1c. The overall precision of the ontology 
generated by our method was 80.67% (Evaluation data is 
available at: http://goo.gl/etztA). The results confirm that 
most of the ontology modules as well as the classes pertain 
to the domain. We obtained high precision values for Com­
pany, Stock Exchange, and Organization; we reached 100% 
precision for modules such as Money Transaction, Country, 
Research, and Banker. 

For this evaluation Fleiss’ Kappa [8] was κ=0.137; mean­
ing that the evaluator’s agreement exceeds the random re­
sult. Evaluators reached agreements by majority when rat­
ing 63.98% of the evaluated classes. However, evaluators 
were not consistent when rating. For instance, most of them 
chose the classes Organization and Company as relevant, 
although the same evaluators stated that some subclasses 
were not relevant. Only two modules, Union (Company) 
and Driver, had a precision lower than 50%, yet they only 
represent 3.2% of the classes. 

We also evaluate the relationships between classes in the 
ontology. To do so we express them in natural language sen­
tences using the SWAT tool (http://swat.open.ac.uk/tools/) 
so that evaluators were able to state the truth value of them. 
SWAT produces a set of sentences describing the ontology 
axioms. For instance, if we have an ontology asserting that 
Stock rdfs:subClassOf Equity and owl:disjointWith Loan-
Note, SWAT will produce two sentences: i) A Stock is an 
Equity and ii) No Stock is a LoanNote. Thus, we asked 
the evaluators to rate these sentences as true or false. Eval-
uators agreed in 70.33% of their ratings. Considering the 
sentences that evaluators were able to rate the 96.4% were 
valid relations. 

5. CONCLUSIONSANDFINALREMARKS 
Folksonomies contain terms that can be harvested in knowl­

edge acquisition processes, although these terms are not nor-

http://goo.gl/0v8zA
http://goo.gl/etztA
http://swat.open.ac.uk/tools/


mally as specialized as those available in specialized glos­
saries. We have shown how those terms can be used for the 
generation of domain ontologies, by reusing classes in ex­
isting ontologies. Our method harnesses the DBpedia high 
degree of interconnection in the linked open data cloud, and 
explicit links between different data sets. According to the 
results obtained in the experiment we can claim that our 
approach helps in the development of ontologies that can 
be used as starting point for ontology engineers when devel­
oping a domain ontology. Our method produces a domain 
ontology that consists of classes and defined relationships 
between them, including hierarchical and non-hierarchical 
ones. 

We must highlight that our method relies on the exist­
ing links within the linked data cloud, yet sometimes those 
links are inconsistent. For instance, there exists the class 
Stock Exchange in OpenCyc that is linked by a owl:sameAs 
relationship to the UMBEL class Exchange of User Rights. 
The problem arises because both classes are defined in dif­
ferent senses. The OpenCyc class refers to an organization 
that provides a marketplace where options can be traded, 
while the UMBEL class represents a transferring possession 
event. Thus, when using our method we may create ontolo­
gies with mistaken information, considering two classes that 
are different as equal. 

Future work includes the use of more sophisticated tech­
niques to evaluate the semantic distance between classes so 
that we can filter out non relevant information before adding 
new classes and relationships to the ontology. In addition 
we think that a natural way to improve this work is to ben­
efit of the whole linked data cloud. Realizing this vision will 
require a technique for discovering data sets containing in­
formation relevant to the domain. Thus, we could query ser­
vices such as CKAN (http://ckan.net/) for metadata about 
the data sets and semantic search engines, including Sindice 
(http://sindice.com/) and Watson (http://watson.kmi.open.-
ac.uk/). In addition, the identification of classes can be ex­
tended with services such as sameAs.org. Finally, once the 
datasets have been selected, we can use federated SPARQL 
queries to consume data stored across several SPARQL end-
points. 
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