
Designer-driven 3D Buildings Generated Using
Variable Neighborhood Search

Jose M. Pena, Javier Viedma, Santiago Muelas, Antonio LaTorre CeSViMa Supercomputing Center
Universidad Politecnica de Madrid

Madrid, Spain
{jmpena,smuelas,atorre} @fi.upm.es

Luis Pena
University of Technology and Digital Art

Madrid, Spain
luis.pena@u-tad.com

Abstract-This paper presents a mechanism to generate vir­
tual buildings considering designer constraints and guidelines.
This mechanism is implemented as a pipeline of different Variable
Neighborhood Search (VNS) optimization processes in which sev­
eral subproblems are tackled (1) rooms locations, (2) connectivity
graph, and (3) element placement. The core VNS algorithm
includes some variants to improve its performance, such as, for
example constraint handling and biased operator selection. The
optimization process uses a toolkit of construction primitives
implemented as "smart objects" providing basic elements such
as rooms, doors, staircases and other connectors. The paper also
shows experimental results of the application of different designer
constraints to a wide range of buildings from small houses to a
large castle with several underground levels.

I. INTRODUCTION

The design of virtual scenarios is a key task in the produc­
tion process of video games. These scenarios sustain part of the
narrative process as the immersible world in which player and
non-player characters live and interact. On the one hand, game
designers require that these virtual scenarios have particular
elements or characteristics. On the other hand, there is a full
artistic development behind the proper modeling of attractive
scenarios. These two considerations make this particular aspect
of game development to require tightly coupled interaction to
align narrative and visual components of the game. Addition­
ally, the success of multiplayer on-line games, in genres such
as Role-Playing Games (RPG) or First Person Shooters (FPS),
has required the massive production of virtual scenarios for
the garers to be engaged and to keep them playing.

This situation has encouraged the adoption of Procedural
Content Generation (PCG) techniques [1], [2] as a mainstream
tendency in the industry. PCG uses computational intelligence
approaches to assist in the production of game contents. Some
games, for instance Skyrim (Bethesda Game Studios, 2011),
have achieved impresive results in the development of PCG
and support tools in design-time [3].

The present article introduces the combination of a search-
based PCG technique based on a heuristic optimization algo­
rithm, Variable Neighborhood Search (VNS), with modeling
primitives and libraries in order to produce 3D virtual scenar­
ios, such as buildings and underground structures (dungeons),
according to designer's guidelines and restrictions.

The remainder of this paper is organized as follows:
Section II surveys the related work on PCG and PCG applied

to buildings and levels. Then, Section III introduces the main
contribution of the article, the Procedural Building Generation,
divided into the Building Constructor Toolkit (the set of model­
ing primitives and libraries) and the Building Architect Frame­
work (the modular optimization engine to match designer's
guidelines and provided building blocks). Section IV presents
a set of experiments carried out to automatically generate 3D
buildings according to diterent designer's guidelines. Finally,
in Section V the conclusions of this paper are presented.

II. RELATED WORK

Although there are different problems in which computa­
tional intelligence techniques have been applied in the context
of video games, nowadays PCG is one of the most active [4],
[2]. PCG has been applied to the production of many different
game elements, such as decorative components [5], maps [6],
terrains [7], mazes [8], or players [9].

A. PCG in the Generation of Virtual Worlds

The assisted production of virtual worlds has many dif­
ferent levels of detail in which PCG has successfully been
applied.

There have been different contributions to produce maps of
large regions. For instance, [10] uses a declarative modeling
to provide a designer-driven sketch of a fictional area map
in which multiple layers (urban, road, water, and landscape)
are generated. Software agent approaches have also been
applied to generate realistic terrains [7]. In [11], a real­
time generation of floor plans based on design parameters
is presented. Additionally, some of these techniques have
been applied at the level of cities and groups of buildings,
[12], [13], using grammar-based procedural mechanisms to
define building structures and city landscapes and organization.
Multiobjective optimization [6] has been applied to produce
3D level maps according to an interactive fitness evaluation.

PCG has also been proposed as a mechanism to generate
buildings and smaller structures. For example, [14] proposes
a procedure to model physical constraints to generate feasible
buildings (at the structural level). Shape grammars and other
semantic elements have been implemented into interactive
visual editors for buildings [15]. Constrained-based approaches
have also been applied to construct buildings [16] in combina­
tion with Bayesian networks to train with real-world data. In
the line of purely generative approaches, techniques such as

mailto:luis.pena@u-tad.com

cellular automata [17] have been used. In general all these
processes are designer-centric keeping the balance between
authorship and automatic content production [18].

Finally, [19] provides an interesting survey of PCG meth­
ods for dungeon generation and [20] is a broad range of
references from generation of terrains to interiors.

III. PROCEDURAL BUILDING GENERATION

In this paper we present a PCG mechanism based on the
combination of (a) a toolkit of mid-level building components
that includes a series of smart primitives and some modeling
elements, and (b) a search-based PCG engine based on a VNS
algorithm that deals with designer's constraints and objectives.

A. General Architecture

The main characteristics of the two aforementioned mod­
ules are:

1) Building Construction Toolkit (BCT): This toolkit
provides a list of primitives of building elements, such
as walls, rooms, staircases, windows and doors that
are combined in order to produce a given building.

2) Building Architect Framework (BAF): This frame­
work allows designers to define a series of constraints
in the format of building sketched layout, list of
particular rooms to be included and general design
considerations and guidelines.

The current implementation mechanism includes a 3DS
Max version of the BCT toolkit that produces a series of
Maxscipt files that can be processed by Autodesk 3DS Max
Design ™1 .

B. Building Construction Toolkit

The Building Constructor Toolkit (BCT) is a set of 3D
components for the procedural building construction imple­
mented on top of Autodesk 3DS Max Design TM. These com­
ponents are object-oriented programmed in Maxscript. Unlike
the work of Whiting et al. [14], the components and their
combination do not consider dynamic concepts for the stability
of the architectures or the underlying physics. The generated
buildings have an objective that is purely visual and not
physically feasible in structural terms.

BCT toolkit offers the possibility to generate a diversity
of constructions attending to the exterior components as well
as the interior ones. The BCT is based on the modular
construction approach that has been successfully used for
design levels in games such as Skyrim [3].

1) Building components: The BCT components are imple­
mented as parameterized 3D primitives, managed and modeled
by Maxscript objects using Boolean and BREP (Boundary
Representation) operations. These components are "smart ob­
jects", publishing methods to manage the relationships among
them, such as alignment, positioning and connectivity (similar
to [21]). Additionally, the BCT components are divided into
two main types: primitives and nexus.

I http://www. autodesk.com/products/autodesk-3ds-max

Primitives are classes that are contained in the room class,
which is the cornerstone of the toolkit. Room class primitives
also operate as a node containing other primitives and con­
necting different components (e.g., walls, floor, ceiling and
columns). These secondary components become the binding
elements when a room is connected with another. In other
words, rooms are connected by their walls, ceilings and floors
along with those belonging to other rooms (Figure I.A is an
example of a basic room).

In this version, BCT room class supports only basic prism
shapes with either rectangular or regular polygonal base (Fig­
ure I.B). It does not limit the possibilities to generate a wide
range of building constructions as the combination of these
basic components together with the adaptive nature of the
primitives allows to remove, merge or combine basic rooms to
produce complex room shapes.

On the other hand, nexus are objects that model the
primitives to create spaces to navigate through them. The BCT
includes nexus for doors, windows, ramps, "wall-less" (remov­
ing one of the walls), staircases, "ceiling-less" (removing room
ceiling). Additionally, in the case of nexus assigned to ceilings
and floors, they create objects enabling the transition between
rooms on distinct stories according to some parameters and
using 3DS object library, such as those shown by Figure l.C.

2) Smart Object Combination: As stated above, the room
is the key component of the construction workflow in the
BCT, whereas the nexus are the components that connect one
rooms with the others. Anyway, if the correct combination
of these elements relayed on the appropriate placement of
these components (either by a human designer or the BFA
framework in our case) that would require an exhaustive low-
level definition on where these components should be located.

Instead of that, the BCT provides an intelligent behavior
for the components. This behavior enforces context-aware
modifications when the components are combined. In that
sense, for instance, if we want to create a door on one of the
walls in a given room, this room will interact with the room
next to it by this wall in order to negotiate the appropriate
nexus to be included. This facilitates, for example, that if a
room removes one of the walls to another room one or more
levels below, the nexus will insert some banisters, or if we
would like to place a staircase to an upper floor, the room
above will open a hole corresponding with the dimensions of
the staircase, and will put some upper frame if there is no wall
close to the stairs.

All these BCT smart object features are provided by a story
class component, which interfaces between room interactions
in order to achieve a coherent integration of room compo­
nents and nexus. The story class component issues 2D/3D
transformations to ensure the integration of room components:
geometric validation, linear transformations, etc. In a similar
manner, the relationships between stories and their nexus
(floors, ceilings, staircases, etc.) are delegated to a building
class component.

In a general sense, primitives work at the topological level
and the story and building class components perform the
translation from topological relationships (close to, next to,
etc.) into geometrical operations.

http://www
http://autodesk.com/products/autodesk-3ds-max

Figure l. (A): Example of a simple room, formed by four walls, a ceiling and a floor. The BREP modeling technique is necessary to manipulate the vertices
and the edges of the polyhedrons. (B): The number of walls of a room is variable. The ceiling as well as the floor are generated with n lateral faces whose
vertices adjust themselves according to the position of the walls. (C): The image shows distinct types of staircases, ramps, and spiral staircases implemented as
BCT nexus (these components have exploited the library of predefined objects included in 3DS Max).

Figure 2. (A): In this sample building, a slot is detected between the distinct stories. This is the place to situate a cornice decorator. (B): Same building once
decorated and texturized. (C): A screenshot of the combination of multiple rooms by means of different nexus (although it seems to be a complex room shape it
is implemented by the combination of rooms parameterized with the appropriate "wall-less" nexus). (D): Sample of how to configure the interior of a building
using different room combinations.

3) Materials, Decorators and Placeables: The BeT in­
cludes a decoration and texturing kit based on the decorator
pattern supported by the the modular construction method­
ology. Both the room and the story level, the BeT allows
to define a configuration file describing the desired decora­
tion theme. These files define materials for the 3D objects,
mapping them, and adding other decorative elements to both
primitives and nexus (after properly scaling them), such as,
for example: friezes, baseboards, cornices, moldings, door and
window frames, banisters, etc. Figure 2.B shows the result
after the application of a decoration theme to Figure 2. A. This
BeT feature establishes the difference between artistic work
addressed by graphic designers and modelers and the creative
process of level design. The BeT provides an extensible
library of materials, decorators and placeable elements, for the
modelers to contribute.

Additionally, the BeT also implements a set of parame­
terized placeable components (such as tables, chairs, chests,
torches and many others). The location is relative to positions
on the floor, the ceiling, above other placeables, on the walls,
... One particular type of placeable components are those
located at the doors and windows. The related decorators

provide the functional operations (such as closing, opening,
and so on) to these elements.

C. Building Architect Framework

The Building Architect Framework (BAF) is based on a se­
quence of optimization algorithms that are linked (the output of
one of the algorithms becomes the input of the following one).
The inputs of the complete BAF process are designer-level
guidelines (objectives to optimize) and constraints (mandatory
conditions to be satisfied):

1) Building layout sketch (constraint): The general
shape of the desired building. This shape is provided
by the designer with a interactive drawing tool. The
designer defines the external boundaries of the build­
ing as a composition of rectangular blocks. For each
of the blocks the designer should indicate the height
in stories. (An automatic method, such as [12], can
be used for fully automatic building generation).

2) Ground level (constraint): The designer specifies the
desired ground level. The building entrances will
be set at this level. The levels below this one are
considered underground levels.

BAF Builder

Constrains:
• All rooms located ^
• No cell outside layout
Objectives:
• Preferred floor per

room
• External rooms close

to boundary

H BAF Connector

Constrains:
• Disconnected rooms
• Unused kys

• External exits
• Stairs per level

Objectives:
• Internality

• Connectivity

• Maximized stairs overlap

P Ci

BAF Organizer

Constrains:
• Unlocated mandatory

• Navigation within room

• Element collisions

Objectives:
• Number of located objects.

• Maximize accesiblearea

* *

JT

Figure 3. Chain of VNS optimizers conforming the Building Architect Framework (BAF): Builder. Constructor and Organizer. The list of constraints and
objectives are indicated below each of them.

3) Number of building entrances (optional guideline):
The designer may indicate the minimum and maxi­
mum number of building entrances (external doors).

4) Preferred entrance location (optional guideline): The
designer may indicate (using the drawing tool) the
area on the building boundary to locate the building
entrances.

5) A list of special rooms to be included (optional
constraint): The designers may specify any number
of specific rooms they want to include in the final
building. For these special rooms, they may specify
dimensions, preferred floor level, and the particular
designed model or decoration theme.

6) A list of room templates (constraint): Instead of
selecting specific rooms the designer may indicate
a series of room templates (generic rooms randomly
created within a range of sizes and decoration param­
eters).

7) Preferred number of rooms (guideline): The produced
design will have a minimum number of rooms ac­
cording to this value.

8) Room internality (guideline): For each room the
designers may define (if they wishe) the level of
internality, which is the minimum numbers of rooms
to cross to reach this room from the nearest building
entrance. In the case of room templates, this value
may be generated for a user-defined interval. This
value ranges from -1 (outermost) to I (innermost). In
addition, some rooms may also specify the number
of preferred external doors.

9) Room connectivity (guideline): The designer may
also specify the connectivity grade of the room,
defined as the number of other rooms directly con­
nected to it. In the same way as in the case of
internality, room templates may define this according
to a random interval of values. This value ranges
from -1 (single connection) to I (maximum number
of connections).

10) Number of keys (optional constraint): Keys are special
objects located at specific rooms in the design that
allow the player to cross a particular door in the
building. The designer may indicate the number of
required keys to visit all the rooms in the building.
The BAF algorithm will automatically assign where
the key and the corresponding key door are located.

11) Placeable elements (optional guideline): The designer

may select any number of Placeables from the BCT
library. The optimizer will try to locate as much as
possible of these optional placeables.

Instead of solving the building generation as a single
optimization problem we have divided it into three diterent
subproblems to optimize. The chain of optimizers, shown
in Figure 3, includes three different modules, each of them
tackling the corresponding subproblem: (a) BAF Builder (in
charge of the placement of rooms within the layout bound­
aries), (b) BAF Connector (responsible of the definition of
the connectivity graph), and (c) BAF Organizer (that places
elements at the exact positions of the building, ensuring
navigation and no overlapping elements).

D. Base Optimizer Structure

All the three BAF modules are implemented as config­
urable variants of a modified Variable Neighborhood Search
(VNS) metaheuristic algorithm [22]. VNS is an etective mech­
anism to solve complex combinatorial problems in which both
domain constraints and knowledge can be easily implemented.

VNS algorithms use a single solution that is continuously
improved by means of a series of neighborhood operators.
Each of the possible operators (named shakers) define a differ­
ent neighborhood of candidate solutions for a given solution
providing alternative methods to explore the fitness landscape.

The version implemented in our solution includes the
following three modifications: (1) temperature-based non-
improvement movement, (2) biased shaker selection based on
past performance, and (3) constraint handling.

1) Temperature-based non-improvement movement: Al­
though the success on the application of any search-based PCG
depends on the objectives of the fitness function [23], the land­
scape of candidate solutions could be extremely multimodal,
and thus it is necessary to equip the search algorithm with
some mechanisms to escape from local optima.

Our VNS algorithm implements a mechanism similar to
the one existing in Simulated Annealing (SA) [24] in which
a temperature function defines a probability of the solution
to transit to a worse candidate solution depending on an
exponential decaying function that reduces this probability as
the number of iterations increases. In particular, we have used

the following temperature function T(i) and the corresponding
transition probability 7r0>f,:

{1.0 if fit(b) < fit(a)

2351 otherwise

Where i is the current iteration and Niter the total number
of iterations the algorithm will execute and fit(x) is the
ftness function of the minimization problem to optimize for
the solution x.

2) Biased shaker selection based on past performance:
Traditionally, shakers are selected according to an unbiased
uniform sampling among the list of shakers or, in some variants
(such as Variable Neighborhood Descent) in a deterministic
way. In our case we have implemented a biased selection
with memory reset. The probability for a shaker to be selected
depends on a weight factor defned as:

„ „ . Fails Tries
Wis) = Base + Hits

NShakers 10

Where N Shakers is the number of available shakers,
Base is 10 times the number of available shakers, Hits is the
number of cases in which the shaker has produced a better
solution (5 hits) or a solution to which the algorithm has
transited according to the temperature-based probability (1 hit),
Fails is the number of cases in which the shaker has failed
to produce a feasible solution, and Tries are the number of
times the shaker has been used.

The probability for a shaker to be selected is determined
as:

7r(x) = W(X) y .
*-^ Wis)
sES y '

The weight factors are reset (Hits, Fails and Tries are
set to 0) after a number of iterations (1.0% of the overall
number of iterations, in our case) to avoid shakers selection to
be too heavily biased by any early stage performance (under
the assumption that some shakers perform better in specific
phases of the optimization process). Finally, Table I shows the
list of shakers implemented for each VNS optimizer.

3) Constraint handling: An important element to incorpo­
rate along the design of a PCG process is the handling of
unfeasible contents defned in terms of constraints and domain
semantics [?].

There are different mechanisms to handle constraints in
VNS algorithms. We have implemented an incremental com­
bined weight function. The constraints unsatisfied by the solu­
tion are identified with unsat a continuous value that indicates
the ratio of unsatisfied constraints and with the objective value
as obj also defned as a real number to minimize. These two
values are combined to get the effective fitness function:

i

fit(a) = obj(a) + unsat(a) ArJter——

E. BAF Builder

The BAF Builder is in charge of the deployment of all
special and template rooms within the building layout, as well
as to fill in the holes within the layout with any number of
extra rooms. These holes are cells not occupied by any room.
This module initially rescales the sketched layout to enclose
a volume enough to include all the requested rooms plus an
additional margin (configurable by the designer, we have used
a 25% additional volume in our experiments). Then, the BAF
Builder solves the 3D packing problem of fitting all the rooms
in the volume. This is a discrete version of the general problem
in which all the elements to pack are multiples of a basic cell
unity.

The BAF Builder solves the problem attending to two
constraints:

BCI All the input rooms must be located within the
volume.

BC2 The boundaries of the packing volume must be
preserved (no room partially located outside of
the volume).

In addition, the BAF Builder also tries to minimize two
objectives:

BO I Distance between the preferred and the final floor
level from those rooms indicating this value.

B02 The number of rooms with preferred external door
not placed at the volume boundary.

Once the builder has deployed all the rooms, it generates
additional rooms to fill in the empty areas of the volume taking
them from the template room library. Figure 4 (left hand)
shows the output generated for the case of a small building
with 10 rooms (rooms 11 to 15) are additionally deployed by
the BAF Builder to complete the building. In this example,
room 10 has been configured as a special room with 0.9
internality but with a preferred external door. At this stage
the Builder managed to deploy this room in the boundary of
the building structure.

F. BAF Connector

The BAF Connector takes the room deployment provided
by the previous optimizer, then the Connector produces the
connectivity graph for the building. The optimizer considers
the maximum connectivity graph with all the possible connec­
tions between every pair of rooms sharing a common wall
or floor/ceiling. The Connector has to select which of the
edges from this maximum connectivity graph to maintain (and
which ones to remove) in order to deal with the following four
constraints:

CCI There must be no disconnected rooms.
CC2 All the keys must be used (which means that every

key is required to visit the entire building and the
key must be located in an area accessible from
outside or by means of other accessible keys).

CC3 There must be the indicated number of building
entrances (external doors).

CC4 There must be a number of stairs between floors
indicated by the designer.

BAF Module Shaker Name

Table 1. LIST OF SHAKERS USED BY EACH OF THE VNS OPTIMIZERS

Description
Builder UnlocatedToHole Deploys a room not yet located on a hole (an unoccupied cell in the volume). The shaker will check rotation and small displacements

to fit the room in the map (inside or outside the volume).
Builder ExternalToHole Moves a room that is partially outside of the volume to any available hole (rotation and displacements are checked).
Builder SwapExternallnternal Swaps the positions of two rooms if one of them is partially outside of the volume (rotations and displacements are checked).
Builder MoveRoomToBoudary Selects a room. with preferred external doors. to the closest boundary of the volume (rotations and displacements are checked)
Builder SwapRooms Any two rooms are swapped (rotations and displacements are checked).
Connector SolveDisconnection
Connector ReduceOverconnectivity

Connector ReduceUnderconnectivity
Connector Reduce Under T nternali ty

Connector ReduceOverinternality
Connector ExternalConnection

Connector TnternalityBalancer
Connector MoveKey
Connector MoveKeyDoor
Connector RandomConnection

Selects a room with no connections and assigns one of them randomly
Finds a room with more than one connection that has a connectivity value higher than the preferred value and removes one of
the connections.
Finds a room that has a conneclivil value lower than the preferred value and adds one additional connection (if possible).
Finds a room with more than one connection that has an internality value lower than the preferred value and removes one of the
connections. Removing the connection representing the shortest path to the nearest entrance may increase the inlernality.
Finds a room that has an inlernalil value higher than the preferred value and adds one additional connection (if possible).
Finds a room with a preferred number of external connections higher than one and if it is in the boundary of the volume, then it
opens a connection outside.
Selects a random room and removes or adds any additional connection depending on the internality values of the nearby rooms.
Changes the location of one of the keys.
Changes the connection closed with a given key.
Adds or removes a random connection

Organizer LocateElement Locates a mandatory element not yet placed in the building. If there is no mandatory elements in this situation then it selects an
optional element.

Organizer SolveCollision Detects a position occupied by a placeable element which some other elements have also declared either occupied or open. It
selects one of the conflicting elements and changes the location of the placeable.

Organizer RotateElement Detects an element (typically a staircase) in which the placeable orientation collides with one of the walls (the intended entry
point is outside of the room) and rotates the placeable.

Organizer SolveNavigation Detects the rooms in which there is a navigation problem (there is at least one pair of entry points that are not mutually accesible)
and then moves one of the placeables assigned to this room.

Floor: 1 Floor: 1

Builder Output Connector Output Organizer Output

Figure 4. Example of an small building structure, results of the BAF Builder
(left hand), BAF Connector (center), and BAF Organizer (right hand). The
structure is based on a minimum of 10 rooms, 3 of them (8,9 and 10) provided
by the designer and the rest described by a basic room template. Room l O is
defined as 0.9 internality and must have an external entry.

In addition the BAF Connector should optimize the fol­
lowing objectives:

COl The correlation between the preferred internality
values and the actual internality (obtained as a
ranking of the rooms according to the minimum
number of other rooms the player must cross to
reach the given room). The connections closed by
a key cannot be transited unless the player has
that key, which means that the internality value
of these rooms is the path from the outside to the
room in which the key is found and back to the
closed connection.

C02 The correlation between the preferred connectivity

values and the actual connectivity (defined as the
ranking of rooms according to the number of
connections with other rooms).

C03 The overlap area of the inter-floor connections
(stairs). This objective tries to ensure that the
volume to place staircase nexus allows different
nexus alternatives.

In Figure 4 (center), the reader can see how the BAF
Connector defines the connectivity graph (the actual walls to
have a connection nexus). This optimizer also places keys and
key doors. In our case, the optimizer placed an external door
to room 10 (as indicated by the designer) but, in order to reach
the 0.9 internality value, this door is closed with Key #0, which
is located in one of the rooms in the upper floor. We can also
see how the optimizer assigned room 9 three connections (this
room has a preferred connectivity value of 0.8), this room also
places the inter-floor connector (where a staircase will be latter
placed).

G. BAF Organizer

This optimizer locates the placeables associated with the
mandatory elements (doors and stairs) plus as many as possible
fom the optional ones selected by the designer. The BAF
Organizer must ensure the correct navigation of the produced
building, which means that all the areas must be accessible
and there must be a path between all the entry points for every
room (doors or stairs). This optimizer decides the type of nexus
to be used (single or double rooms, remove the entire wall or
all the types of staircases, ramps and spiral stairs). All these
elements, as well as the optional placeables, define a given
set of positions that must be open and accessible to prevent,
for example, that a door is blocked by a staircase going up in
another direction. In order to do that the BAF Organizer must
satisfy the following constraints:

OCI All mandatory placeables (associated with con­
nections) must be positioned.

OC2 All the room must have paths to travel between
every pair of entry points.

OC3 There must be no collisions between the occupied
positions of any element and the required open or
occupied positions of the rest.

In addition, the BAF Organizer should maximize:

0 0 1 The number of optional placeables located in the
building.

0 0 1 The accessible area within the building (the num­
ber of cells the player may move across).

Figure 4 (right hand), shows how the three entry points of
room 9 are located to avoid collisions and maximize navigation
area.

IV. EXPERIMENTAL RESULTS

In order to test the flexibility and scalability of this
approach we have conducted a series of experiments. The
experiments are defined by the designer input (rooms, layout
sketch, number of stories high, ground level floor, number
of keys and external doors, and desired decoration theme).
Detailed information is described in Table II and Figure 5
shows some screenshots of the generated structures.

Table TIT. A N A L Y S I S O F T H E E X P E R I M E N T S

Id

Table II. D E S C R I P T I O N O F T H E E X P E R I M E N T S

Rooms Description
3 special rooms. 2 stories high and cottage theme.
2 special rooms, 2 stories + 1 tower and stone brick theme.
4 special rooms, 3 stories high and renaissance theme.
2 special rooms, 3 stories high + 1 underground level and
brick theme.
5 special rooms, 4 stories high + 1 story more for the
4 towers + 3 underground levels of dungeons, and castle
theme.

Rural
Villa
Mansion
Temple

10
20
30
40

Castle 125

For each scenario we have defined 4 sets of designer inputs
(different specific rooms or internality I connectivity values) and
performed 25 executions of the pipeline sequences with 500 x
N Rooms iterations limit (N Rooms is the minimum number
of rooms provided by the designer). For all these experiments,
the following information has been computed:

• Final number of rooms: The original number of
rooms provided by the designer plus the average of
those included in the optimization process to fill in
the gaps.

• Succeed ratio: Percentage of executions that obtain
successful results (all design constraints satisfied).

• Deployment diversity-average: The ratio of original
rooms deployed at the same position two or more
times out of the 25 executions (for the same Id and
designer input set).

• Deployment diversity-highest: The largest ratio (out
of the 25 executions) that the room is deployed at the
same position.

• Connectivity diversity-average: The ratio of original
room pairs connected two or more times out of the 25
executions (for the same Id and designer input set).

• Connectivity diversity-highest: The largest ratio (out
of the 25 executions) that a pair of rooms is connected.

Id

Diversity Measures
Final Succeed Deployment Connectivity

Rooms Ratio Average Highest Average Highest
Rural
Villa
Mansion
Temple
Castle

15.20
34.75
53.45
72.20

278.35

100%
100%

98%
90%
8 1 %

8.75%
8.50%
6.50%
5.00%
2.50%

12%
12%
12%

8%
8%

14.0%
1.25%
0.05%

< 0.01%
< 0.01%

16%
12%

8%
8%
8%

Table III shows that the diversity of the generated buildings
is quite high, only in those small scenarios in which the
combinations are rather limited, few rooms were placed at the
same positions (twice or three times among the 25 executions
of each configuration), while the diversity in the large scenarios
is very large (only 2.5% of the rooms was ever located at
the same position in two out of the 25 executions). As an
example, a series of 6 different generated buildings of the
smallest example {Rural) are depicted in Figure 5.G. While the
designer's constraints are the same, there are different solutions
satisfying all these constraints and equivalent fitness values.
For example, the largest special room (room #2) is deployed
at different location (either in floor 1 or 2), and sometimes used
as a connector element. The number of building entry points or
the number of stairs (both restricted to a minimum of 1 up to
a maximum of 2 by the designer) is different in these designs,
as well as the location of the keys and the locked doors.

V. CONCLUSIONS

In this paper, we have presented an integrated approach that
uses "smart object" primitives for building components and
a search-based procedural content generation. This approach
allows a coordinated development of the procedural mecha­
nisms to design buildings according to designer constraints,
while the modeling of attractive structures and elements is
managed by an extensible library in which 3D modelers and
digital artists may contribute. Finally, we have conducted a
series of experiments with this integrated workflow that shows
that our proposal is flexible yet powerful to create complex
3D buildings.

A CKNOWLEDGMENTS

The authors thank the Centro de Supercomputacion y Visu­
alization de Madrid (CeSViMa) for the computer resources.
A. LaTorre gratefully acknowledges the support of the Spanish
Ministry of Science and Innovation (MICINN) for its funding
throughout the Juan de la Cierva program.

REFERENCES

[I] J. Togelius, G. N. Yannakais , K. O. Stanley, and C. Browne, "Search-
based procedural content generation: A taxonomy and survey," Compu­
tational Intelligence and AI in Games, IEEE Transactions on, vol. 3,
no. 3, pp. 172-186, 2011.

[2] T. Betts, "Procedural content generation," Handbook of Digital Games,
pp. 62-91 , 2014.

[3] J. Burgess, "Modular level design for skyrim," in Proceedings of the
Games Developers Conference (GDC2013), 2013.

[4] J. Togelius and J. Schmidhuber, "Computational intelligence and game
design," in Proceedings of the PPSN Workshop on Computational
Intelligence and Games., 2008.

[5] J. Whitehead, "Towards procedural decorative ornamentation in g a r e s , "
in Proceedings of the FDG Workshop on Procedural Content Genera­
tion, 2010.

Figure 5. A series of building samples generated by the BCT and the BAF framework: (A): One of the produced results of the Villa example case, (B): Internal
part of the Temple example case, the special room "main entrance", a 2-level high chamber with maximum connectivity, (C): Internal perspective of Castle
example case, it can be seen how cornice decorators are changed to produce battlement structures, and (D-F): Same example building with diterent decoration
themes: stone brick (D), red brick (E) and cottage (F). The type of decoration theme implies also a different level of model complexity, for example the same
original building (2,285 polygons and 2,148 vertexes) the different models have (D: 61,604 polygons, and 35,498 vertexes; E: 13,850 polygons and 9,742
vertexes; and F: 12,572 polygons and 35,243 vertexes). (G) A series of 6 floor plan outputs produced from the same designer's constraints (Id=Rural) and
different random seeds.

[6] J. Togelius, M. Preuss, and G. N. Yannakakis, "Towards multiobjective
procedural map generation," in Proceedings of the 2010 Workshop on
Procedural Content Generation in Games. ACM, 2010, p. 3.

[7] J. Doran and I. Parberry, "Controlled procedural terrain generation using
software agents," IEEE Transactions on Computational Intelligence and
AI in Games, vol. 2, no. 2, pp. 111-119, 2010.

[8] C. McGuinness and D. Ashlock, "Incorporating required structure into
tiles," in IEEE Conference on Computational Intelligence and Games
(CIG), 2011.

[9] J. M. Pena, E. Menasalvas, S. Muelas, A. LaTorre, L. Pena, and
S. Ossowski, "Soft computing for content generation: Trading market in
a basketball management video game," in Computational Intelligence
in Games (CIG), 2013 IEEE Conference on, 2013, pp. 1-8.

[10] R. M. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra, "A declarative
approach to procedural modeling of virtual worlds," Computers &
Graphics, vol. 35, no. 2, pp. 352-363, 2011.

[II] F. Marson and S. R. Musse, "Automatic real-time generation of floor
plans based on squarified treemaps algorithm," International Journal of
Computer Games Technology, 2010.

[12] P. Miiller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool, "Procedural
modeling of buildings," in ACM Transactions on Graphics (TOG),
vol. 25, no. 3. ACM, 2006.

[13] J. O. Talton, Y. Lou, S. Lesser, J. Duke, R. Mech, and V. Koltun,
"Metropolis procedural modeling," ACM Transactions on Graphics
(TOG), vol. 30, no. 2, p. II, 20 II.

[14] E. Whiting, J. Ochsendorf, and F. Durand, "Procedural modeling of
structurally-sound masonry buildings," ACM Transactions on Graphics
(TOG), vol. 28, no. 5, p. 112, 2009.

[15] M. Lipp, P. Wonka, and M. Wimmer, "Interactive visual editing of gram­
mars for procedural architecture," in ACM Transactions on Graphics
(TOG), vol. 27, no. 3. ACM, 2008, p. 102.

[16] P. Merrell, E. Schkufza, and V. Koltun, "Computer-generated residential

building layouts," in ACM Transactions on Graphics (TOG), vol. 29,
no. 6. ACM, 2010, p. 181.

[17] L. Johnson, G. N. Yannakakis, and J. Togelius, "Cellular automata for
real-time generation of infinite cave levels," in Proceedings of the 2010
Workshop on Procedural Content Generation in Games. ACM, 2010,
p. 10.

[18] T. Roden and I. Parberry, "From artistry to automation: A struc­
tured methodology for procedural content creation," in Entertainment
Computing-ICEC 2004. Springer, 2004, pp. 151-156.

[19] R. van der Linden, R. Lopes, and R. Bidarra, "Procedural generation of
dungeons," IEEE Transactions on Computational Intelligence and AI
in Games, 2013.

[20] R. M. Smelik, T. Tutenel., R. Bidarra, and B. Benes, "A survey on
procedural modelling for virtual worlds," Computer Graphics Forum,
2014.

[21] M. Kallmann and D. Thalmann, "Modeling objects for interaction
tasks," in Computer Animation and Simulation, 1998, pp. 73-86.

[22] P. Hansen, N. Mladenovi6, and J. A. M. Perez, "Variable neighbourhood
search: methods and applications," Annals of Operations Research, vol.
175, no. 1, pp. 367-407, 2010.

[23] D. Ashlock, C. Lee, and C. McGuinness, "Search-based procedural
generation of maze-like levels," Computational Intelligence and AI in
Games, IEEE Transactions on, vol. 3, no. 3, pp. 260-273, 2011.

[24] S. Kirkpatrick, "Optimization by simulated annealing: Quantitative
studies," Journal of statistical physics, vol. 34, no. 5-6, pp. 975-986,
1984.

[25] T. Tutenel, R. Bidarra, R. M. Smelik, and K. J. D. Kraker, "The role
of semantics in games and simulations," Computers in Entertainment
(CIE), vol. 6, no. 4, p. 57, 2008.

