Growth and Characterization of InGaN/GaN core-shell structures by molecular beam epitaxy

<u>S. Albert¹</u>, A. Bengoechea-Encabo¹, M. Sabido-Siller¹, M. Müller², G. Schmidt², S. Metzner², P. Veit², F. Bertram², M. A. Sánchez-Garcia¹, J. Christen², E. Calleja¹

¹ ISOM and Electronic Eng. Dpt. Univ. Politécnica, Ciudad Universitaria, 28040 Madrid, Spain

² Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, 39106

Steven Albert salbert@isom.upm.es

ISOM and Departamento de Ingeniería Electrónica, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain

26.05.2015

Introduction (1)

Efficiency drop in the green–yellow region in planar InGaN structures associated with:

• high defect density

• high spontaneous and piezoelectric polarization

→ solution: SAG NANOCOLUMNS (NCs):

superior over selfassembled NCs in terms of homogeneity, processing and colour control

M. H. Crawford IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 15, 4, 2009

26.05.2015

Introduction (2)

 selective area growth of (bulk) InGaN/GaN NCs allows for single color emission on GaN/sapphire templates

- S. Albert, A. Bengoechea-Encabo et al., J. Appl. Phys. 113, 114306 (2013);
- S. Albert et al., Appl. Phys. Lett. 102, 181103 (2013)

 SAG (bulk) InGaN/GaN NCs with an In content of up to 100 % were grown on Si(111) → PL-IQE up to 30% in the green range

 still polarization effects due to growth on c-plane solution: growth along semi-polar or nonpolar direction

S. Albert, A. Bengoechea-Encabo et al., Nanotechnology 24, 175303 (2013)

26.05.2015

Introduction (3)

growing active region on semi-polar or non-polar facets

reduces the polarization effects in wurtzite materials

problem: high defect density in effordable non- and semipolar substrates

M. H. Crawford IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 15, 4, 2009

Solution:

- 1. Free standing non-polar HVPE substrates \rightarrow very expensive \otimes
- 2. Growth of active material on semipolar facets of c-plane GaN NCs

[S. Albert, A. Bengoechea-Encabo et al. Appl. Phys. Lett., 100, 23 (2012)]

3. Find new ways to get high quality substrates → coalescence of NCs with very high quality

[S. Albert, A. Bengoechea-Encabo et al., Appl Phys. Lett., accepted]

4. Growth on non-polar m-plane sidewalls of GaN NCs→ InGaN core-shell

26.05.2015

Introduction (4)

- growth of InGaN/GaN core-shell structures already achieved some years ago using MOCVD [Fang Qian, Yat Li, Silvija Gradecak, Deli Wang, Carl J. Barrelet, Charles M. Lieber, Nanoletters, 4, 10, (2004)]
- Why bother to grow InGaN/GaN core-shell structures by PA-MBE?

potential for high(er) In-content core-shell structure \rightarrow may allow for coreshell RG(Y)B emitters and tandem solar cells

outline

- Limitation of bottom up SAG by PA-MBE
- InGaN core-shell growth on etched GaN pillars
- InGaN core-shell growth on MOVPE grown pillars
- Potential of PA-MBE for high In-content coreshell structures
- Summary

26.05.2015

