
Parameter-based Mechanism for Unifying User Interaction, Applications and
Communication Protocols

Jie Song, Silvia Calatrava Sierra, Jaime Caffarel Rodriguez, Jorge Martin Perandones,
Guillermo del Campo Jiménez, Jorge Olloqui Buján, Rocío Martínez García and Asunción Santamaría Galdón

Abstract—In the smart building control industry, creating a
platform to integrate different communication protocols and
ease the interaction between users and devices is becoming
more and more important. BATMP is a platform conceived to
archive this goal. In this paper, the authors describe a novel
mechanism for information exchange, which introduces a new
concept Parameter and uses it as the common object among
all the BATMP components: Gateway Manager, Technology
Manager, Application Manager, Model Manager and Data
Warehouse. Parameter is an object which represents a physical
magnitude and contains the information about its presentation,
available actions, access type, etc. Each component of BATMP
has a copy of the parameters. In the Technology Manager, three
drivers for different communication protocols, KNX, CoAP and
Modbus are implemented to convert devices into parameters.
In the Gateway Manager, users can control the parameters
directly or by defining a scenario. In the Application Manager,
the applications can subscribe to parameters and decide the
values of parameters by negotiating. Finally, a Negotiator is
implemented in the Model Manager to notify other compo­
nents about the changes taking place in any component. By
applying this mechanism, BATMP ensures the simultaneous
and concurrent communication among users, applications and
devices.

Keywords-home automation; multi-protocol; user interaction;
driver; KNX; Modbus; BATNet, CoAP

I. INTRODUCTION

Due to the fast development of home automation tech­
nologies, nowadays, it is becoming more and more important
to create general platforms or standards to integrate all the
possible entities that could be involved in a scalable smart
home control system. Basically, we consider three entities:
devices, users and applications. First, devices refers to those
sensors, switches, HVAC systems, etc., which could be mea­
sured or controlled. Many different communication protocols
have been designed to enable communication with those
devices. KNX, Modbus, LonWorks and X10 are examples
of wired communication protocols, while EnOcean, ZigBee,
6L0WPAN and Z-Wave are wireless ones. Many projects
have been proposed for integrating two protocols, most of
which achieve the goal by making conversions between the

data formats. [1] However, this mechanism is not flexible,
since it does not allow a third protocol to be integrated
easily. Second, users usually do not care about the protocols
used by the devices as long as they can read and control
them. And moreover, the configuration process should be
as easy as possible. Third, the integration of different
applications is proposed as a strategy to make the control
system more flexible and scalable. Thanks to this way, an
application can focus on a specific function, have its own
algorithms and user interface. And more important, third-
party developers can contribute to the platform by adding
new applications. As a result, to achieve the interaction
among the three most important entities mentioned above,
the authors have designed a platform, BATMP, which is
able to integrate different communication protocols, ease
the interaction between users and devices, and allow the
development of applications. BATMP consists of five com­
ponents, the Gateway Manager, the Technology Manager,
the Application Manager, the Model Manager and the Data
Warehouse, each of which is conceived to deal with users,
devices, applications and data management.

This paper is mainly contributing to solve two problems
in BATMP. First, the creation of a concept which can be
used and understood by users, application and devices at
the same time. Second, keeping the information consistency
among users, devices and applications, which means that any
change made by one of these three entities should be notified
to the others. By solving these two problems, the information
exchange inside BATMP is assured to be simultaneous and
concurrent. To solve the first problem, the authors introduce
a new concept "Parameter" to encapsulate the exchanged
information. A parameter encapsulates the information about
a physical magnitude and the different ways to request
and present it. For example, a parameter of illumination
level contains the data about the value of the illumination
measured, the unit which is Lux, the data type which is
integer, etc. The structure and general usage of parameters
will be explained in Section II. A parameter can be measured
by a device, be understood by a user and be used by an

application, which is explained in detail in the Section I I I -
V . Section I I I will illustrate how the Technology Manager
converts a device into parameters by implementing drivers of
different communication protocols. Section I V will illustrate
how the users interact with the parameters, either directly
or through a scenario. Section V will explain how the
applications subscribe to the parameters and in addition, how
they negotiate when several applications subscribe to the
same parameter. Section V I will solve the second problem
mentioned above, which is how to use a Negotiator to keep
the information consistency among these three components.
Finally, conclusions are presented in Section V I I .

I I . PARAMETER I N B A T M P - INTRODUCTION

To carry out the information exchange among users,
devices and applications, a new concept “Parameter” is
introduced in BATMP. A Parameter is an object which
represents a physical magnitude and in addition contains
the information about its presentation (such as unit and
data type), available actions (such as modifiable or read
only), access type, request frequency, etc. It is used as the
common object for communication among all the B A T M P

components.

A. Parameter in BATMP components

In general, B A T M P comprises five components: the Gate­
way Manager (GM), the Technology Manager (TM), the
Application Manager (AM) , the Model Manager (M M) and
the Data Warehouse (DW). The function of each compo­
nent is explained in detail in [3]. As illustrated in Fig.1,
G M , T M and A M hold a Parameter Pool for their own
use. T M first uses several drivers to convert the physical
devices to parameters and then uses the Parameter Reader
and the Parameter Listener to ask or change their values
to accomplish the interaction with devices. G M uses the
parameters to accomplish the interaction with users and the
Rule Engine checks the values of each parameter constantly
to decide if a scenario or rule should be triggered. A M
allows the applications to subscribe to the parameters and
decide the value of a parameter after a negotiation among
several applications. Each Parameter Pool contains a copy
of all the parameters in the B A T M P and each parameter is
identified by a given id. Parameters with the same id should
be consistent in all these three components. Therefore, any
change of the parameter in one of the components should be
notified to the others through the Negotiator in the Model
Manager.

B. Parameter structure and related classes

The parameter is designed to be capable of handling all
kinds of use cases of information exchange in BATMP. Fig.2
shows the class U M L of the parameter and its related classes.
This structure of parameter makes it possible to reach an
agreement on the following issues among users, devices and
applications:

Figure 1. Illustration of use of Parameter in BATMP components

Figure 2. Class UML of parameter and the related classes

1) Basic Information: Each parameter includes a series
of basic information, such as name, category, unit, etc. The
information is shown to users in the User Interface and
allows users to sort the resources according to different
criteria. Meanwhile, an application can get a set of parame­
ters in which it is interested. For instance, a “Consumption
monitoring” application would be interested in retrieving just
those parameters within category “Consumption”.

2) Status Information: This information includes Last
Value and Last Value Time. Thanks to them, users can know
the latest information of the parameter, the Rule Engine
can trigger a rule if the given conditions are satisfied, the
application can make decisions basing on several parameter
values, and the driver can decide if a new request should be
sent to the devices for retrieving a new value.

3) The actions: The attribute ParameterPermission (Se­
lectable, Modifiable and ReadOnly) declares that whether
the parameter value can be changed, either by a user or an
application. And the attribute ParameterDataType (String,
Integer, Double, Boolean, etc.) informs the users and the
applications about the valid value format that should be
passed to the driver to control the device. For instance, to
change the status of a switch, a boolean should be passed
as the value, while to change the set temperature of an air
conditioning, an integer should be passed.

4) Access Type: The attribute ParameterAccessType (Re­
quest, Event, Programmable) decides if the user/application
is able to access the real time parameter value. Also,
T M uses different manners according to this attribute to
communicate with the drivers to retrieve parameter values
from the devices. The details will be explained in Section
I I I - D .

5) Request Frequency: For each parameter that defines
Programmable as its ParameterAccessType, it is mandatory
for the driver to set “Minimum Polling Period”, which
indicates the shortest time interval that can be set between
two requests, to prevent the potential problem of abusing
of requests. On the basis of this, the user can define the
“Polling Period” of each parameter, which should be larger
than the “Minimum Polling Period” of this parameter. This
value will be used finally as the real time interval between
two requests.

6) Validation: The Validation defines the regular expres­
sion and possible range of a parameter value in order to
assure that all the values set by the user/application/driver
follow the valid format and are in the correct range. For
example, a parameter “Power consumption” can only use
numbers as its value and be within the range [0, ∞) .

I I I . CONTROL OF DEVICES THROUGH PARAMETERS

As mentioned above, a communication protocol defines a
list of rules and the data format for exchanging messages
among devices. The device can be a sensor, an actuator, a
computer, etc. In home automation, each device sends or
receives messages following one or several communication
protocols. In BATMP, for connecting to devices through
different communication protocols, several drivers are im­
plemented. The function of a driver is to convert a physical
device into a logical device that contains a set of parameters.
In this section, we consider drivers of three protocols, K N X ,
6LoWPAN(BATNet) and Modbus as examples to illustrate
how this parameter-based mechanism enables the devices
using different communication protocols working together.

A. KNX devices and KNX Driver
K N X is a standardized OSI-based network communica­

tion protocol for intelligent buildings. The most common
form of K N X installation is connecting various devices
together by a two-wire bus. The logical topology or sub
network structure of K N X allows 256 devices on one line.
Each function of the device will be assigned to a group
address and one or several flags. The flags control the com­
munication possibilities of an object on the bus, which could
be R(Read), W(Write), C(Communication), T(Transmit) or
U(Update). [8] Fig.3 shows a part of the K N X network
configuration in ETS4 (the K N X software tool) and how the
K N X Driver converts a K N X device into a set of parameters.
As we can see, Blind1 is a blind which can be opened
at a specified percentage. Two group addresses are used

Figure 3. Parameter creation of KNX Device in KNX Driver

for handling the percentage status of Blind1: “3/2/1 blind1
dimming” with flag W for setting its percentage and “3/2/11
blind1 status” with flag R to read its percentage. In the KNX
Driver, corresponding to the physical blind installed in a
home, a logical device Blind1 is created, which contains
a parameter named P OpenPersentage. Therefore, if a user
wants to know the status of Blind1, which is namely, the last
value of the parameter P OpenPersentage, TM will send a
READ request through the KNX Driver to the group address
“3/2/1” for retrieving the value. And if the user wants to
change the status of Blind1, which is actually in this case,
to change the parameter P OpenPersentage, the driver will
send a WRITE request containing the target percentage to
the group address “3/2/11”. In both cases, the user does not
need to know what is a group address and which one is
used.

B. BATNet and CoAP Driver
BATNet is a set of wireless IoT/6LoWPAN devices such

as smart meter (BATMeter) [2], smart plug (BATPlug),
ambient sensor (BATSense)[4], lighting control (BATStreet-
Light), etc. All BATNet devices communicate with BATMP
through 6LoWPAN and CoAP protocols. 6LoWPAN stands
for IPv6 over Low power Wireless Personal Area Networks,
which is used for the communication at network layer. And
CoAP (Constrained Application Protocol) is an application
layer protocol used in very simple electronics devices, al­
lowing them to communicate interactively over the Internet.
To achieve the communication between BATNet devices and
BATMP, a CoAP Driver is implemented. Fig.4 illustrates
how a CoAP Driver converts a physical device BATMeter
into a set of parameters.

BATMeter is a power meter sensor designed to be in­
stalled in an electrical board to measure the real time voltage,
current, power, energy consumption, etc., of the electric
lines. Each BATMeter can measure a maximum of six
lines and for each lines, it measures six properties: Voltage,
Current, Real Power, Apparent Power, Real Energy and
Apparent Energy. As each current line works independently,
the CoAP Driver will create a logical device for each
line and each logical device includes six parameters. For
querying the value measured by a BATMeter, the CoAP
Driver needs to send a request containing the command
“/values GET” to it. As long as a query request is received,
the BATMeter will send a message which contains the values
of all properties of all the current lines connected, as shown

Figure 4. Parameter creation of BATMeter in CoAP Driver

Figure 5. Parameter creation in Modbus driver

in Fig.4. Each line of the message has the following for­
mat: line number;Vrms;mArms;W;VA;Wh;VAh, which cor­
responds to Voltage, Current, Real Power, Apparent Power,
Real Energy and Apparent Energy. The CoAP Driver will
parse the message and get the value corresponding to each
parameter accordingly.

C. Modbus devices and Modbus Driver

Modbus is a serial communication protocol for connecting
industrial electronic devices. Modbus allows the connection
of approximately 240 devices in the same network and sends
the measurements to a supervisory computer. In BATMP,
we have connected a PQube device, a energy monitor
manufactured by Power Standards Lab, to record the power
consumption of the building. [6] Data collected from PQube
is sent to BATMP through a Modbus Driver.

Each Modbus device holds a register map and each
register corresponds to a value which can be measured, such
as temperature, voltage, humidity, etc. Fig.5 shows a part
of the PQube Modbus Register Table and the process of
parameter creation. The data sheet can be downloaded at
[5] after specifying the device model. As shown in the table,
each register corresponds to a different offset and a data size
of one or two words. As a result, the Modbus Driver creates
parameters of Modbus devices according to the offset and the
data size of each register. In this example, the register with
offset 2 and data size 2 corresponds to the voltage of line
2 to earth. Therefore, a parameter P Voltage l2e is created
for this register. When a Modbus message is received, the
Modbus Driver will take the 2 bits value at the offset 2 and
assign it to the parameter P Voltage l2e.

D. Measuring parameters’ values

All the parameters created by the drivers are kept in the
Parameter Pool and according to the AccessType of the
parameters, T M handles them in different manners.

1) Request: indicates that the value of this parameter is
measured or changed when a user requests. For handling
this kind of parameter, T M keeps listening to G M . As soon
as a request is received, it will ask the driver to measure or
change the parameter value immediately. For example, the
parameter P OpenPercentage created in section I I I - A has
Request as its AccessType, and when a user tries to change
its value through G M , T M will receive the order and execute
the action accordingly.

2) Programmable: indicates that the value of this param­
eter is measured according to a fixed frequency. In BATMP,
this frequency is configured by defining the “polling period”
in the Parameter Configuration. For handling the parameters
with this attribute, T M uses a Parameter Reader to ask the
drivers about the values of the parameters every polling
period. For example, all the parameters created for the
BATMeter in section I I I - B have Programmable as their
AccessType and a user can define “query the BATMeter
every 15 minutes” by setting polling period to 900.

3) Event: indicates that the value of this parameter will
be sent whenever a change happens. The sensor will send a
signal spontaneously to the driver when a motion is detected
and the driver should notify this change to T M . For handling
these type of parameters, T M uses a listener to listen to
all the drivers and accepts the information when a new
parameter value is passed by a driver. For example, a motion
sensor can detect the presence of people in a room, which
is represented as a parameter “Presence” in BATMP.

I V . USER INTERACTION WITH B A T M P THROUGH

PARAMETERS

The user interaction is accomplished in the Gateway
Manager. A user can manage the parameters in two ways:
read or change a parameter value directly or define a scenario
and a set of rules to control the parameters according to some
conditions.

A. Direct control over parameters

Each B A T M P user can have two kinds of permissions
over a parameter: reading permission, which allows the user
to read the parameter value, or writing permission, which
allows the user to read and change the parameter value.
The parameter value can be changed only if two conditions
are fulfilled: first, the parameter has to be modifiable or se­
lectable. And second, the user who made the request should
have been granted writing permission over this parameter by
the administrator of BATMP.

Figure 6. Rule example

B. Control parameters by scenarios

B A T M P allows a user to define various scenarios when
the user wants to control different devices and parameters
automatically under certain conditions. The user can activate
a scenario manually or configure a trigger to activate a
scenario at fixed days of a week or on some specified dates.
Each scenario has a set of rules, which indicates that the
actions should be carried out when the scenario is active.
All the rules follow a I F - T H E N form, as shown in Fig. 6. If
one and/or several parameters satisfy the conditions, then the
parameters in the result should be set to the certain values.
In G M , a Rule Engine has been designed to check constantly
about which scenario should be active at a given moment
and if some actions should be carried out according to the
value of each parameter from the Parameter Pool.

V. WORKING WITH APPLICATIONS THROUGH

PARAMETERS

In BATMP, an application is a program designed for
achieving certain functions on its own consideration. An
application can take advantage of all the basic configuration
of B A T M P such as user, device, parameters, but also have
their functions, such as an optimized algorithm to manage
the data, a different interface for displaying, etc. So far,
several applications have been developed such as GreenLab,
an application for monitoring a Green House and BATStreet-
Light, an application for controlling the lighting system in a
campus according to the illumination and presence of people
and cars.

A. Parameter subscription

Each application can subscribe to a set of parameters.
Once the subscription is performed, the application can read
the value and change the value of the parameter. Besides, if
the value of the parameter is changed by others, which could
be an application, a user or a driver, all the applications who
have subscribed to this parameter will receive a notification
about this change.

B. Negotiation among applications

Sometimes, there may be more than one application
subscripting to the same parameter. In this case, a negotiation
will be carried out to decide the final parameter value. When
a user creates a new scenario, it is mandatory to define the
priority of each application under this scenario. As a result,
in different scenarios, the applications are assigned different
priorities. For example, in the scenario “Out Of Home”, the

Figure 7. Application Negotiation

application “Security” will be assigned the highest priority
and “HVAC Comfort” will be assigned the lowest one as
nobody is at home. On the contrary, in the scenario “At
home”, the priority of “Security” will be set lower than in
the previous case and “HVAC Comfort” will be assigned
the highest priority. When a parameter can be changed by
several applications, A M has to coordinate among these
applications according to their current priorities and the
one with the highest priority will get the right to decide
the parameter value. Fig.7 illustrates the negotiation process
among the applications. As we can see, APP1, APP2 and
APP3 all subscribe to P1, and both of APP2 and APP3
subscribe to P2. With the priorities as APP1 > APP2 >
APP3, the final result of the negotiation turns out to be
P1=100, P2=ON and P3=0.3.

V I . NEGOTIATOR

As explained above, in BATMP, parameters are used
as common objects for communications among different
components. Each component keeps a copy of the parameter
set for its own use. As a result, any change in a certain
component of a parameter should be communicated to the
other components. In general, the value of one parameter
could be changed in three components, G M , T M and A M .
For resolving potential conflicts, a Negotiator is created in
M M to notify other B A T M P components about the changes
taking place in one of the components so that the others can
make proper decisions accordingly.

A. Gateway Manager (GM)

The changes happening in G M come from the decision
of a user or the rule engine. For instance, when a user
wants to change the illumination percentage of a dimmer.
As illustrated in Fig. 8(a), after the user selects the value:

1) One message, containing the parameter id and target
percentage, arrives at G M through REST.

2) G M informs the Negotiator about the intentions of the
user

3) The Negotiator sends the parameter id and target
percentage to T M , asking if the value of this parameter
can be changed. As a result, inside T M , the driver of
this parameter is located and the value in the physical
world (the illumination percentage of the light) is
changed.

Figure 8. Negotiator

4) If it succeeds, TM will send a success message con­
taining the set value and time-stamp to the Negotiator,
which then sends the success message to AM to update
its parameter value and to GM to show the result to
user.

5) If it fails, TM will send an error message containing
the cause to the Negotiator and then the Negotiator
sends the error message to GM to show it to the user.

B. Technology Manager (TM)
The changes happening in TM are those values input

by each driver. For instance, when TM sends GET request
to a BATMeter, it will then send a message containing
the measured value back to TM through the CoAP driver,
illustrated in Fig. 8(b):

1) TM sends a message containing the new value, the
parameter id and the time-stamp to the Negotiator.

2) The Negotiator sends the information to AM and then
AM updates its parameter value.

3) There is no need to send the information back to GM
as the user gets the information on request, namely,
the data come from DW directly.

C. Application Manager (AM)
The changes taking place in AM are those negotiated

among applications. For instance, at 9:00 in the morning,
an application of illumination control wants to turn on a
light as it detects someone entering. At the same time, an
application of consumption wants to maintain the space at
minimum consumption. As a result, due to the negotiation
between these two applications, AM decides to open the
blinds instead of turning on the light. As illustrated in
Fig. 8(c):

1) AM sends a message containing the parameter id and
the target value to the Negotiator.

2) The Negotiator tells TM to change the parameter
value.

3) If it succeeds, TM will send a success message
containing the set value and the time-stamp to the

Negotiator. Then the Negotiator will send the success
message to A M to update its parameter value.

4) If it fails, T M will send an error message containing
the cause to the Negotiator and then the Negotiator
will send the error message to A M .

V I I . CONCLUSION

In this paper, the authors introduce a novel mechanism
for information exchange in an intelligent building control
platform, BATMP. A new concept “Parameter” is introduced,
which is used as the common object among different compo­
nents of BATMP. In the Technology Manager, three drivers
are implemented for dealing with different communication
protocols, K N X , CoAP and Modbus. They accomplish the
connection with the devices by carrying out the device-
parameter conversion. Through the Gateway Manager, the
user is able to interact with B A T M P by directly controlling
a parameter or by defining a scenario to enable various
parameters working collaboratively. In the Application Man­
ager, the applications can subscribe to the parameters for
reading or writing to them and if a parameter is subscribed
by several applications, a negotiation will be carried out to
decide the final parameter value according to the priorities
of each application. Finally, to ensure the consistency among
the three components mentioned above, a Negotiator is
implemented in the Model Manager to handle and notify
the changes happening in any of the three components.
In a word, the use of Parameter enables the simultaneous
and concurrent interaction among users, applications and
devices.

REFERENCES

[1] Woo Suk Lee; Seung Ho Hong, “Implementation of a KNX-ZigBee
gateway for home automation”, Consumer Electronics, 2009. ISCE ’09.
IEEE 13th International Symposium on , vol., no., pp.545,549, 25-28
May 2009

[2] Guillermo del Campo, Eduardo Montoya, Jorge Mart´ın, Igor Gó mez,
Asuncio´n Santamaŕ ıa: BatNet: A 6LoWPAN-Based Sensors and Actu­
ators Network. Ubiquitous Computing and Ambient Intelligence. 7656,
58–65 (2012)

[3] Jaime Caffarel, Guillermo del Campo-Jime´nez, Jorge M . Perandones,
César Gomez-Otero, Roć ıo Mart́ ınez and Asuncio´n Santamaŕ ıa: Open
Multi-Technology Building Energy Management System. In: Ultra
Modern Telecommunications and Control Systems and Workshops
(ICUMT) , 2012 4th International Congress, pp.397–404. St. Petersburg
(2012)

[4] Jorge Mart´ın, Igor Gó mez, Eduardo Montoya, Jie Song, Jorge Olloqui,
Roć ıo Mart́ ınez. BatNet: An Implementation of a 6LoWPAN Sensor
and Actuator Network. A C M e-Energy. May 2013

[5] Power Standards Lab - Downloads,
http://www.powerstandards.com/downloads.php [Accessed on 8th
October 2014]

[6] Hodgson, S., “Power quality monitoring case study”, Power in Unity:
a Whole System Approach, I E T Conference on , pp.1,20, 16-17 Oct.
2013

[7] Communication Reliability in the Intelligent Building Systems,
http://www.knx.org/fileadmin/downloads/05

[8] Flags-KNX Association, http://www.knx.org/fileadmin/template/
documents/downloads support menu/KNX tutor seminar page/
Advanced documentation/02 Flags E1008a.pdf [Accessed on 8th
October 2014]

http://www.powerstandards.com/downloads.php
http://www.knx.org/fileadmin/downloads/05
http://www.knx.org/fileadmin/template/

