
Mixed-criticality design of a satellite

software system

1

Emilio Salazar

⇤
Alejandro Alonso

⇤
Jorge Garrido

⇤

⇤ Universidad Politécnica de Madrid (UPM), Spain
E-mail: {esalazar, aalonso}@dit.upm.es, jgarrido@datsi.fi.upm.es

Abstract:

The continuous increment of processors computational power and the requirements on additional
functionality and services are motivating a change in the way embedded systems are built.
Components with di↵erent criticality level are allocated in the same processor, which give rise
to mixed-criticality systems. The use of partitioned systems is a way of preventing undesirable
interferences between components with di↵erent criticality level. An hypervisor provides these
partitions or virtual machines, ensuring spatial, temporal and fault isolation between them. The
purpose of this paper is to illustrate the development of a mixed-critical system. The attitude
control subsystem is used for showing the di↵erent steps, which are supported by a toolset
developed in the context of the MultiPARTES research project

Keywords: Real-time systems, Partitioned Systems, Mixed Criticality, Model Driven
Engineering

1. INTRODUCTION

The continuous increment on processors computational
power and the requirements on additional functionality
and services are motivating a change in the way embedded
systems are built. Complex systems, composed by a set of
interacting computers with demanding applications will be
commonplace. These systems will include applications of
di↵erent nature. In particular, components with di↵erent
criticality level will coexist in the same system. The
integration of a large number of functionalities in the
same execution platform poses a number of new technical
challenges.

The development of these safety systems must follow thor-
ough and methods, usually conforming to standards, such
as those for electronic systems (IEC 61508), airborne civil
avionics (DO-178B), European railway (EN 50128]), or
European space (ECSS). Most of these standards assigns
integrity or criticality levels to the di↵erent components
of the system. These levels represent the likelihood of
a safety-related system satisfactorily performing the re-
quired safety functions under all de stated conditions
within a stated period of time. The integrity level de-
termines the development methods and validation and
verification techniques to be used. In some domains, it
is necessary to certificate the system for ensuring it can
be trusted, i.e. it will operate in a safe and secure way
for persons and the environment. The certification is the
process of providing evidence to a regulation entity that
the system will behave as expected.

Traditionally, software components with di↵erent critical-
ity level were located on di↵erent computers, ensuring that

1 This work has been partially funded by the Spanish Government,
project HI-PARTES (TIN2011-28567-C03-01), and by the European
Commission FP7 programme project MultiPARTES (IST 287702).

there will no undesirable interferences. However, currently
these approach is not advisable. Available processors have
enough processing capacity for running the whole system.
In addition, there are requirements on size, weight, and
power that are not fulfilled if several computers are used.
It is more suitable to allocate the whole system in the
same computer. This implies the co-existence of appli-
cations with di↵erent criticality level. These are named
mixed-criticality systems. In order to meet the authorities
requirements, it means that the whole system has to be
certified, even the non-critical components. This implies
prohibitive costs.

A suitable approach relies on the use of an hypervisor that
provides partitions or virtual machines. The hypervisor
ensures spatial, temporal and fault isolations. In this way,
it is possible execute applications with di↵erent criticality
level on di↵erent partitions, precluding undesirable inter-
ferences.

The aim of this paper is to illustrate the development
process of mixed-criticality systems using the tools and
methods developed in the context of the MultiPARTES 2

project (Multi-cores Partitioning for Trusted Embedded
Systems, Trujillo et al. (2013)). The case study is based
on the Attitude Control of the UPMSAT2 satellite. The
original design is modified to include two separate parti-
tions, assuming that they have di↵erent criticality level.

The authors are participating in the development of the
UPMSAT2, which is an satellite developed by the Uni-
versity for research and teaching purposes. This paper
describes a case study based on the ADCS (Attitude Data
Control System), which is part of the OBDH (On-Board
Data Handling). This paper illustrates how this subsystem
is developed as a partitioned mixed-criticality system.

2 www.multipartes.eu

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 12278

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148674654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. MULTIPARTES APPROACH

2.1 Toolset overview

The development of partitioned mixed-criticality embed-
ded systems poses new challenges, such as the decision on
the number of partitions, the applications and resources
assigned to each of them, the validation of the system,
etc. In order to support the developer on these activities
a toolset is being developed in the context of the Multi-
PARTES project.

This framework is based on Model Driven Engineering
(MDE) (Schmidt, 2006), that is a software development
approach managed by the Object Management Group
(OMG), that allows engineers to raise the abstraction
level of the languages and tools used in the development
process. It also helps designers to isolate the information
and processing logic from implementation and platform
aspects. A basic objective of MDE is to put the model
concept on the critical path of software development. This
notion changes the previous situation, turning the role of
models from contemplative to productive.

The main components of the toolset and data flows are
depicted in figure 1. Their basic role are:

System 

partitioning

Tool support

8+

Validation

Generation of final
artifacts

System model

Fig. 1. Overall toolset architecture

• System modeling: It comprises the main input to the
tool. It is composed by three models for describing
the execution platforms, the applications, and the
restrictions to be applied in the partitioning. Models
can be enriched with information on non-functional
requirements, such as real-time or safety.

• Partitioning tool: It is in charge of generating a
system partitioning, that is represented by the de-
ployment model, which defines system partitions, the
assignment of applications to partitions, and the char-
acteristics of the partitions, including the operating
system, processor time, memory, etc. The partitioning
tool takes as input the system model. It has to con-
sider information, such as the applications’ criticality
level, their required operating system and hardware
devices, etc. Based on this information it generates
a deployment model that meets the restrictions and
some basic requirements.

• Validation: Full correctness of a system partitioning
may require complex checks that are di�cult to inte-
grate within a single tool. In addition, it is desirable
for the toolset to be extended for supporting addi-
tional non-functional requirements. Then it is conve-
nient to be able to use Validation tools that checks the
correctness of the system configuration with respect
to a given criteria. As instance, a response time anal-
ysis tool can be used to ensure deadlines fulfillment
for real-time applications.

• Generation of final artifacts: when the system parti-
tioning is correct a number of transformation tools
generates a set of outcomes that are necessary for
creating and building the final system. Information
on non-functional requirements is used for this gen-
eration. If an application is labelled as critical, the
generated code will meet the coding guidelines for
this type of systems.

Separation of concerns is one of the main design principles
in MDE. It implies keeping di↵erent concepts in di↵erent
sections. In the case of the MultiPARTES methodology,
this principle has been applied into the system modeling.
In this context, there are di↵erent aspects that are con-
ceptually independent one each other and thus, they are
described in separated models:

• Application model (described in section 3).
• Platform model (described in section 4).
• Partitioning restriction model (described in section
5).

A major goal of this approach is maximizing the reusability
of the models. There can exist a number of applications
and platforms. They can be combined to build a new
systems, without having to modify the original models.

Another important goal of this strategy is converting a
non-partitioned system into a partitioned systems, without
modifying these models. It is possible as well, modifying
the partitioning schema without having to change neither
the platform nor the application model. In both cases, the
only impacted model is the partitioning restriction model.

2.2 Attitude Control System of the UPMSat-2

The UPMSat-2 satellite can be physically described as a
micro-satellite, with a mass of approximately 50kg. The
payload of the satellite is a set of di↵erent experiments pro-
posed by both industrial companies and research groups.
These experiments are focused on experience acquisition
and testing in the space environment. The satellite is
planned to be launched in 2015, and its expected operating
period is two years.

The UPMSat-2 has an on-board computer (OBC), which
executes the on-board software (OBSW). One of the
OBSW’s subsystems, among others, is the Attitude Data
Control (ADCS). The ADCS subsystem is in charge of
keeping the satellite in a position that the radio antenna
is always visible from the Earth.

The UPMSat-2 ADCS is used in this research group for
demonstration and validation of oen developed technolo-
gies. In this paper, it is described its development using
the MultiPARTES methodology and techniques. The most
relevant feature of the strategy is the use of the mixed-
criticality (Burns and Davis, 2013; European Comission)
partitioned (Dobbing, 2000; Rushby, 1999) architecture
integrated in a model-driven development process. The
original ADCS subsystem design has been modified as-
suming that there are two separated components with
di↵erent criticality levels and that cannot coexist in the
same partition:

• Attitude control algorithm component (ADCS Control).
It is the component with the mathematical attitude

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

12279

determination model. It is modeled with Simulink
(Mathworks, 2013). This tool automatically generates
the code that implements the algorithm.

• Input/Output component (ADCS IO). The ADCS sub-
system requires accessing two hardware elements: the
magnetorque and the magnetometer. This component
holds the drivers and the logic required for accessing
these devices.

In a traditional approach, these components would execute
in two di↵erent computers, since two di↵erent criticality
level applications could not run on the same processor.
Nevertheless, in the mixed-criticality approach proposed
in MultiPARTES, a partitioned system is used instead of
adding more hardware.

A partitioned system adds an extra software layer between
the hardware and the business logic called hypervisor
(Hartner and Gerstinger, 2008). The goal of the hypervisor
is virtualizing the available hardware in such a way that
they can be shared by di↵erent software components as if
each component ran its own hardware.

Each piece of software that runs isolated is called partition.
A partition can be from a general-purpose operating
system running applications (e.g. Linux) until a bare-
board software.

Aside from the aforementioned properties, a safety real-
time hypervisors (e.g. XtratuM (Masmano et al., 2005,
2009; Esquinas et al., 2011)) ensures that all safety, se-
curity and real-time properties of each partition are met
as well, which makes possible that safety-critical software
share hardware resources.

FPGA%(Leon%3)%
XtratuM%

I/O% Control%

PC%

Linux%

Simulink%

RS>232%

ORK+%ORK+%
SpacecraD%model%

Fig. 2. ADCS architecture overview

In our example, there are two component with di↵erent
criticality levels running on the on-board computer. Be-
cause of their criticality levels, they cannot run on the
same partition. For this reason, there are two ORK+ (de la
Puente et al., 2008) partitions (see figure 2). While one
partition is executing the control algorithm, the other one
runs the I/O logic.

2.3 Demonstrator debugging: Hardware-in-the-loop

For testing the control component a hardware-in-the-loop
(HIL) approach is used. The goal of this technique is
adding the complexity of the plant under the control of
the testing platform.

On the one hand, a PC executes a Simulink model, which
simulates the behavior of satellite taking in account the
actions performed in the magnetorque and providing co-
herent reads on the magnetometer. On the other hand,
a LEON3 (Gaisler Research) FPGA executes the control
software that it is being tested. The communication be-
tween the FPGA and the PC is performed with a RS-232
serial port.

3. APPLICATION MODEL

The aim of this model is to provide a functional description
of the application, and the required information for the
operations to be performed by the toolset. The functional
description is usually provided as UML 2.2 (OMG, 2011)
class models. These are enriched with annotations useful
for system partitioning and deployment, which includes:

• Criticality level: essential information about the ap-
plication is its criticality level. This information is
crucial for activities such as partitioning, validation,
or code generation. For instance, the partitioning
tool cannot allocate two applications with di↵erent
criticality level in the same partition.

• Resource needs: the application has to describe the
hardware resources needed for their execution, such
as CPU time, input/output devices, etc. This infor-
mation is annotated using the UML-MARTE profile
(OMG 2011b).

• Operating system. The operating system required by
the application.

• Configuration information: It is needed to provide the
information that is required for the configuration of
the hypervisor, and for the generation of the final sys-
tem. This information includes: i) partition flags, for
configuring characteristics such as the use of floating
point arithmetic, ii) start memory addresses, it speci-
fies where will be the application allocated on the par-
tition memory, although this information is optional,
as can be automatically determined, iii) memory size
for the application, iv) information about the location
of the code, the compiler, and the required libraries, is
provided for building the final system. Figure 3 shows
an example of the configuration information for an
application.

Fig. 3. Sample of the application configuration information

Functional models can be enriched with annotations re-
lated with non-functional requirements. The toolset cur-
rently supports safety and real-time annotations. The use
case in this paper uses real-time annotations. Real-Time
information is provided for validation and code genera-
tion purposes. It includes the description of the activation
pattern, deadlines, or computation time. This information
is annotated in the functional model using the UML-
MARTE standard.

Figure 4 depicts a simplified version of the ADCS subsys-
tem class diagram.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

12280

«MutualExclusionResource»

AttitudeControlData

internal_configuration : ModeType

internal_change : Boolean

GetControlParameters ()

SetControlParameters ()

SetAttitudeReference ()

«MutualExclusionResource»

LocalModeManager

internal_mode : ModeType

GetMode ()

SetMode ()

WaitModeChage ()

«interface»

ADCSInterface

SetAttitudeReference ()

NotifyModeChange ()

SetControlParameters ()

«GaWorkloadEvent, SchedulableResource»

AttitudeControl

ControlAlgorithm ()

Use relation btw interface and

classes wants to me that part of

the interface is realized by the

class. This relation should be

refined, either by including a class

that realizes all operations or by

changing the type of relation

«component»

ADCS

ADCSInterface

SetAttitudeReference ()

NotifyModeChange ()

SetControlParameters ()

«use»«use»

«use»«use»

Fig. 4. Detail of the ADCS subsystem UML class diagram

4. PLATFORM MODEL

The execution platform is characterized by the hardware,
operating system and the hypervisor used in the system.
These elements are modelled separately, in order to facili-
tate its reuse. In this way, it is possible for a developer that
has already defined a hardware and a hypervisor model
to add a number of operating systems, without having to
modify the former models. Figure 5 shows the components
of the platform model that are available in the use case
development framework.

Fig. 5. Platform models library

The components of a platform model are:

• Hardware: This model is used for describing a hard-
ware system. The most important elements modelled
are the processor, its cores (if any), the memory
layout and the I/O devices. It is also possible to model
additional hardware devices, such as buses, FPGAs,
etc. Figure 6 shows the hardware platform used in the
UPMSat-2 use case. It defines a LEON3 processor at
50 MHz with 4 MB RAM, 4 MB ROM, and an UART
device.

• Hypervisor: Each hypervisor has its own configu-
ration parameters, which are stored in this model.
Figure 7 shows the configuration of the XtratuM
hypervisor used in this case study. The main features
represented in this model are: the hardware where
the hypervisor is running, the path to the XtratuM

Fig. 6. Use case hardware model

libraries, its version, and the hypervisor memory lay-
out.

• Operating system. The last modelled element of the
platform is the operating system. There is a wide
range of operating systems, and each one has its
specific configuration parameters. Di↵erent partitions
may hold di↵erent operating systems. This model is
designed to be as flexible and extensible as possible.
Figure 8 shows how is the ORK+ represented in the
platform model. This model contains general oper-
ating system information such as its name, criticality
support, or maximum number of tasks that can be run
in parallel. It also contains specific data of ORK+,
such as the path of Ada compiler, the path to the
drivers sources, the debug flag, etc.

Fig. 7. Use case XtratuM model

5. PARTITIONING RESTRICTIONS MODEL

Application and platform models are intended to be inde-
pendent of a particular system, in order to be easily reused.
The partitioning restriction model is aimed at relating
platform elements and applications, for a given system.
In this way, it is possible to state relations between an
application, and the operating system to be used or a
particular hardware device that is required for a particular
system, without having to modify these elements.

The allocation of applications to partitions is a particular
type of the general problem of the resource allocation,
which is NP-hard. However, there are allocations that
are not acceptable for a particular system. Partitioning
restrictions are also used for trimming the solution space,
and ensuring that the proposed partitioning is suitable. A
design goal for the partitioning restrictions model was to
keep it simple for two main reasons:

• Algorithm performance: the simpler the rules, the
faster will be the generation of a system partitioning.

Fig. 8. Use case ORK+ model

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

12281

Most of the high abstraction level restrictions can
be translated to constraints of the form application
must (not) execute with or application must (not) be
allocated on.

• Facilitate the automatic generation of restrictions: the
application model can be extended with the specifi-
cation of non-functional requirements. The automatic
generation of restrictions is a way of ensuring that a
system partitioning is compliant with such specifica-
tion.

Currently, the following types of restrictions are sup-
ported:

• Application must (not) run with an application. This
restriction states whether two applications can (not)
be allocated in the same partition. This type of re-
strictions can be generated automatically. For exam-
ple, applications with di↵erent criticality level cannot
coexist int he same partition.

• Application must (not) be allocated on a partition.
This restriction ensures that in the resulting parti-
tioning schema the provided application will (not) be
allocated on the given partition.

Figure 9 shows a restriction, where the user explicitly
forbids for the application ADCS IO to be allocated in the
same partition than the application ADCS Control. It will
be taken into account by the partitioning tool.

Fig. 9. Partitioning restrictions for an application

The partitioning tool is in charge of generating a deploy-
ment model, which defines a system partition that meets
the requirements stated in the restrictions. The resulting
system can be validated, using external tools. A response
time analysis tool could be used for checking whether time
requirements are met, given the current system configura-
tion.

6. SATELLITE ARTEFACTS GENERATION

The last step in the MultiPARTES tool chain is the arte-
facts generation (see figure 10). Once the system has been
modelled and processed by the tools, a valid deployment
is generated. The relevant information for artefacts gen-
eration is extracted on a simplified model, that is called
neutral. This step facilitates the development of trans-
formation tools for di↵erent programming languages, and
adds modularity to the framework.

Model-to-model transformations has been developed us-
ing Query-View-Transformation Operational Language
(QVT), the OMG standard for this kind of transforma-
tions. On the other hand, model-to-text generators has
been developed with the OMG standard Model to Text
Language (MTL) in its Acceleo’s implementation 3 . The
following artefacts are automatically generated:

3 http://www.eclipse.org/acceleo/

Validation

System
model

Neutral model

Transformation to
neutral model

Source codeTransformation

XtratuM  
configuration

System building 
files

System
partitioning

Transformation

Transformation

Generation of 
final artifacts

Fig. 10. MultiPARTES generation workflow

• XtratuM configuration files: The required files for
executing the applications in the XtratuM hypervisor
are generated. The main outcome is the XtratuM
XML configuration file, which describes the parti-
tions, their hardware resources, partitions scheduling,
and the allocation of applications to partitions. Some
details are shown in the listing 1. It describes two
partitions, a major frame with a period of 300ms,
and two slots with a duration of 200ms and 100ms.
This information defines the execution timeframe of
each of the partitions. The memory addresses that are
shown are extracted from the platform model. This
data is obtained from the application and platform
models.

<xtratum:SystemDescription xmlns:xtratum=”http://www.xtratum.org/xm�3.x” name=”S”>
<xtratum:HwDescription>
<xtratum:MemoryLayout>
<xtratum:Region size=”4MB” start=”0x0” type=”rom”/>
<xtratum:Region size=”4MB” start=”0x40000000” type=”stram”/>

</xtratum:MemoryLayout>
<xtratum:ProcessorTable>
<xtratum:Processor frequency=”50MHz” id=”0”>
<xtratum:CyclicPlanTable>
<xtratum:Plan id=”0” majorFrame=”300ms” name=”Plan0”>
<xtratum:Slot duration=”200ms” id=”0” partitionId=”1” start=”0ms”/>
<xtratum:Slot duration=”100ms” id=”1” partitionId=”0” start=”200ms”/>

</xtratum:Plan></xtratum:CyclicPlanTable></xtratum:Processor>
</xtratum:ProcessorTable>

<xtratum:Devices>
<xtratum:Uart baudRate=”115200” id=”0” name=”UART Console”/>

</xtratum:Devices>
</xtratum:HwDescription>
<xtratum:XMHypervisor console=”UART Console”>
<xtratum:PhysicalMemoryArea size=”512KB”/>

</xtratum:XMHypervisor>
.

</xtratum:SystemDescription>

Listing 1: Xtratum configuration file two partitions

Two additional files are generated: a linker file, with
information on how to link each partition, anda a
generic boot assembler, for setting a valid stack and
jumps for executing the application code.

• System makefiles. Aside from the XtratuM configu-
ration files, it is also generated the required files for
compiling and build the whole system, including the
applications. A makefile for each partition is created.
In this makefile is compiled the application against
its required libraries and operating system. Then it is
built and assembled the partition. It is also generated
a global makefile that is in charge of assembling all
partitions in the final XtratuM binary package.

• Source code skeletons: the toolset can generate code
skeletons, according to the application model. In this
use case, Ada 2005 skeletons are generated. In order
to be suitable for high criticality systems, the concur-
rency model is based on the Ravenscar profile (Burns,
1999), and the code follows the recommendations in

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

12282

(HRG, 1998), avoiding the use of dynamic memory
or object orientation features. Three di↵erent types
of components are generated: i) active: they have a
proper execution flow, so are implemented as Ada
tasks, which can be activated by a clock (periodic)
or an event (sporadic), ii) protected: these are a kind
of monitors for ensuring synchronization and mutual
exclusion between tasks, iii) passive: these compo-
nents have no real-time stereotypes and they hold the
auxiliar code invoked from the active components.

Listing 2 shows the code generated for a periodic task,
which is in charge of executing the control algorithm,
which is encapsulated in the AttitudeControl procedure.
Internally, it includes a call to the ADCS IO partition for
getting the magnetometer data, the execution of the
control algorithm, and another call to ADCS IO for providing
the data for the actuator.

task body HKPeriodicTask Type is

Interval : constant Time Span := Milliseconds (2000);

Next Time : Time := Clock + Milliseconds (0);

Canceled : Boolean := False ;

begin

delay until Next Time; �� O↵set

Next Time := Clock + Interval;

loop

�� User defined code starts here

AttitudeControl ;

�� User defined code finishes here

delay until Next Time; �� Wait until next activation

Next Time := Next Time + Interval;

end loop;

end HKPeriodicTask Type;

Listing 2: Code skeleton of a periodic task

7. CONCLUSIONS

This paper has described the development of a mixed-
criticality system. The case study has been the attitude
control of the UPMSAT-2. This system has been split on
two partitions: one where the control algorithm executes,
the other where the I/O subsystem is executed. Both par-
titions interact for interchanging sensors and actuators in-
formation. The system has been developed with the toolset
developed in the context of the MultiPARTES project.
It includes tools for modelling the system, generating a
system partitioning, and generating the final artefacts,
for simplifying the final system deployment. The aim has
been to validate the overall approach, to illustrate the
generation of these type of systems, and to show a toolset
with some of the required support for mixed-criticality
systems. The final system was developed successfully. The
configuration files for XtratuM where valid and the system
was fully built issuing only one command.

REFERENCES

(HRG 1998). Guide for the use of the Ada Programming
Language in High Integrity Systems. ISO. Working draft
ISO/IEC/JTC1/SC22/WG9 (Ada) / HRG. Version 3.3.

Burns, A. (1999). The Ravenscar profile. Ada Letters,
XIX(4), 49–52.

Burns, A. and Davis, R. (2013). Mixed criticality sys-
tems — A review. Technical report, University of
York. URL http://www-users.cs.york.ac.uk/
˜burns/review.pdf.

de la Puente, J.A., Zamorano, J., Pulido, J.A., and
Urueña, S. (2008). The ASSERT Virtual Machine: A
predictable platform for real-time systems. In M.J.
Chung and P. Misra (eds.), Proceedings of the 17th IFAC
World Congress. IFAC-PapersOnLine.

Dobbing, B. (2000). Building partitioned architectures
based on the Ravenscar profile. Ada Lett., XX(4), 29–31.
doi:http://doi.acm.org/10.1145/369264.369266.

Esquinas, A., Zamorano, J., de la Puente, J.A., Masmano,
M., Ripoll, I., and Crespo, A. (2011). ORK+/XtratuM:
An open partitioning platform for Ada. In A. Ro-
manovsky and T. Vardanega (eds.), Reliable Software
Technologies — Ada-Europe 2011, number 6652 in
LNCS, 160–173. Springer-Verlag.

European Comission (2012). Mixed criticality systems.
Gaisler Research (2012). LEON3 - High-performance

SPARC V8 32-bit Processor. GRLIB IP Core User’s
Manual.

González Harbour, M., Gutiérrez, J.J., Palencia, J.C.,
and Drake, J.M. (2001). MAST modeling and analysis
suite for real time applications. In Proceedings of
13th ECRTS. IEEE Computer Society Press, Delft, The
Netherlands.

Hartner, G. and Gerstinger, A. (2008). Safety supervision
layer. In Industrial Informatics, 2008. INDIN 2008.
6th IEEE International Conference on, 252 –257. doi:
10.1109/INDIN.2008.4618104.

Masmano, M., Ripoll, I., and Crespo, A. (2005). An
overview of the XtratuM nanokernel. In OSPERT
2005 — Workshop on Operating System Platforms for
Embedded Real-Time Applications. Palma de Mallorca.

Masmano, M., Ripoll, I., Crespo, A., and Metge, J.J.
(2009). XtratuM: a hypervisor for safety critical em-
bedded systems. In 11th Real-Time Linux Workshop.
Dresden. Germany.

Mathworks (2013). Simulink. URL www.mathworks.
com/products/simulink.

MOF (2005). ISO/IEC 19502:2005 Information technol-
ogy – Meta Object Facility (MOF). ISO.

MTL (2008). MOF Model to Text Transformation Lan-
guage (MOFM2T). OMG.

OMG (2011). Unified Modeling Language (UML). URL
http://www.omg.org/spec/UML/2.4.1/. Ver-
sion 2.4.1.

OMG 2011b (2011). OMG UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded Sys-
tems. URL http://www.omg.org/spec/MARTE/.
Version 1.1.

QVT (2011). Meta Object Facility (MOF) 2.0
Query/View/Transformation. OMG.

Rushby, J. (1999). Partitioning for safety and security:
Requirements, mechanisms, and assurance. NASA Con-
tractor Report CR-1999-209347.

Schmidt, D.C. (2006). Model-driven engineering. IEEE
Computer, 39(2).

Trujillo, S., Crespo, A., and Alonso, A. (2013). Multi-
PARTES: Multicore virtualization for mixed-criticality
systems. In Euromicro Conference onDigital System
Design, DSD 2013, 260–265. doi:10.1109/DSD.2013.37.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

12283

