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Abstract—Multi party videoconference systems use MCU 
(Multipoint Control Unit) devices to forward media streams. In 
this paper we describe a mechanism that allows the mobility of 
such streams between MCU devices. This mobility is especially 
useful when redistribution of streams is needed due to scalabil
ity requirements. These requirements are mandatory in Cloud 
scenarios to adapt the number of MCUs and their capabilities 
to variations in the user demand. Our mechanism is based on 
TURN (Traversal Using Relay around NAT) standard and adapts 
MICE (Mobility with ICE) speciflcation to the requirements of 
this kind of scenarios. We conclude that this mechanism achieves 
the stream mobility in a transparent way for client nodes and 
without interruptions for the users. 
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I. INTRODUCTION 

Over the last few years video conferencing systems have 
become more popular in Internet due to a series of new 
technologies. The first one is the Web, which allows users 
to communicate among them through their web browsers 
using applications that are hosted inside traditional web pages. 
Other technologies are the access and broadband networks, 
which have been dramatically improved during the recent years 
and, now, they provide connections of tens of megabytes to 
end users. And these users can be connected through wired 
or mobile networks, using PCs, smartphones, or even TV 
sets. Last, but not least, Cloud Computing systems promote 
scalability mechanisms to different kind of systems, including 
video conferencing platforms. 

Commercial Cloud platforms that provide transparent scal
ability are mainly focused to web applications (Heroku1, 
Google App Engine2, Microsoft Azure3), while Cloud in
frastructures allow more general applications (Amazon EC24, 
Google Compute5, Rackspace6), but with more limited scala
bility features. This is the case of video conferencing systems 
that allow communication among multiple participants in the 
same virtual room. In these applications, video and audio 
streams are typically forwarded from every user to the others, 
and they all pass through a main component that is called 
MCU (Multipoint Control Unit). 

1https://www.heroku.com/ 
2https://appengine.google.com/ 
3http://www.windowsazure.com/ 
4http://aws.am azon.com/ec2/ 
5https://cloud.google.com/products/compute-engine/ 
6http://www.r ackspace.com/ 

These video conferencing systems could easily take advan
tage of Cloud infrastructures [1], especially when adapting to 
an increasing user demand. In that case these systems put more 
capacity in the Cloud by increasing the number of MCUs in 
the same virtual room. But they would also need to adapt to 
decreasing user demands by reducing the number of MCUs 
and reallocating the connections to the resulting MCUs. This 
second phase need the system to move existing connections 
from "deprecated" MCUs, which will be powered off, to other 
MCUs that the system will keep using. 

Moreover, video conferencing systems put some require
ments on the movement of connections between MCUs: video 
and audio streams should not be interrupted during the process, 
it should allow the system to consecutively move connections 
between deprecated MCUs and new MCUs, and it should be 
compatible with a wide set of heterogeneous videoconference 
clients. 

In this paper we show a novel mechanism to tackle the 
mobility of connections between MCUs, which also resolves 
the strong requirements of video conferencing systems and 
works for the great majority of clients available on the In
ternet. This system is based on a draft specification, called 
MICE (Mobility with ICE), which extends TURN (Traversal 
Using Relay around NAT) and ICE (Interactive Connectivity 
Establishment) specifications for general mobility scenarios. 

This is necessary because MICE standard does not com
pletely resolve the case of scaling down the number of MCUs. 
Therefore, we show an adaptation of it including new attributes 
and parameters to the STUN messages. We also describe 
the mechanism of moving streams between MCUs in detail, 
avoiding interruptions in the communications and allowing 
the systems to decrease the MCUs with no delay. We also 
demonstrate why clients are not required to be adapted to 
this mechanism, making it possible to use in current video 
conferencing systems deployed in Cloud Computing platforms 
by only implementing changes in the MCUs. 

We finally show the main conclusions of this work and 
how video conferencing systems can take advantage of this 
mechanism, and we also introduce future works based on the 
results of this paper. 

In section II we identify the related work, introducing the 
advantages and problems we identified in similar systems and 
how we can adapt them to the new requirements. In section 
III we give details of the mobility problem and the different 
requirements of video conferencing systems. In section IV we 
explain how we adapt MICE with new attributes and messages, 
and we describe the message flow between the MCU and the 

https://www.heroku.com/
https://appengine.google.com/
http://www.windowsazure.com/
http://aws.am
http://azon.com/ec2/
https://cloud.google.com/products/compute-engine/
http://www.r
http://ackspace.com/


TURN device in detail. In section V we explain how this 
extension resolves the initial problem for different scenarios. 
And finally in section VI we show the main conclusions and 
we introduce the future work. 

II. RELATED WORK 

The authors have not found any related work that directly 
approach to the problem of media stream mobility between 
MCUs. However, there are several studies about peer mobility 
in real time communications scenarios. Most of them are 
mainly focused on device mobility in heterogeneous networks. 

For instance, [2] proposes a new mobility service for 
IP Multimedia Subsystem (IMS) platforms. The service also 
analyse network parameters such us QoS (Quality of Service). 
In [3] is discussed a pre-negotiation mechanism for SIP 
(Session Initiation protocol) focused in cellular phones that 
move between networks. [4] approaches to mobility between 
different device network interfaces even using more than one 
at the same time. On the other hand, [5] defines a socket 
abstraction to the application layer in order to be able to add 
or remove sockets without disturbing the running applications. 

These mechanisms can be applied to our scenario in which, 
definitively, the MCU acts as a peer in the communication 
implementing connectivity protocols such us SIP or ICE. 
However, a renegotiation may imply latency in communication 
and interruptions in the media received by the users. Fur
thermore, all these proposals imply specific implementations 
in all the peers and this can be a problem in scenarios 
with heterogeneous devices. For instance, in a web based 
videoconference system using the WebRTC (Web Real Time 
Communications) standard [6] it is not easy to modify the 
browsers implementation in order to support new protocols. 
The best solution is one in which the mobility is transparent 
to the peers and the only node that have to implement the new 
mechanism is the MCU. 

MICE specification [7] proposes two mechanisms to 
achieve mobility. The first one is based on ICE specification 
[8]. They add STUN (Simple Transversal Utilities for NAT) 
attributes MOBILITY-EVENT and MOBILITY-SUPPORT in 
order to support mobility. So it suppose that all peers supports 
MICE, we have the same problem discussed above. On the 
other hand, the second mechanism uses TURN to achieve 
considering that only a peer supports the new specification. 
So it seems that MICE fits very well with our requirements. 
However, as we explain in the next section, this solution has 
some problems that we have to solve proposing an extension 
of the specification. 

III. MEDIA STREAM MOBILITY SCENARIO 

As seen in the previous section, the media stream mobility 
solution that best fits to our scenario is MICE specification. 
However, we need to adapt it to this specific environment 
adding some characteristics and modifying some parts of its 
behaviour. In this section we describe in detail the architecture 
of our scenario and we explain why we need to extend MICE. 

In a typical videoconference scenario there are one or more 
peers publishing its media streams in virtual spaces frequently 
called rooms. Another peers connected to the same rooms 

Fig. 1: Stream mobility architecture. 

subscribe to these media streams in order to receive them. 
These peers are usually people that are sharing its video or 
audio streams but can also be other types of sources and sinks 
such as recorders or external media processors. 

Definitely, from the point of view of an MCU this scenario 
implies that the MCU device receives a media stream from a 
peer, processes it and sends it to another peer. The process is 
a stream redirection in the simplest case but can be also an 
advanced task such us transcoding the stream or multiplexing 
it to a variable number of peers. 

Fig. 1 shows an scenario where Peer A and Peer B are 
connected to MCUl and ready to exchange data packets with 
it. Both peers may be connected directly to a public network 
or in a private network behind a NAT. In order to establish a 
connection with the MCU device they have used ICE protocol. 
Peer A is sending a media stream to MCUl and MCUl 
is redirecting it to Peer B. And our goal is to move the 
management of that media stream from MCUl to MCU2. As 
explained in the introduction, this mobility is very useful in 
scalable scenarios, where we are going to power off MCUl 
and MCU2 has available resources. Thus, once the mobility 
process is finished Peer A will send the stream to MCU2 and 
MCU2 will redirect it to Peer B. 

This is a basic scenario where a Peer A is only sending and 
not receiving and Peer B is only receiving and not sending. 
However, the problem is the same but duplicated if both peers 
send and receive data. And it is also valid for more complex 
configuration with more than two peers participating in the 
videoconference session. Each peer publishes its stream and 
the MCU forwards the stream to multiple subscribers. Thus, 
it is easy to perform on streaming and multi-videoconference 
scenarios. So here we are going to illustrate the simplest case 
and the solutions for other configurations will be extrapolations 
of this one. 

As introduced in Section II, MICE specification provides 
two mechanisms to perform endpoint real time mobility be
tween networks. The second one applies to scenarios where 
only one of the endpoints supports MICE. Our scenario is 
very similar to it because we want to modify the IP address 
of one of the endpoints of the communication, the MCU. 

However, it is very important to remember that we are 
talking about real time scenarios in which the user experience 
must be the best possible. That means that when we move 
the media stream from MCUl to MCU2, Peer 2 must not 
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Fig. 2: Packet loss example. 

experiment any interruption in the media reception. And it 
makes MICE not valid itself. 

The mechanism proposed by MICE extends TURN spec
ification [9]. It consists in refreshing a TURN allocation 
with a new parameter (MOBILITY-TICKET) that indicates 
a variation in the client IP address/port. Thus, TURN server 
modifies the 5-tuple associated to the allocation replacing 
it with a new one that contains the new IP address/port. 
Then, all data packets coming from the relayed address/port 
corresponding to that allocation will be sent to the new client 
IP address/port. On the other hand, all application data coming 
from the new client IP address/port will be sent through that 
relayed address to the peers. But at the moment of updating the 
5-tuple some packets may have been sent to the old client and 
they will not be processed by the TURN server when returning 
because then the old client's 5-tuple will not exist in the server. 

Fig. 2 shows an example that illustrates this problem. 
TURN server is sending data packets to MCU1. lust before 
sending packet 3 (P3 in the figure) the 5-tuple of the allocation 
is changed from MCU1 to MCU2. So packet 4 is sent to 
MCU2. But packets 1, 2 and 3 are still being processed by the 
MCU and they have not arrived yet to TURN server. When 
they arrive to TURN server the 5-tuple of MCU1 will not 
exist and they will be ignored. This results in a packet loss 
and consequently in an interruption in the media receipt by 
the peers. 

IV. MICE EXTENSION 

In this section we propose a MICE extension to solve the 
problem illustrated in Section III. 

Coming back to the example shown in Fig. 2, our proposal 
is to keep both 5-tuples (of MCU1 and MCU2) for the 
same allocation until all packets sent from TURN to MCU1 
return to TURN server. But the fact that a single allocation 
has two 5-tuples must only imply that TURN server can 
receive application data from two different clients and send 
it through the same relayed IP address/port. However, in the 
other direction, when it receives new data through the relayed 
IP address/port, it only sends it to the client corresponding to 
the new 5-tuple. 

Furthermore, it may happen that the system requires a new 
mobility from MCU2 to a third MCU before MCU1 has fin
ished sending application data to TURN server. Thus, the new 
MCU (MCU3) will refresh the allocation adding its 5-tuple and 
keeping the 5-tuples of both MCU1 and MCU2. This behaviour 

allows quick and dynamic media stream mobility. Therefore, 
a single allocation may have associated one traditional 5-tuple 
and multiple special 5-tuples that only work in one direction, 
receiving application data from clients and sending it to peers 
through the same relayed IP address/port. We have called that 
special 5-tuples deprecated-5-tuples. 

They are deprecated because their life time must be limited. 
Due to security reasons it is not recommended to have that 
type of 5-tuple alive indefinitely. So TURN server will delete a 
deprecated-5-tuple from an allocation in a limited time period. 
This period is specified in a new configuration parameter of 
the TURN server, deprecated-5'-tuple-LIFETIME. Anyway, the 
client who owns a deprecated-5-tuple can delete it from an 
allocation at any time by sending a Refresh Request with 
LIFETIME attribute with a value of 0. If TURN server does not 
want to support deprecated-5-tuples it has to set deprecated-
5-tuple-LIFETIME parameter to 0. 

As introduced above, MICE defines a new STUN attribute 
called MOBILITY-TICKET. A client who wants to support 
mobility has to include this attribute when creating an allo
cation. Then, TURN server generates a ticket and includes it 
in the same attribute of the Allocate Success response sent 
to the client. When the client wants to refresh an allocation 
retaining the same relayed IP address/port but with a new client 
IP address/port, it has to include the ticket in the Refresh 
Request. TURN server validates the ticket and if everything 
success it retains the relayed IP address/port for the new client 
IP address/port. 

We define the new STUN attribute SHARED-MOBILITY-
TICKET that, if included in the Refresh Request, indicates 
the TURN server to keep deprecated-5-tuples when refreshing 
an allocation. In our example, MCU1 obtains a SHARED-
MOBILITY-TICKET when allocating and sends it to MCU2 
before making the media stream mobility. MCU2 will include 
it in the Refresh Request to ensure the mobility process. 
Therefore, SHARED-MOBILITY-TICKET is designed for be 
shared between clients in order to support mobility between 
them. Moreover, both MOBILITY-TICKET and SHARED-
MOBILITY-TICKET are compatible. A client can request both 
tickets when creating an allocation. With the first one it will 
be able to move between networks and with the second one it 
will move streams to another client. 

How the exchange of the SHARED-MOBILITY-TICKET 
is made between clients is out of the scope of this paper. 
However, it is recommended doing it in a secure way in order 
to avoid man in the middle attacks. 

To perform the mobility successfully it is also recom
mended the new client sends a notification to the old client 
when it receives the Refresh Success response. Then, the old 
client can delete its deprecated-5-tuple by sending a LIFE
TIME of value 0 in a Refresh Request). Otherwise, packets 
could be lost because TURN server stops receiving packets 
from the old client before establishing the connection with the 
new one. 

With all these considerations MICE and TURN specifica
tions result as follows: 



A. Creating an Allocation 

1) Sending an Allocate Request: In addition to the process 
described in Section 5.1.1 of [7], the client can also include 
the SHARED-MOBILITY-TICKET attribute with length 0. 
This indicates the client is a node that requires media stream 
mobility between clients and wants a ticket. 

2) Receiving an Allocate Request: In addition to the pro
cess described in Section 5.1.1 of [7], server checks if the 
SHARED-MOBILITY-TICKET attribute is included. If its 
length is 0 and TURN mobility between clients is forbidden 
by local policy (by setting TURN configuration parameter 
deprecated-5-tuple-LIFETIME to 0) the server must reject the 
request and send back the new Shared Mobility Forbidden 
error code. If the server can not understand the SHARED-
MOBILITY-TICKET, it ignores the attribute. 

If the server can successfully process the request proceeds 
as explained in MICE, creating a ticket and including a STUN 
SHARED-MOBILITY-TICKET attribute with the encrypted 
ticket in the success response. 

3) Receiving an Allocate Response: The process is the 
same as the one described in Sections 5.1.3 and 5.1.4 of [7] 
for Allocate Success response and for Allocate Error response. 
But in this case the client stores the SHARED-MOBILITY-
TICKET (not the MOBILITY-TICKET) and receives the error 
code Shared Mobility Forbidden instead of error code Mobility 
Forbidden. 

B. Refreshing an Allocation 

1) Sending a Refresh Request: If a client wants to refresh 
an existing allocation with a new time-to-expire or wants to 
delete an existing allocation it will proceed as described in Sec
tion 7.1 of [9]. If a client wants to make media stream mobility 
between clients it will include the SHARED-MOBILITY-
TICKET obtained by the client who owns the allocation when 
creating it. This SHARED-MOBILITY-TICKET is valid only 
one time so in each refresh transaction the client has to use 
the ticket of the last one. 

2) Receiving a Refresh Request: When the TURN server 
receives a Refresh Request with a SHARED-MOBILITY-
TICKET attribute it checks the validity of the ticket as ex
plained in Section 5.2.2 of [7] for MOBILITY-TICKET and 
sends the corresponding error code when something is wrong 
in the validation. 

If the Refresh Request contains a desired life-time value 
not equal to 0 and the 5-tuple retrieved from the packet 
corresponds to a deprecated-5-tuple of an allocation, the client 
is attempting to refresh a deprecated-5-tuple and TURN server 
must reject the request with an error. 

If all the checks pass, TURN server understands that the 
client wants to perform mobility between clients and it gets 
the 5-tuple from the SHARED-MOBILITY-TICKET instead 
of from the request. It search for the allocation associated to 
that 5-tuple and adds that 5-tuple to the deprecated-5-tuples list 
of the allocation. Then the 5-tuple that identifies the allocation 
is the 5-tuple of the new client, extracted from the request. 
TURN server calculates a new ticket with the new 5-tuple and 
sends it in the STUN SHARED-MOBILITY-TICKET as part 
of Refresh Success response. 

From this moment all the data received through the relayed 
IP address/port of the allocation will be sent to the client of the 
new 5-tuple. However, TURN server will process application 
data from all clients whose 5-tuples are deprecated-5-tuples of 
the allocation sending it to peers through the same relayed IP 
address/port. So when receiving application data TURN server 
has to check not only the 5-tuples it its database, also the 
deprecated-5-tuples of the allocations. 

If the Refresh Request contains a desired life-time value 
equal to 0 and the 5-tuple retrieved from the packet corre
sponds to a deprecated-5-tuple of an allocation, TURN server 
deletes that tuple from the allocation. 

If the Refresh Request contains a desired life-time value 
equal to 0 and the 5-tuple retrieved from the packet identifies 
an allocation that has one or more deprecated-5-tuples, TURN 
server deletes the allocation including all the deprecated-5-
t up les. 

3) Receiving a Refresh Response: The process is the same 
that the described in Section 5.2.3 of [7] but in this case the 
client stores the SHARED-MOBILITY-TICKET. 

C. Allocations 

In addition to the state data described for TURN allocations 
in Section 5 of [9], we describe a new field that contains a list 
of data structures with the information about the deprecated-5-
tuples associated to the allocation. Each data structure consists 
of the following state data: 

• the deprecated-5-tuple: (client's IP address, client's 
port, server IP address, server port, transport protocol) 

• the time-to-expiry 

The time-to-expiry is the time in seconds left until the 
deprecated-5-tuple is deleted from the allocation. When stored, 
the time-to-expiry is set to the time configured in the parameter 
deprecated-5-tuple-LIFETIME. As explained above, a client 
can delete a deprecated-5-tuple from the allocation by setting 
this parameter to 0 with a Refresh Request. 

The list of permissions and channels are not included be
cause they are the same of the 5-tuple to which the deprecated-
5-tuple is associated. 

Therefore, the state data of a TURN allocation results as 
follows: 

• the relayed transport address 

• the 5-tuple: (client's IP address, client's port, server 
IP address, server port, transport protocol) 

• the authentication information 

• the time-to-expiry 

• a list of permissions 

• a list of channel to peer bindings 

• a list of deprecated-5-tuples data structures 
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Fig. 3: Single allocation configuration. 

D. New TURN configuration parameter 

TURN server has a configuration parameter deprecated-5-
tuple-LIFETIME that indicates the life time of the deprecated-
5-tuples. When a 5-tuple is added to the list of deprecated-5-
tuples of an allocation, the 5-tuple will be alive until reaches 
the time specified in this parameter or until the client deletes 
it by refreshing with desired life-time equal to 0. 

E. Deleting expired deprecated-5-tuples 

TURN server periodically checks if exists any deprecated-
5-tuple with a life time higher than the set in TURN 
deprecated-5-tuple-LIFETIME parameter. If exists, it means 
that deprecated-5-tuple has expired and TURN server deletes 
it from the corresponding allocation. 

F. New STUN Attribute SHARED-MOBILITY-TICKET 

In addition to STUN attributes defined in [10], this attribute 
is used to perform media stream mobility between clients in 
TURN servers. It is exchanged between TURN server and 
clients to aid mobility. It has the same encryption and security 
properties that MOBILITY-TICKET described in Section 5.3 
of [7], 

G. New STUN Error Response Code 

In addition to STUN error codes defined in [10], the new 
error code Shared Mobility Forbidden indicates that a mobility 
between clients request is valid but it is not allowed due to 
policy restrictions. 

V. SOLUTION 

With the solution proposed in the previous section we are 
able to solve our initial problem, the media stream mobility 
between MCUs. In this section we explain how this MICE 
extension applies to a videoconference scenario. And we do 
that in two configurations. The first one is a basic configuration 

in which the MCU uses a single TURN allocation for all the 
streams and the second one is a more complex scenario with 
more than one allocation per MCU. 

A. Single allocation configuration 

Fig. 3 shows a simple videoconference scenario in which 
Peer A is publishing a media stream to MCU1 and Peer B 
is subscribing to it. The behaviour is the same that the one 
explained in Section in. TURN server is used as a relay 
in order to allow media stream mobility with MICE. To 
force the communication through the TURN server Peers must 
ignore the ICE candidates that are not the relayed candidates 
of the TURN server. We are not going to modify peers 
implementation so in order to do that we will delete these 
candidates from the SDPs (Session Description Protocol) when 
making the negotiation between MCUs and peers. 

In a determined moment we want to move the media stream 
from MCU1 to MCU2 in such a way that Peer A will publish 
its stream to MCU2 and Peer B receives it from MCU2. It 
happens because, for instance, we want to scale down the 
system turning off MCU1 machine, so we have to move the 
streams that it is managing to another MCU, in this case, to 
MCU2. In the architecture is included a module Controller 
that communicates MCU1 with MCU2 in order to control and 
coordinate the mobility. 

Fig. 4 illustrates the message exchange between all the 
nodes of the architecture from the beginning of the communi
cation and before establish any connection until the moment 
in which the mobility to MCU2 is completed. As introduced 
above, we suppose this is a basic configuration in which both 
MCUs use the same TURN allocation to send and receive data 
from peers. 

In order to start the communication with the Peers, MCU1 
requests an allocation to TURN server. It wants to support 
mobility between clients so it includes SHARED-MOBILITY-
TICKET parameter with length equal to 0 in the Allocate 
Request. 

If mobility between clients is allowed and TURN server 
successfully processes the request, it creates an allocation 
(Allocation 1) with the 5-tuple of MCU1 (5-tuple 1) and 
assigns a relayed IP address/port to it (RelayedAddress 1). It 
generates a SHARED-MOBILITY-TICKET for this allocation 
(Ticket 1) and sends an Allocate Success response to MCU1 
including the ticket. MCU1 stores Ticket 1 associated to the 
published stream. 

Then, Peer A starts publishing its stream (Stream A) send
ing data to the relayed IP address/port of Allocation 1. TURN 
server gets the 5-tuple associated to this allocation, (5-tuple 
1), that corresponds to MCU1, so it sends the data to MCU1. 
MCU1 processes the published data and multiplexes it to the 
subscribers, in this case Peer B. It sends the application data to 
TURN server encapsulating it in a STUN message. The best 
way to do this is using a TURN Channel Binding as described 
in Section 11 of [9]. TURN server processes the data from 
MCU1 (ie. 5-tuple 1), searches the corresponding allocation 
(Allocation 1) and sends the data to Peer B through de relayed 
address/port associated to that allocation (RelayedAddress 1). 
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Fig. 4: Media stream mobility call flow. 

In a determined moment of the communication, due to 
system requirements, Controller node decides to move Stream 
A from MCU1 to MCU2. It sends a message to MCU1 to 
get the SHARED-MOBILITY-TICKET of this stream. MCU1 
searches the SHARED-MOBLITY-TICKET of Stream A and 
returns it to Controller. It is the ticket of Allocation 1, Ticket 
1. 

Then, Controller sends a message to MCU2 asking it 
to start the mobility of the allocation identified by Ticket 1 
(included in the message). As explained before, the protocol 
used to make the message exchange between Controller and 
MCUs is irrelevant in the scope of this paper. 

Once received the ticket, MCU2 sends to TURN server a 
Refresh Request request including the SHARED-MOBILITY-
TICKET attribute with that ticket, Ticket 1. 

TURN server checks if the Refresh Request is valid fo
llowing the steps described in previous section. If success, it 
extracts the 5-tuple from Ticket 1, (5-tuple 1) and searches it 
in its data base. It adds 5-tuple 1 to the deprecated-5-tuple 
list of the associated allocation (Allocation 1) and set as 5-
tuple of the allocation the 5-tuple extracted from the request. 
This new 5-tuple (5-tuple 2) corresponds to MCU2. TURN 
server generates a new SHARED-MOBILITY-TICKET with 
the new 5-tuple (Ticket 2) and includes it in the Refresh Success 
response sent to MCU2. 

Now Allocation 1 has 5-tuple 2 as main 5-tuple and 5-
tuple 1 as a deprecated-5-tuple. That means that data received 
in RelayedAddress 1 is sent to 5-tuple 2 IP address/port 
(MCU 2). Data received from 5-tuple 1 (MCU1) and from 
5-tuple 2 (MCU 2) IP addresses/ports is sent to peers through 
RelayedAddress 1. 

When MCU2 receives the Refresh Success response from 
TURN server, it stores Ticket 2 for a future mobility and 
sends a message to Controller indicating that the mobility is 
completed. 

Controller waits a time in order to ensure that all packets 
sent before mobility to MCU1 has arrived to TURN server and 
then sends a message to MCU1 asking it to delete its 5-tuple 
from TURN server. So MCU1 sends an Allocate Request with 
LIFETIME parameter equal to 0 to TURN server. 

TURN server extracts the 5-tuple from the request, 5-
tuple 1 and searches it in its data base. It finds that 5-
tuple as a deprecated-5-tuple of Allocation 1 so it deletes it 
from the allocation. If the life time of that deprecated-5-tuple 
has previously expired due to deprecated-5-tuple-LIFETIME 
parameter of TURN server it has been already deleted from 
Allocation 1. TURN server sends a Refresh Success response 
to MCU1. 

Now Allocation 1 has not any deprecated-5-tuple so works 
sending data from Peer A in RelayedAddress 1 to 5-tuple 2 
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Fig. 5: Multiple allocation configuration. 

IP address/port (MCU2) and receiving data from 5-tuple 2 IP 
address/port (MCU2) to Peer B through RelayedAddress 1. 

When finished this process Peer A is publishing to MCU2 
and Peer B is subscribing from MCU 2. The mobility is 
completed. As explained above, in this configuration we have 
multiple streams in the same TURN allocation, sending and 
receiving data through the same relayed IP address/port. But 
it is not always so, sometimes we need to move streams 
associated with more than one allocation and in this case we 
have to take into account some considerations. 

B. Multiple allocation configuration 

When performing stream mobility between MCUs it may 
happen that we have to move more that one allocation. In Fig. 5 
is shown a configuration in which Peer A is publishing a stream 
and Peers B and C are subscribed to that stream. However, in 
this case the streams use different relayed IP addresses/ports, 
so different allocations (dotted lines in the figure). It implies 
that if we want to move that stream from MCU1 to MCU2 we 
have to move the three allocations. 

The order in which the mobility of the allocations is 
made is very important. Calling Allocation A, Allocation B 
and Allocation C the allocations corresponding to Peers A, B 
and C respectively, if Allocation A is moved before moving 
Allocation B and Allocation C we will lose some packets. 
Packets received through relayed IP address/port of Allocation 
A from Peer A will be sent to MCU2 and when returning to 
TURN server Allocation B and Allocation C are sill waiting 
packets from MCU1. So will lose those packets. 

The conclusion is that when we have to move more than 
one allocation between MCUs we must move first the alloca
tions corresponding to the subscriber peers. Thus, supposing 

• MCU1 has allocated Allocations A, B and C with 
relayed IP addresses/ports for communicating with 
Peers A, B and C respectively, 

• allocations A, B and C are identified by 5-tuple 1A, 
5-tuple IB and 5-tuple 1C respectively, 

• those 5-tuples have the IP address of MCU1 and a 
different port of MCU1 each one, 

• MCU1 has the SHARED-MOBILITY-TICKETS of 
Allocations A, B and C, 

those tickets are Ticket A, 
respectively, 

Ticket B and Ticket C 

we have to made the following steps for achieve mobility in 
this configuration. They are simplified because it is supposed 
that the details of the messages are already known. 

First, Controller asks MCU1 for the SHARED-
MOBILITY-TICKETS of the subscribers, getting Ticket 
B and Ticket C and sends theme to MCU2. 

Using these tickets, MCU2 sends two Refresh Request to 
TURN server and TURN server stores in Allocation B a 5-tuple 
of MCU2 (5-tuple 2B) setting 5-tuple IB as a deprecated-5-
tuple of the allocation. The same process is done for Allocation 
C with 5-tuple 1C and 5-tuple 2C. 

When MCU2 receives the success responses of these 
refresh requests TURN server is ready to receive data from 
MCU2 by the new 5-tuples and is also receiving data from 
MCU1 by the deprecated 5-tuples. 

MCU2 notifies that to Controller and Controller proceed 
with the mobility of Allocation A getting Ticket A from MCU1 
and sending it to MCU2. 

When receiving the ticket, MCU2 ask TURN server for 
the refresh of Allocation A setting a 5-tuple of MCU2 (5-tuple 
2A) as main 5-tuple of the allocation. So data received from 
Peer A is now sent to MCU2 and received by the previously 
enabled 5-tuple 2B and 5-tuple 2C in TURN server. 

MCU2 receives the success response and notifies it to 
MCU1 through Controller. Finally, MCU1 ask TURN server 
to delete the deprecated-5-tuples of the three allocations. 

Following these methodology we will achieve stream mo
bility between different clients in any scenario without packet 
loss. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we have proposed an advanced mechanism to 
perform media stream mobility between MCUs. This mecha
nism is based on MICE specification that allows mobility using 
TURN and ICE. However, we have discussed that in scenarios 
with strict real time requirements, MICE is not enough be
cause using it may imply packet loss in the communications. 
Specially if the stream mobility is between different devices. 

So we have extended MICE and TURN describing a 
new behaviour to achieve the stream mobility without packet 
losses. Moreover, our mechanism allows quickly and dynamic 
mobility, which is very useful in Cloud scenarios in order 
to scale videoconference systems. We have also applied the 
new mechanism to a videoconference scenario in two different 
configuration. The first one is a basic configuration in which 
the MCUs uses a single TURN allocation and the second one 



is a more advanced configuration where there are more than 
one allocation. In this second scenario we have analyse some 
important factors to take into account in order to make the 
stream mobility successfully. 

We conclude that we can taking advantage of this mecha
nism by performing dynamic media stream mobility between 
MCU devices for any videoconference scenario and without 
interruptions for the participants. 

Regarding the future work, the next step is to characterise 
different videoconference scenarios using our MICE extension. 
It is very interesting to measure latency when moving streams 
between MUCs. And these measurements can be made using 
different configurations such us the explained in Section V. 
Thus, we can compare them and decide which is the better 
configuration to scale the system as fast as possible. 

Going to an upper abstraction layer, a future line of 
research is to apply this mechanism to a real scalable video-
conference system. Implementing the mechanism in the MCUs 
of our open source WebRTC project Licode 7 and deploying 
the system in Cloud Infrastructures we will analyse the im
provement in cost, efficiency and performance. 
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