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Abstract—Natural disasters affect hundreds of millions of people 
worldwide every year. Emergency response efforts depend upon 
the availability of timely information, such as information 
concerning the movements of affected populations. The analysis 
of Call Detail Records (CDR) captured from the mobile phone 
infrastructure provides new possibilities to characterize human 
behaviors during critical events. In this work, we investigate the 
viability of using CDR data combined with other sources of 
information to characterize the floods that occurred in Tabasco, 
Mexico in 2009. An impact map has been reconstructed using 
Landsat-7 images to identify the floods. Within this frame, the 
underlying communication activity signals in the CDR data have 
been analyzed and compared against rainfall levels extracted 
from data of the NASA-TRMM project. The variations of the 
number of active phones connected to each cell tower reveal 
abnormal activity patterns in the most affected locations during 
and after the floods that could be used as signatures of the floods 
- both in terms of infrastructure impact assessment and 
population information awareness. The representativeness of the 
analysis has been assessed using census data and civil protection 
records. While a more extensive validation is required, these 
early results suggest high potential in using cell tower activity 
information derived from CDR data to improve early warning 
and emergency management mechanisms.  

Keywords— Emergency Service Allocation, Natural Disaster 
Response, Mobile Data Analysis, Human Behavior Modeling, Big 
Data for Development 

I. Introduction 
Natural disasters such as floods or earthquakes affect 

hundreds of millions of people worldwide every year1. 
Effectiveness of humanitarian response is limited, in part, by  
the lack of timely and accurate information about the patterns 
of movement and communication of affected populations. 
Specifically, there is a need for dynamic in-situ information 
across the event timeline: a baseline understanding of regular 
behavior before the onset of an emergency, real-time 
information about the behavior of a disaster-affected 
population, and the capacity to  track return to normal 
behavioral patterns during the recovery phase. Governments, 
international organizations and humanitarian actors could 
potentially enhance the effectivenss of response by gaining 
access to accurate geospatial and temporal information on 

                                                             
1 EM-DAT database: http://emdat.be/disaster-trends 

population displacements and communication patterns before, 
during and after a disaster occurs.  

Over the last few years, due to the exponential increase in 
the penetration of mobile phones, new opportunities for 
obtaining such indicators have emerged. In particular, the use 
of mobile phones as sensors of human behavior has yielded 
important research findings in large-scale social dynamics 
analysis in areas such as human mobility, information 
diffusion, social development, epidemiology and disaster 
response. A commonly used source of mobile phone data for 
these studies are anonymized Call Detail Records (CDRs), 
which provide data about phone activity within a mobile 
network and are described in Section III.B. In the area of 
human mobility, various approaches have shown the viability 
of using CDR data to model mobility patterns in both 
developed and developing economies [1][2][3] and also the 
impact of population mobility during disease outbreaks [4]. 
Various studies have redefined our understanding of 
information propagation [5][6] to characterize cooperative 
human actions under external perturbations and also offering 
new perspectives on panic [7][8][9][10].  

 In the area of social development, CDR analysis has also 
shown promise for understanding migration in urban 
settlements (slums) in Kenya, enabling researchers to infer 
informal employment [11]; for approximating demographic 
[12] and socioeconomic information in developing countries 
in Latin America [13]; or for showing that population 
movements monitored using CDRs strongly correlate with 
changes in residence recorded in the national census [14]. 
Finally, CDR data has also been successfully applied to model 
and evaluate natural disasters. A study after an earthquake in 
Haiti found that the estimation of population movements 
during disasters or disease outbreaks can be delivered rapidly 
and with high accuracy [15]. Similar studies using CDR data 
also showed the ability to measure the impact of earthquakes 
on communication patterns [16] and to build predictive 
models of areas of disruption following an earthquake [17]. In 
general, CDRs are expected to contain different signatures –
spatial and temporal patterns– of social behavior during 
different type of events and emergencies [18] that could be 
used for early response. Moreover, mobile phones can also be 
used as sensors to obtain other data besides social variables, 
such as precipitation measurements [19]. 
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In this work, we are interested in exploring potential 
signatures implicit in CDR data as a means for characterizing 
real phenomena taking place during floods. Studies of mobile 
phone usage could one day be applied in ways that reduce 
mortality and improve outcomes for disaster-affected 
populations. 

II. Objectives 
The objective of this research is to develop and apply methods 
to  assess the suitability of CDR data for characterizing the 
impact of floods on populations, using the Tabasco, Mexico 
floods in 2009 as a case study. Our ultimate goal is to 
contribute to the development of real-time CDR analytics-
based decision-support tools for public sector response to 
floods and other natural disasters. 

The technical contributions of this work are (1) a multimodal 
data integration framework that facilitates the integration of 
CDR data with other data sources- remote sensing, rainfall 
activity, census and civil protection information and (2) the 
quantitative characterization of changes in communication 
patterns during the floods and their relation to external ground 
truth information. 

III. Problem description 

A. Context: Tabasco floods in 2009  
 

The state of Tabasco is located to the south of the Gulf of 
Mexico, covering 24,738 sqkm (1,3% of national total area). 
Due to its location and topographical features, Tabasco is 
subject to frequent flooding events, such as those that occurred 
in 2007, 2008 and 2009. On 28th October 2009, a cold front 
Nr. 9 entered northwest Mexico and reached Tabasco on the 
31st, where it remained for four days. It rained intensely until 
November the 3rd over the west of Tabasco, within the Tonala 
basin. The National Meteorological Service (SMN) recorded 
800mm of cumulated rain in three days, 4-fold the regular 
cumulated rain level for November. Due to these figures, the 
precipitation was classified as extraordinary.  

As the Tonala basin lacks hydraulic infrastructure for 
controlling river floods, the rain water flowed freely to the 
coastal plains, causing flooding. The greatest damage occurred 
in the Huimanguillo and Cardenas municipalities. On 
November the 3rd, after the heavy rain, the state of emergency 
was declared in Huimanguillo and Cardenas. Response 
activities coordinated by Civil Protection and the system for 
Integral Development of Families (DIF), with contributions 
from other state and federal entities, such as the Federal 
Preventive Police and the National Water Commission 
(CONAGUA). On November the 11th, a state of emergency 
was declared in Comalcalco, Cunduacán, and Paraíso 
municipalities.  

In January 2010, the National Center for Disaster Prevention 
(CENAPRED) carried out a mission to assess the damage 
caused by the floods, together with the Planificación State 
Secretariat and Civil Protection. They interviewed over 16 
state and federal agents in charge of coordinating recovery 
actions. CENAPRED collected all the information and 

compiled a report on the impact of the floods. According to 
the report, in economic terms, the total losses in the state of 
Tabasco reached 190 million USD, 50% of which were due to 
damage to road infrastructure (see Fig.1); 16% were related to 
productive activities (agriculture and ranching); and 7% of 
losses corresponded to social damage (dwelling, health, 
education). The floods also had a significant emotional and 
psychological impact on people’s lives.  

The CENAPRED report states that the total human, social and 
economic losses caused by the 2007, 2008 and 2009 stationary 
floods highlight the vulnerability of Tabasco to such natural 
events. Furthermore, this recurring situation hinders the state 
from achieving total recovery after each disaster. Hence it is 
recommended that resources be invested in designing and 
implementing mitigation plans and prevention actions rather 
than in covering post-event costs. 

 
Fig.1: Federal road 180D totally submerged. Transit 
problems complicated evacuation and emergency aid 
activities. Source: CENAPRED  
 

B. Call Detail Records (CDRs) 
 
Cell phone networks are built using a set of base transceiver 
stations (BTS) that facilitate communication between cell 
phone devices within the network. Each BTS has a 
geographical location represented by its latitude and longitude. 
The area covered by a BTS is called a cell, and can be 
approximated using Voronoi tessellation. At any given 
moment, one or more BTSs can provide coverage to a cell 
phone. The final BTS is assigned depending on the network 
traffic and on the geographic position of the phone. 
 
CDR (Call Detail Record) databases are generated when a 
mobile phone connected to the network makes or receives a 
phone call or uses a service (e.g., SMS, MMS, etc.). In the 
process, and for billing purposes, the information regarding 
the time of the event and the BTS tower that the phone was 
connected to the even occurred is logged, which gives an 
indication of the coarse geographical position of the phone at a 
given moment in time; no precise position of the phone is 
recorded or calculated. 
 
Among all the data contained in a CDR, our study uses the 
anonymized (encrypted) originating number, the anonymized 



(encrypted) destination number, the time and date of the call, 
the duration of the call, and the latitude and longitude of the 
BTS used by the originating cell phone number and the 
destination phone number when the interaction happened. The 
dataset available for this study contained de-identified CDRs 
generated by the BTSs contained in the geographical area 
affected by the floods (roughly the state of Tabasco and parts 
of Veracruz). A total of nine months, from July’09 to 
March’10 were considered. In order to protect privacy, all the 
information presented is aggregated above the user level. No 
contract or personal data was collected, accessed or utilized 
for this study. No authors of this study participated in the 
extraction of the dataset. 

C. Additional data sources 
Data sources analyzed in this research also include: 
 
a) Satellite imagery data  
Multispectral, medium resolution (15 to 60 meters) ETM+ 
Landsat72 satellite images have been used for detecting and 
delimitating the submerged land. The temporal resolution of 
this data source is 16 days, so it helps to approximate the 
flooded area with reasonable accuracy, at least before and 
after the flooding happened. The spatial resolution is high 
enough to segment broad floods, river overflows or lake 
leakages. The satellite imagery data allows us to spatially limit 
the affected regions with better accuracy than the vague 
approximations that could be inferred retroactivitly from news 
or historical documents.  
 
b) Precipitation data 
The Tropical Rainfall Measuring Mission project3 provides 
high resolution (3 hours of temporal resolution and 0.25 
squared degrees of spatial resolution) of precipitation levels 
worldwide. The spatial resolution of this data is lower than the 
satellite images used to segment the floods, but high enough to 
obtain a realistic precipitation level in the affected area. On the 
other hand, the temporal resolution is adequate to generate a 
time series comparable to the CDR data. 
 
c) Civil protection data 
Once the state of emergency was declared, Tabasco Civil 
Protection assisted affected people in Huimanguillo and 
Cardenas first, and in Comalcalco, Cunduacán, and Paraíso 
days later. People who directly suffered the effects of the 
floods were moved to emergency camps and received first aid 
and staple goods (like water, food, blankets). Civil Protection 
recorded the data from Table 1, which we have used to 
validate the results obtained from the other data sources. 
 
d) Census data 
The most recent official Census4 of Mexico (2010) has been 
used to assess the representativeness and validate the 
population distribution inferred with the CDR data. 

                                                             
2http://earthexplorer.usgs.gov/ 
3http:// http://trmm.gsfc.nasa.gov/ 
4http://www.censo2010.org.mx/ 

Table 1. Affected population and emergency camps in several 
municipalities of Tabasco. Source: SEGOB. 

 
 
 

e) The Global Administrative Areas Database (GADM) 
The GADM5 provides GIS-compatible maps of administrative 
areas worldwide. GADM was used to classify the antennas 
locations in the map and associate them to the administrative 
boundaries of the state of Tabasco.  
 
f) Other contextual information 
Diverse data sources were consulted in order to get a wider 
understanding of the situation: 
 
- The Tropical Cyclones Early Warning System (SIAT CT) 
from the Mexican Civil Protection website6. In this document, 
the different phases of a tropical storm are clearly explained, 
as well as the actions designed by Civil Protection to respond 
to each phase. The actions are detailed chronologically in the 
emergency plan. We used this information to define the time 
scale for the temporal analysis of CDRs and precipitation data, 
to be later correlated with the population’s behavior patterns. 
 
- Flood hazard, vulnerability and risk maps from the National 
Center for Disaster Prevention7, were used to become 
acquainted with the prevention and mitigation flood risk 
studies carried out in the country. 
 
- News and photos about the consequences of the floods from 
local digital newspapers and blogs, such as El Economista8, La 
Jornada9, Informador10, among others. We geo-located 
relevant events like injured people, damaged infrastructure, 
river overflows and isolated towns, in order to gain a 
preliminary sense of the affected areas and the spatial 
distribution of damages. 
 
 

                                                             
5http://www.gadm.org/ 
6http://www.proteccioncivil.gob.mx/work/models/ProteccionCivil/Resource/6
2/1/images/siatct.pdf 
7http://www.atlasnacionalderiesgos.gob.mx/index.php/biblioteca/category/17-
hidrometeorologicos 
8http://eleconomista.com.mx/politica/2009/11/08/inundaciones-tabasco-
suman-200000-damnificados 
9 http://www.jornada.unam.mx/2009/11/11/estados/034n2est 
10http://www.informador.com.mx/mexico/2009/151290/6/inundacion-deja-
siete-mil-115-damnificados-en-tabasco.htm 



IV. METHODOLOGY 
 

The methodological framework proposed in this study 
comprises three main steps (see Fig.2): (1) Evaluation of the 
Representativeness of the Data: In order to study social 
behavioral patterns within CDR data it is necessary to evaluate 
how representative the mobile subscribers within it are of the 
target populations. We used the 2010 census of Tabasco as the 
ground truth to measure the representativeness of the signals 
extracted from the CDR data depicted in III.B; (2) Data 
Integration: additional data sources described in III.C have 
been gathered, homogenized and integrated into a Geographic 
Information System (GIS) creating a geo-spatial frame 
enabling interpretations of the CDR data analysis. The CDR 
data serves as the higher resolution substrate in which we 
integrate other independent data with different spatial and 
temporal resolutions;  

 
  

Fig.2: Overview of the methodological framework and data 
sources 

 
(3) Data-driven Event Analysis: In order to perform the 
analysis of CDR and remote sensing data, we have developed 
custom processing methods. For the CDR data analysis, a 
library of tools in Python has been implemented to parse CDR 
database files, filter them according to their associated GPS 
coordinates, reconstruct displacement trajectories, measure 
statistical descriptors, and visualize them together with geo-
referenced data. In order to analyze remote sensing images 
and identify the flooded area we have implemented an image 
processing pipeline that uses mathematical morphology (see 
Fig.3) and a maximum likelihood per-pixel classification 
method --available in ArcGIS software—to detect small water 
concentrations and to refine the boundaries of the wider 
previously segmented regions. The raw precipitation data 
described in III.C.b has been analyzed with MATLAB and 
Python scripts. A GPS conversion transformation has been 
applied to retrieve precipitation data at the antenna position 
(see Fig.4). As expected, the accumulated rainfall information 

matches with the segmented floods with the methodology 
described above. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3: a) Six panels of the data described in III.C.a were 
needed to cover Tabasco. b) A set of images pre-floods was 
used as a reference for comparison to another set of images 
obtained right after the floods in order to identify floods. c) 
Gaussian filtering and morphological geodesic reconstruction 
from seeds were used to semi-automatically segment flooded 
areas.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.4: Top: TRMM project raw data [-180,-50] to [180,50] 
degrees at one-day accumulation resolution (Nov 1st). Bottom: 
Accumulated precipitation during the first two weeks of 
November in Tabasco overlaid with the segmentation using 
satellite imaging. 



V. RESULTS 

A. Assessing the representativeness of CDR data  
 
In this study, we considered a subset of the CDRs provided by 
Telefonica comprising only those mobile users (social 
baseline) who made calls from Tabasco during the month prior 
to the onset of the reported floods on November 1st, 2009 
(baseline period). Figure 6 shows the spatial distribution of the 
Telefonica antennas covering the study area. In order to 
evaluate how representative this data is of the real population 
of Tabasco, we have compared the population distribution 
derived from the CDR data with the 2010 census of Tabasco, 
used as the ground truth. The underlying hypothesis here is 
that CDR based analysis may be extrapolated to measurements 
over the full population if the subscribers are homogeneously 
distributed compared to the real census, provided that the 
sampling of CDR data in the region is sufficient.  
 

 
Fig.5: Top: map of 2010 census (green bars) vs CDRs based 
population estimation (purple bars) in several cities of 
Tabasco (red=affected cities, blue=other cities) and 
surroundings. Bottom: The plot shows linear correlation 
between the CDR census and the real census (r-square 0.97). 

 
The social baseline has been characterized by assigning the 
home antenna tower (HAT) for each user, meaning the antenna 

tower most used at night during the baseline (BL) period [21]. 
Number of users per city (or administrative boundary) was 
inferred by cross-referencing the users’ HAT with the GADM 
database. We then compared the 2010 census information with 
the CDR population estimation for the main cities of the 
regions affected by the 2009 floods: Cárdenas, Huimanguillo, 
Paraíso, Comalco, Cunduacán and other nearby cities (see 
Fig.5). Results showed a linear relation between both variables 
with a relative homogeneity of the telecom penetration in the 
affected region of around the 20%. Hence, this analysis 
provides preliminary results that support the assumption of a 
homogeneous representativeness of communication activity 
and mobility patterns extracted from CDRs in the affected 
cities, enabling us to use the proposed hypothesis in this study. 
 

B. Population response to the floods based on variations in 
cell tower activity 

 
For the analysis, the CDR data of the baseline has been 
aggregated by day and by antenna to understand how the 
floods modulated the normal communication patterns 
observed at the antenna level [18].  In particular, we measured 
the number of unique phones placing or receiving calls in each 
antenna and for each day. We refer to this raw measurement as 
the BTS communication activity x(t) (see Fig.6 Top) 
 
To detect abnormalities in this activity, such as those produced 
by the floods, we propose the BTS variation metric that relies 
on the comparison x(t) against their characteristic variation 
obtained during the baseline period. Mathematically, the BTS 
variation metric -xnorm(t)- is defined as the z-score from x(t) 
referred to the normal distribution characterizing the baseline 
pattern as follows: 

 
where the pair (µBL,σBL) statistically characterizes the activity 
during the BL period (the month before the flooding onset). A 
static z-score has been previously used to characterize calling 
behaviors in large scale time sensitive emergency events like 
bombings, earthquakes or brief storms [18]. Here, we have 
computed xnorm(t) from the beginning of the BL period until 
the end of January (~2 months later the rainfall finished), 
generating temporal series of this z-score for the BTSs in the 
areas affected as shown in the Appendix-Figure. The spatial 
distribution of the maximum value of the BTS variation metric 
xnorm(t) -derived from the CDRs- is shown in an impact map 
(see Fig.6 and Appendix-Video) that combines the metric with 
other contextual indicators: the municipalities have been 
colored according to the official number of affected 
population and the segmentation of the flooded area generated 
from the Landsat-7 images. The impact map is consistent with 
our ground truth evidence (flood segmentation and civil 
protection records), since the BTS activity spikes in the most 
affected municipalities: Cárdenas and Huimanguillo (Fig.6 
Bottom). 



The BTSs featuring high variations of the metric outside of the 
affected regions are mainly those BTSs located in the ground 
transportation system. This might be a useful indicator for 
resource allocation in future emergencies. For example, very 
high variations are observed along Federal Road 180D, which 
was eventually completely covered by water (see Fig.1). Note 
that the temporal series of the Appendix-Figure also shows 
strong variations during a segment representing Christmas, 
where most of the sampled BTSs in the region spike, whereas 
the floods only trigger changes in the nearby BTSs.  

 
 
 
 
 
 
 
 
 
 
 
Fig.6: Top: “Impact Map” of Tabasco for the 2009 floods. 
The map shows the most critical day featuring the highest 
values of the BTS variation metric. See Appendix-Figure for 
the temporal series of these BTSs. Bottom: Signal x(t) 
aggregated for all antennas in Tabasco (left) and for the 
antennas close to the floods segmentation (right). 
 
During the floods, the distribution of the maximum in the BTS 
variation metric is wider than the BL period distribution, 
featuring more BTS with higher variation metric (see Fig.7).  
 
The real-time nature of mobile phone signals allows us to 
compare social patterns against their modulating factors. Here, 
we compare the proposed metric with rainfall levels. These 
precipitation levels are obtained from the NASA TRMM 
project’s day-resolution estimations of the rainfalls. The six 
hottest BTS that also feature different metric profile have been 
taken to observe the rainfall levels at the BTS level (see Fig.8 
Top). As shown, the typical delay between the maximum level 
of precipitations and the peak in the variations of the hot BTS 
indicator is 4 days. One possible explanation is that a 
population might not react in a way that alters the 

communication activity globally even under extreme 
climatological conditions. Instead, the response captured in the 
communication activity could have occurred due to the initial 
flooding effects, after the rivers and water reserves overflowed 
around November 5th and 6th as was reported in different news 
(see section III.C.f).  
 
 

 
 

Fig.7: Distribution of the maximum of the BTS variation 
metric for the BL period (gray) and floods (red). The curves 
show the percentage of antennas (y-axis) whose maximum 
metric value is higher than a given value (x-axis).  
 
The civil protection warning was issued on the day of 
maximum precipitations (November 3rd). It would be expected 
that this warning would result in a spike in communications 
activity, but this reaction can only be observed in two BTSs 
located along Federal Road 180D that eventually suffered an 
outage (see Fig.8 Bottom). These sudden variations and the 
following outage may indicate the point of the highest rain 
impact, likely causing a severe traffic jam on 180D. The 
increase of the BTS occupancy time due to the jam would 
eventually generate the shown communication activity peaks 
(although further analysis would be required).  
 
On the other hand, the maximum of the BTS variation in the 
antennas with higher population happens on November 6th 
when the rain was already vanishing. Several sources also 
raised the estimates of the affected population from 50,000 to 
100,000 people that day. Thus, the hypothesis would be that 
for gradual-onset disasters (due to a cumulative effect of some 
potential factor), the proposed metric might provide an 
estimation of the population’s awareness and subsequent 
reaction rather than a means to detect the onset of the event. 
The delayed spike in BTS variation in this case may indicate 
that while the civil protection warning did not produce the 
sufficient level of awareness in the population, the initial 
consequences of the flooding did. 
 



 
Fig.8: Top: BTS variation metric (red) vs the precipitation 
level (blue) for the six hottest BTS. The slashed line shows the 
emergency warning date as notified in the news. Bottom: Map 
featuring the position and date (e.g. 6N is 6th November) 
where the maximum of the BTS variation metric was observed. 
 

VI. DISCUSSION 
This work is a retrospective study that leverages the footprints 
of mobile phone activity during floods to propose data-driven 
indicators with potential to support decision making during 
emergencies. In particular, we have proposed a methodology 
based on integrated analysis of CDRs with several data 
sources, including remote sensing imagery and rainfall 
information. We have first tested the representativeness of the 
CDR data, observing a homogeneous penetration of mobile 
phones in the affected cities enabling us to use the hypothesis 
that CDR based analysis may be extrapolated to estimate 
measurements over the full population. Therefore,  it would be 
possible to estimate population changes in regions with 
sufficient density of BTSs (as remote sensors of 
communication activity), provided that changes in the size of 
the population outpace changes in mobile carrier penetration. 
  
We also tested a CDR-based measurement to discover 
abnormal communication patterns at the cell tower level. The 
information on abnormal cell tower activity as a result of 
floods could be used to trigger further investigations and to 
potentially locate damaged areas, assess needs and allocate 
resources in the short term (for example sending additional 
supplies to nearby centers).  In particular, this would allow 
improved resource allocation in the first 24-48 hours when 
resources are scarce. The identification of relevant affected 

cell towers might also serve to better target public 
communications. Our findings show that results are relevant 
for tower-level cell phone traffic, supporting the position that 
that the privacy concerns of using CDR data can in part 
addressed by aggregating individual behavior records while 
providing utility for emergency operations. 
 
Abnormal communication activity might also be used to 
measure the awareness of at-risk populations indicating those 
insufficiently responsive to early warning announcements. 
Note that the population’s reaction --in terms of increased 
communication—took place when the emergency was 
declared, rather than during the previous alert stage, as 
expected. This could be an indicator of the skepticism or lack 
of awareness of the population regarding the heightened risk 
of floods. If this is the case, a systematic study of the reasons 
for such behavior is recommended, since lack of awareness of 
a hazard implies an increase in vulnerability to its effects. 
Given the possibility of monitoring in real-time the level of 
awareness of populations, this study would suggest that, in the 
future, citizens’ reactions to a catastrophe during the 
emergency phase could be tracked and incorporated into an 
evolving emergency management strategy.  
 
Note that the proposed indicators are candidates for further 
exploration; these methods ideally need fine-grained 
validation with precise high resolution gold standard 
information issued from official channels (which given the 
emergency nature of the studied phenomena might not exist in 
most of the cases). In order to validate the utility of the 
temporal series of z-score measurements to detect floods and 
potentially other disasters, an exhaustive benchmark against 
several datasets should be made. Indeed, there are factors that 
would need special consideration as the difference in the 
response depends on cultural traits, geographical 
characteristics and socio-economic status. 
 
While it is clear that there is a need for further development of 
these methods and techniques  it must also be recognized that 
the operational implementation of these methodologies also 
implies institutional capacities, policy frameworks and 
technological infrastructure that may not be currently in place 
within local or national disaster management offices.  
 
Potential angles for future research include further validation 
by combining information from CDRs with data from other 
sensors such as traffic video cameras, or by monitoring the 
time it takes for CDR indicators to stabilize and return to 
normal levels, as a potential measurement of the rate of 
recovery. This could be helpful for planning and contributing 
to measures of resilience [21]. We could compare this 
indicator across different areas and understand where 
protracted support may be required. In addition, it would be 
interesting to combine this passive analysis with actively 
solicited input from disaster-affected communities when 
feasible, e.g., by conducing live or automated phone surveys 
that yield information on outcomes -- health, food security, 



etc. [22]. In sum, the work presented in this paper is small 
example of a how a public-private partnership between a 
mobile company and the government could add value to 
humanitarian response in the context of operational 
application of CDRs, working with data at an aggregated level 
to eliminate risks to privacy and be in full compliance with 
national data protection regulations. 

ACKNOWLEDGEMENTS 
We would like to thank the Global Pulse team in New York 
and the Vulnerability Analysis and Mapping team from WFP 
in Rome. We thank Ania Calderon and Guillermo Ruiz de 
Teresa from the Presidencia de la República de México for 
their support of the project. Thanks to the following research 
groups from the Universidad Politecnica de Madrid for their 
contribution: Biomedical Image Technologies lab, Complex 
Systems group, Earthquake Engineering group and Innovation 
Centre of Technologies for Human Development. 
 

REFERENCES 
[1] Gonzalez, M. C., Hidalgo, C. A., & Barabasi, A. L. (2008). 

Understanding Individual Human Mobility Patterns. Nature, 453(7196), 
779-782. 

[2] Xin Lu, Erik Wetter, Nita Bharti, Andrew J. Tatem & Linus Bengtsson. 
(2013). Approaching the Limit of Predictability in Human Mobility. 
Nature Scientific Reports 3 : 2923 

[3] Lu, X., Bengtsson, L., & Holme, P. (2012). Predictability of Population 
Displacement after the 2010 Haiti Earthquake. Proceedings of the 
National Academy of Sciences, 109(29), 11576-11581.  

[4] Wesolowski, A., Eagle, N., Tatem, A. J., Smith, D. L., Noor, A. M., 
Snow, R. W., & Buckee, C. O. (2012). Quantifying the Impact of 
Human Mobility on Malaria. Science, 338(6104), 267-270. 

[5] Centola D (2010) The Spread of Behavior in an Online Social Network 
Experiment. Science 329: 1194–1197. 

[6] Rodriguez M.G., Leskovec J., Balduzzi D., Scholkopf B. (2014) 
Uncovering the Structure and Temporal Dynamics of Information 
Propagation. Network Science, 2(01), 26-65. 

[7] Helbing D, Farkas I, Vicsek T (2000) Simulating Dynamical Features of 
Escape panic. Nature 407: 487–490. 

[8] Kaplan EH, Craft DL, Wein LM (2002) Emergency Response to a 
Smallpox Attack: The Case for Mass Vaccination. Proceedings of the 
National Academy of Sciences of the United States of America 99: 
10935–10940. 

[9] Petrescu-Prahova M, Butts CT (2008) Emergent coordinators in the 
World Trade Center disaster. International Journal of Mass Emergencies 
and Disasters 28: 133–168 

[10] Gallup A.C, Hale J.J., Sumpter D.J., Garnier S., Kacelnik A., Krebs J.R., 
Couzin I.D. (2012) Visual Attention and the Acquisition of Information 
in Human Crowds. Proceedings of the National Academy of Sciences, 
109(19), 7245-7250. 

[11] Wesolowski, A., & Eagle, N. (2010) Parameterizing the Dynamics of 
Slums. In AAAI Spring Symposium: Artificial Intelligence for 
Development. 

[12] Frias-Martinez, V., Frias-Martinez, E., & Oliver, N. (2010, March). A 
Gender-Centric Analysis of Calling Behavior in a Developing Economy 
Using Call Detail Records. In AAAI Spring Symposium: Artificial 
Intelligence for Development. 

[13] Soto, V., Frias-Martinez, V., Virseda, J., & Frias-Martinez, E. (2011). 
Prediction of Socioeconomic Levels using Cell Phone Records. In User 
Modeling, Adaption and Personalization (pp. 377-388). Springer Berlin 
Heidelberg. 

[14] Wesolowski, A., Buckee, C. O., Pindolia, D. K., Eagle, N., Smith, D. L., 
Garcia, A. J., & Tatem, A. J. (2013) The Use of Census Migration Data 
to Approximate Human Movement Patterns across Temporal Scales. 
PloS one, 8(1), e52971.   

[15] Bengtsson, L., Lu, X., Thorson, A., Garfield, R., & von Schreeb, J. 
(2011). Improved Response to Disasters and Outbreaks by Tracking 
Population Movements with Mobile Phone Network Data: a Post-
Earthquake Geospatial Study in Haiti. PLoS medicine, 8(8), e1001083. 

[16] Moumni, B., Frias-Martinez, V., & Frias-Martinez, E. (2013, 
September). Characterizing social response to urban earthquakes using 
cell-phone network data: the 2012 oaxaca earthquake. In Proceedings of 
the 2013 ACM conference on Pervasive and ubiquitous computing 
adjunct publication (pp. 1199-1208). ACM. 

[17] Kapoor A, Eagle N, Horvitz E (2010) People, Quakes, and 
Communications: Inferences from Call Dynamics about a Seismic Event 
and its Influences on a Population. In: Proceedings of AAAI Artificial 
Intelligence for Development (AI-D’10). pp 51–56. 

[18] Bagrow, J. P., Wang, D., & Barabasi, A. L. (2011). Collective Response 
of Human Populations to Large-scale Emergencies. PloS one, 6(3), 
e17680. 

[19] Overeem, A., Leijnse, H., & Uijlenhoet, R. (2013). Country-wide 
Rainfall Maps from Cellular Communication Networks. Proceedings of 
the National Academy of Sciences, 110(8), 2741-2745. 

[20] Becker, R., Cáceres, R., Hanson, K., Isaacman, S., Loh, J. M., 
Martonosi, M., ... & Volinsky, C. (2013). Human mobility 
Characterization from Cellular Network Data. Communications of the 
ACM, 56(1), 74-82. 

[21] Food Security Information Network., (2014) Resilience Measurement 
Principles - FSIN Technical Series No. 1 

[22] Mock, N., Morrow, N., & Papendieck, A. (2013). From Complexity to 
Food Security Decision-support: Novel Methods of Assessment and 
their Role in Enhancing the Timeliness and Relevance of Food and 
Nutrition Security Information. Global Food Security, 2(1), 41-49.

 
 
 

Appendix-Figure: Time series of BTS variation per BTS. The gray 
stripes indicate the floods and Christmas where the metric spikes. The 
top-right labels in each chart indicate the municipality where the BTS is 
located (see Fig.6). Charts have been ordered and colored according to 
the maximum value of the metric for each BTS within the floods 
segment (hot map from the smallest to the highest variation). 
 
Appendix-Video: Time-lapse of the Tabasco impact map 
(https://www.youtube.com/watch?v=0str5UXDQEU)  
The video displays the absolute value of the BTS variation metric from 
Oct’09 to Jan’10 as in the temporal series. Each antenna is represented 
by a circle with color and size proportional to the daily metric value. 
The segmented flooded area has been colored in light blue. 


