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ABSTRACT 

We propose a new algorithm for the design of prediction struc
tures with low delay and limited penalty in the rate-distortion per
formance for multiview video coding schemes. This algorithm 
constitutes one of the elements of a framework for the analysis 
and optimization of delay in multiview coding schemes that is 
based in graph theory. The objective of the algorithm is to find 
the best combination of prediction dependencies to prune from 
a multiview prediction structure, given a number of cuts. Tak
ing into account the properties of the graph-based analysis of the 
encoding delay, the algorithm is able to find the best prediction 
dependencies to eliminate from an original prediction structure, 
while limiting the number of cut combinations to evaluate. We 
show that this algorithm obtains optimum results in the reduction 
of the encoding latency with a lower computational complexity 
than exhaustive search alternatives. 

Index Terms — 3D Video, video-conference, multiview video 
coding, prediction structure, low latency, graph theory 

1. INTRODUCTION 

For several years, video technologies have targeted the develop
ment of systems that provide immersive viewing experiences. To
day, the advances in three-dimensional (3D) display technologies 
have made 3D video an emerging and sustainable market in the 
near future. 3D Video (3DV) and Free Viewpoint Video (FVV) 
are new types of visual media that expand the user's experience 
beyond what is offered by 2D video [1], providing a 3D depth 
impression of the scene, and an interactive viewpoint selection. 
To support 3DV and FVV, several coding schemes for multiview 
video and additional data, such as depth, have been proposed. 
These have resulted in finished or ongoing standardization pro
cesses, such as MVC [2], 3D-AVC [3] or extensions of HEVC 
for 3D Video [4], All of these coding schemes include multiview 
video as the fundamental element of the set of data that is coded 
and transmitted. The core of the coding technology for this multi-
view video has consistently been the extension of the hybrid-video 
coding scheme to the spatial dimension, exporting the temporal 
prediction concept to the inter-view component. Thus, complex 
prediction structures are constructed, with prediction relationships 
in two dimensions - temporal and spatial. 

Regarding the design of multiview prediction structures, sev
eral options have been investigated to obtain efficient prediction 
structures in terms of rate-distortion (RD) performance. Merkle 
et al [5] proposed multiview prediction structures based on hierar
chical B schemes in the temporal and spatial dimensions, that were 
adopted by the the Joint Video Team (JVT) as the non-normative 
structure for the MVC coding scheme [6], These structures set 
the ground for the prediction structures of subsequent standards. 

However, little effort has been made to optimize these multiview 
prediction structures. The work in [7] proposes to construct the 
interview prediction structure based upon the notion of minimum 
spanning tree. In [8], the authors locate the position of the base 
view using the global disparity information. The work in [9] pro
poses graph theory to determine the position of P frames and the 
coding order of B frames in multiview prediction structures using 
RD metrics. 

In our previous work [10], we argued that the design of mul
tiview prediction structures has been mostly focused on improv
ing RD performance, ignoring important differences in the delay 
behavior of multiview encoders, which may be critical for delay 
constrained applications. In that work, we presented the problem
atic of delay analysis in multiview coding schemes and proposed 
a framework that uses graph theory to perform a systematic anal
ysis and optimization of this delay. Using this framework, we 
were able to provide a methodology to reduce the encoding la
tency down to a given constraint with the minimum number of cuts 
in the prediction dependencies of the original prediction structure. 
This way, the penalty in RD performance is limited. In [11] we 
gave proof that, for multiple cuts, the optimum solution is found 
by an exhaustive search which is highly computationally inten
sive for usable prediction structures and a non-small number of 
cuts. Thus, we proposed a sub-optimal solution based on a tree
like search to limit this computational complexity. 

In this paper, we propose a new approach to the algorithm of 
multiple edge pruning that obtains optimum results with important 
savings in computational complexity with respect to the exhaus
tive search. This new algorithm makes use of the properties of 
the delay analysis in the directed acyclic graph encoding latency 
(DAGEL) model [10] to limit the number of combinations of cuts 
in prediction links that need to be evaluated, discarding those com
binations that are not amenable to be the optimum. We prove that 
the optimum solution, in terms of encoding latency reduction, is 
necessarily in the set of link combinations generated by the algo
rithm. We name this algorithm Fast Optimum Search (FOS). The 
results will show that the FOS saves between one and six orders 
of magnitude in computational complexity with respect to an ex
haustive search, while obtaining optimum results, for commonly 
used prediction structures. 

This paper is organized as follows: in Section 2 we give a 
brief reminder of the concepts of the DAGEL model. In Section 
3 we present the FOS for multiple edge pruning. In Section 4 we 
give results of computational complexity savings achieved by the 
FOS and in Section 5 we present the conclusions. 

2. DAGEL MODEL AND EDGE PRUNING 

In [10], we proposed a the DAGEL model to perform a systematic 
analysis of the encoding delay in multiview video encoders. From 
any arbitrary multiview prediction structure a direct acyclic graph 
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Figure 2: Optimum reduction of the encoding latency for (a) one, (b) two and (c) three cuts of edges in the DAG. The edges in red are 
the ones selected to cut. The edges that form the critical path of the initial prediction structure are marked in green. The initial prediction 
structure is the one depicted in Figure 1. 
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Figure 1: (a) Example of a JMVM prediction structure with three 
views and a GOP size of four frames and (b) the DAG extracted 
from it. v i / t j represents frame j of view i as signaled on the GOP 
structure. 

(DAG) is extracted. As explained in [10], each node in the DAG 
represents a frame and each edge a prediction relationship. Figure 
1 shows an example of a multiview prediction structure and the 
associated DAG. 

In the DAGEL model, each edge of this DAG has an associ
ated cost value that indicates the delay added by a parent frame to 
the encoding process of its child frame, i.e. the edge that links the 
parent frame x* ( j-th frame of view i) with frame x¡, has a cost 
LJ-\ that represents the delay added by the processing time of Xj 
to the coding process of x¡. Similarly, the paths in the graph have 
a cost that is computed by adding the costs u A oí the edges in 
the graph. Then, the encoding latency (Laíco(¡) of the prediction 
structure is computed by solving: 

Latco¿ = m a x PdeU + A t proc • (1) 

where p¿eu is the path with the highest cost among those ending 

in node Xj, and Aip r 0c l is the processing time of Xj. p¿eu can be 

obtained by means graph theory algorithms [12]. The path p¿eu 

that maximizes (1) is the critical path of the DAGEL model. 
As proven in [11], if a unique cut is to be performed in the 

set of prediction links, the best cut in terms of encoding latency 
reduction is necessarily on its critical path. In the case of multiple 
edge pruning, a greedy solution that iteratively cuts an edge in 
the critical paths is generally sub-optimal. To obtain the optimum 
solution for a given number of cuts, an exhaustive search of all the 
possible cut combinations is needed. Figure 2 depicts an example 
of this phenomenon by showing optimum edge selection for an 
increasing number of cuts in the initial prediction structure shown 
in Figure 1. Figure 2 depicts the DAGs for the cases of one, two, 
and three cuts respectively. The results show that the selected edge 
in the case of one cut is maintained for the case of two cuts, while 
in the case three cuts three different edges of the DAG are selected. 
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Table 1: Computational complexity of the Exhaustive Search mea
sured by the number of prediction structures evaluated with the 
DAGEL model. 

3. FAST OPTIMUM SEARCH FOR MULTIPLE EDGE 
PRUNING 

The example in Figure 2 provides the intuition of the need of an 
exhaustive search of all the possible cut combinations. However, 
for most useful multiview prediction structures, the exhaustive 
search of all cut combinations is a computationally intensive al
gorithm: in the case of n C cuts over the n L links, it implies the 
evaluation of Cn

n
L
C prediction structures, where Cn

n
L
C is: 

nj_}. 
. (2) 

tic! (JIL — nc)\ 
Since in multiview prediction structures, TIL is usually high, 

i f the number of cuts is high, the optimum latency reduction algo
rithm would require a high computational load for all the possible 
combinations. Table 1 shows the complexity of the exhaustive 
search for different JMVM [6] prediction structures, and different 
values of nc, measured by the number of prediction structures 
that need to be analyzed using the DAGEL model. 

In [10], we proposed a sub-optimal algorithm for multiple 
edge pruning, the Tree-Search. This algorithm reduced the num
ber of prediction structures to analyze by selecting a series of pre
diction structure candidates in a tree-decision manner at the cost of 
obtaining a sub-optimal solution to the problem of multiple edge 
pruning. To avoid this sub-optimal approach, we propose here 
a new approach to multiple edge pruning that obtains the same 
result as the exhaustive search with a reduced computational com
plexity. This algorithm takes advantage of the concept that for a 
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Figure 3: Example of the FOS for n C = 2. Each node of the tree depicts a DAG with its critical path marked in red. For clarity only the 
branches resulting from one of the nodes in level 1 are depicted in level 2. 

given multiview prediction structure the optimum cut is necessar
ily in the set of links that constitute the critical path. We name this 
algorithm the Fast Optimum Search (FOS). In the following, we 
explain the algorithm of the FOS: 

Let So be the initial multiview prediction structure and n C a 
given number of cuts. The following operations are performed: 

1. The critical path of So is computed by means of the DAGEL 
model. Let nC P , 0 be the size of the critical path of So . 

2. nC P , 0 prediction structures are obtained as children of struc
ture So in the immediate lower level by cutting each of the 
nC P , 0 edges that form the critical path of So. 

3. Steps 1 and 2 are repeated recursively for each children 
prediction structure until a tree of n C + 1 levels is obtained. 

4. Latcod is computed for each of the prediction structures of 
the lowest level and the prediction structure with the mini
mum value is selected. 

Figure 3 shows an example of the FOS for the prediction structure 
in Figure 1 and n C = 2. It depicts the DAG of an initial prediction 
structure (level 0) and the children DAGs that are obtained from it 
by cutting each of the links in the critical path (level 1). Level 2 of 
the tree is obtained analogously but only the prediction structures 
derived from the first structure in level 1 are shown. 

3.1. Optimality of the Fast Optimum Search 

The optimality of the FOS algorithm can be proven by structural 
induction: we know from [11] that if one cut (n C = 1) is per
formed, it must be one of the edges of the critical path of the orig
inal prediction structure (So). 

In the case of n C = 2 , one of the cuts is necessarily in the 
critical path of So (if not, the critical path of So exists and Latcod 

is that of So). Given that level 1 of the tree is generated by all 
possible cuts in the critical path of So, and that for each of these 
structures the optimum cut is found in one of the edges of their 
critical paths, the optimum structure is necessarily one of those in 
level 2 of the tree. 

This reasoning can be extended for any arbitrary number of 
cuts n C , by proving recursively that the optimum solution exists 
for all levels from 1 to n C . Thus, for any number of cuts, the op
timum prediction structure in terms of encoding latency reduction 
is found by using this FOS algorithm. 

4. COMPUTATIONAL COMPLEXITY 

This section provides a comparison of the computational com
plexity between the FOS algorithm and the exhaustive search. 
To illustrate the reduction of computational complexity that is 
achieved using the FOS algorithm in comparison with the exhaus
tive search, we have compared both algorithms in terms of the 
number of prediction structures that have to be analyzed using the 
DAGEL model. 

For a given initial prediction structure, and a given value of 
n C , the computational complexity is measured by: 

log10 (Comp(X)) , (3) 

where Comp(X) is the number of prediction structures computed 
using the DAGEL model for a given algorithm (Exhaustive Search 
or FOS). With this measure, we obtain a clear insight of the differ
ence in order of magnitude of the number of operations that have 
to be computed for both algorithms. 

For the experiments we have used JMVM prediction struc
tures [6] with IBP prediction in the spatial dimension. To cover a 
broad range of multiview prediction structures, we have used dif
ferent combinations of 3 and 5 views and GOP sizes of 4, 8 and 16 
frames. The test cases cover different values of the n C (ranging 
from 2 to 6). 

Figure 4 shows the computational complexity results, mea
sured as previously described, for different original prediction struc
tures, and different values of n C . The results evidence a relevant 
reduction of the computational complexity for all evaluated cases 
for the FOS algorithm, which is even more evident for larger pre
diction structures and number of cuts. For example, for a predic
tion structure of 5 views and a GOP size of 16 frames, the number 
of times that the DAGEL model needs to be computed for n C = 6, 
in the exhaustive method, is 1.55 × 1011 (see Table 1). Instead, 
this number of computations can be reduced 6 orders of magni
tude using the FOS. This great saving in the computational cost 
of the search and the optimality of the solution proposed by the 
FOS make this new algorithm prevail over previous approaches 
for multiple edge pruning in multiview prediction structures. 

5. CONCLUSIONS 

We have presented the Fast Optimum Search for multiple pruning 
of prediction links in multiview prediction structures. By consid-
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Figure 4: Computational complexity of the exhaustive search and FOS. Results in a logarithmic scale for different initial prediction 
structures and values n C . 

ering the properties of the analysis of the encoding delay using 
the DAGEL model, we prove that this algorithm limits the num
ber of evaluated cut combinations while it guarantees an optimum 
result in terms of encoding latency reduction. The experimental 
results report computational complexity savings that go from one 
to six orders of magnitude with respect to the exhaustive search 
approach. Thus, this algorithm overcomes previous approaches 
by obtaining optimum results with an important reduction of the 
computational complexity. Therefore, it constitutes the best so
lution to date to the problem of design of low latency prediction 
structures by prediction link pruning. 
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