
Quality-Optimization Algorithm Based on Stochastic Dynamic
Programming for MPEG DASH Video Streaming

Sergio García, Julián Cabrera and Narciso García

Abstract—In contrast to traditional push-based protocols,
adaptive streaming techniques like Dynamic Adaptive Streaming
over HTTP (DASH) fix attention on the client, who dynamically
requests different-quality portions of the content to cope with a
limited and variable bandwidth but aiming at maximizing the
quality perceived by the user. Since DASH adaptation logic at the
client is not covered by the standard, we propose a solution based
on Stochastic Dynamic Programming (SDP) techniques to find
the optimal request policies that guarantee the users' Quality of
Experience (QoE). Our algorithm is evaluated in a simulated
streaming session and is compared with other adaptation
approaches. The results show that our proposal outperforms
them in terms of QoE, requesting higher qualities on average.

I. INTRODUCTION

As streaming technologies improve, consumers are more
demanding and expect watching fluidly a certain video in
every circumstance, either through a 3G connection or with
broadband access, almost regardless of the quality. Traditional
streaming approaches fail to provide high QoE for all the
range of consumer electronics and access connections,
especially when throughput fluctuates over time and involves
issues like high latency or playback freezes. However,
adaptive streaming techniques aim to minimize these
shortcomings and guarantee a smooth streaming session for
the users keeping the highest possible video quality [1]. This
goal is feasible by encoding the same content with different
qualities and dividing them in segments, making clients
capable of dynamically switching between them.

Several proprietary adaptive streaming implementations,
such as HTTP Live Streaming (HLS), have arisen, but the
disparity of solutions and media formats has promoted the
definition of the DASH standard by MPEG [2]. One of its key
points is the open door for the adaptation logic that selects the
next segment's quality, which is a clients' specific task.

Recent researches have been carried out to design
algorithms based on either a heuristic [3] or a theoretical [4]
approach. In this paper, we design an adaptation logic that
maximizes the users' QoE by characterizing the stochastic
nature of the system mathematically as a SDP problem. Then,
applying SDP tools we compute offline the clients' optimal
request policies, which can be easily included in current video
consumer electronics such as smartphones or tablets. These
techniques have already been used to control video-packets
retransmissions in rate-limited environments [5] and match
perfectly to the problem adaptive-streaming clients must face.

II. STOCHASTIC DYNAMIC PROGRAMMING ALGORITHM

When a client decides to request a DASH content, he must
first download the manifest file which lists the different-
quality versions stored at the server. Then the player has to
sequentially request the segments in which the video has been
split, deciding before each query which is the most adequate
quality according to the network characteristics. Besides, it
can even decide not to download any segment and delay the
following request. After an amount of time that depends on the
available bandwidth and the segment size, it will be
downloaded and placed into the receiver's buffer. In the
meanwhile, already-downloaded segments will be taken out of
the buffer to be decoded and presented to the user.

Therefore we can formalize in terms of SDP this behavior
as a dynamic system that evolves in stages influenced by
random factors. Then, applying SDP techniques [7] we can
compute optimal policies for each state, that is, the best
quality-decisions according to the client's information. For
that purpose, we need to define the state and action variables
and their influence on the QoE-oriented cost function, as well
as compute the state-transition probabilities.

Let k be the current stage and vector sk = (bk, bwk) the state
of the system before requesting segment k, where bk is the
current buffer level, measured in segments and ranging from 0
to BMAX, and bwk is the last measured bandwidth, quantified in
M discrete values {BWb...,BWM}. Taking into account the
state information, sk, and the expected cost, the client must
take a decision, ak, on which quality has to be requested. The
possibility of delaying the next request has also been included
and denoted as ak=0. Provided that there are R quality levels
available at the server, the set of values for ak is {0,Q¡,... ,QR}.

The system progression is influenced by two random
parameters: the requested-segment bit number, o)k(ak), and the
change in the available bandwidth during next download.

From the system behavior we can derive system equation
(1), noting that [•] represents the rounding operation, T stands
for the segment duration in seconds and Td is the delay time.

= Uax{bk+l-[cok(ak)/(T-bwM)],l}, ak*0 (1)

k+l 1 maxK-fo/r], 0}, ak=0

The evolution of the variable bwk is modeled as a first-order
discrete-time Markov chain, simulating the throughput
changes in a real environment [6]. The proposed chain is made
up of the M discrete bandwidth values for bwk and has a
channel state-remaining probability of 0.8, whereas the
transition probability to other channel states is 0.1 each.
Additionally, we model the probability distribution of mk (ak)
as a sampled Gaussian function with mean ak-T.

The incurred cost for selecting a quality ak when staying at
state sk is modeled considering two aspects: (i) the requested
average bitrate should be close to and preferable below the
measured bandwidth, and (ii) the buffer level should stay
around a predefined target value Bopt, avoiding high and,
especially, low values. We define the difference between the
modulated bandwidth and the possible bitrates as dk and the
cost derived from the buffer level as ck, defined in (2) and (3).

bitrates which are on average higher than the bandwidth, at the
expense of involving more quality switches.

2

d bw
1 + b IB opt

2
(2)

ck = {bk/Bopt)2 - 2 • bk/Bopt + 1 (3)

We therefore compute the cost for requesting quality ak as

C(ak ¿ 0/sk)

Segment index

dk+a-ck,

PÍ-ed k) \ (X ' c

dk>0

dk < 0
In the case of delaying the decision, we penalize the cases

where the buffer level is not close to the maximum value and
where the bandwidth is close to the minimum, that is,

C(ak = 0/sk) = y- b
B

2- k
B

+1\ + sBW1
bw

Parameters a, ¡3, y and 8 must be set to weight appropriately
each cost component and obtain a natural policy behavior.

The next step is computing the state-transition probabilities.
Since state variables are independent of each other, we have
P{sk+1/sk,ak cot

P{bk+1/bk,bwk,ak,(Ok}-P{bwk+1/bwk}

Once our model is completely defined and considering our
problem as an infinite horizon one, as the number of stages
can be extremely high, we use the S D P policy iteration
method to compute the optimal policies for every state sk.

III. SIMULATION AND RESULTS

We compare our quality-adaptation algorithm based on the
optimal S D P policies with another D A S H algorithm [3] and
with the H L S implementation in a commercial player.

We first encoded a two-hour-long H D video movie in 14
quality streams with average bitrates Qi distributed between
0.1 and 4.5 Mbps following a similar scheme to the distributed
D A S H dataset [8]. Each stream was segmented in 2-seconds
chunks and stored in a server connected to our computer
through a L A N , along with the D A S H and H L S manifest files.

In order to dynamically limit the available bandwidth and
simulate the most frequent throughput variations in a shared
network, we used the open source tool DummyNet. We
followed the proposed Markov chain model with BWi ranging
from 0.25 to 5 Mbps in steps of 250 kbps and evaluated the
state-change possibility every second. Then we repeated the
same sequence of bandwidth changes in all the simulations.

The numerical values used to compute offline the optimal
policies before performing the simulations are BMAX =10, Bopt

=7, T=2, Td=2, a=0.5,/?=4.14, y=100 and ¿=100.
We used a self-implemented D A S H client and an H L S

player for the streaming sessions and registered the requested
bitrate for every segment. An extract of the quality evolution
for the simulations is presented in Fig. 1, along with the
available throughput. Our algorithm manages to request

Fig. 1. Evolution of the throughput and the requested bitrates.

We finally carried out a numerical comparison based on
previously proposed QoE measures [9]. Users’ satisfaction is
modeled as a function directly proportional to the average
segment quality (factor Q) penalized by the frequency and
length of video freezes (factor F) and quality switches (factor
S). The average simulation results are presented in Table I.

T A B L E I
COMPARISON OF Q O E RESULTS OF SIMULATIONS

Solution Algorithm QoE Q (%) F (%) S (%)
DASH SDP-based 3.738 75.37 6.9 4.8
DASH Buffer-based [3] 3.360 69.59 10.2 0.6
HLS Player’s 3.639 67.61 2.1 2.2

As expected from Fig. 1, our SDP-based algorithm requests a
higher average quality Q. However, as extracted from factor S,
it has the highest quality-switch rate, which may be considered
negative by users. Regarding the influence of freezes (F), our
logic achieves an intermediate punctuation.

In terms of global QoE, which is computed by weighting the
previous factors, our proposed logic outperforms the evaluated
algorithms. It achieves a tradeoff between the requested
quality and the resulting video freezes, so it can be simply and
easily implemented in existing consumer electronic devices to
improve the users’ satisfaction relative to current solutions.

IV . REFERENCES

[1] A . C . Begen, T . Akgul, and M . Baugher, “Watching video over the web:
part 1: streaming protocols,” IEEE Internet Computing, vol. 15, no. 2,
pp. 54–63, Mar.-Apr. 2011.

[2] T . Stockhammer, “Dynamic adaptive streaming over H T T P – standards
and design principles,” Proceedings of MMSys, pp. 133-144, Feb. 2011.

[3] K . Miller, E . Quacchio, G . Gennari and A . Wolisz, “Adaptation
algorithm for adaptive streaming over HTTP,” IEEE 19th International
Packet Video Workshop, pp. 173-178, May 2012.

[4] T . C . Thang, J. W . Kang, A . T . Pham, “Adaptive Streaming of
audiovisual content using M P E G DASH,” IEEE Trans. Consumer
Electronics, vol. 58, no. 1, pp. 78-85, March 2012.

[5] V . Miguel, J . Cabrera, F . Jaureguizar and N . García, “Distribution of
high-definition video in 802.11 wireless home networks,” IEEE Trans.
Consumer Electronics, vol. 57, no. 1, pp. 53-61 Feb. 2011.

[6] T . Andelin, V . Chetty, D . Harbaugh, S . Warnick and D . Zappala,
“Quality selection for dynamic adaptive streaming over H T T P with
scalable video coding,” Proc. of MMSys, pp. 194-154, Feb. 2012.

[7] D. P. Bertsekas. Dynamic programming: deterministic and stochastic
models (1st ed.), Prentice-Hall, 1987.

[8] S . Lederer et al., “Distributed D A S H dataset,” Proceedings of MMSys,
pp. 131-135, Feb. 2013.

[9] M . Claeys et al., “Design of a Q-learning-based client quality selection
algorithm for H T T P adaptive video streaming,” AAMAS, May 2013.

3.5

1.5

a k 1820 1830 1840 1850 1860

870
1880

2

