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Abstract—In contrast to traditional push-based protocols, 
adaptive streaming techniques like Dynamic Adaptive Streaming 
over HTTP (DASH) fix attention on the client, who dynamically 
requests different-quality portions of the content to cope with a 
limited and variable bandwidth but aiming at maximizing the 
quality perceived by the user. Since DASH adaptation logic at the 
client is not covered by the standard, we propose a solution based 
on Stochastic Dynamic Programming (SDP) techniques to find 
the optimal request policies that guarantee the users' Quality of 
Experience (QoE). Our algorithm is evaluated in a simulated 
streaming session and is compared with other adaptation 
approaches. The results show that our proposal outperforms 
them in terms of QoE, requesting higher qualities on average. 

I. INTRODUCTION 

As streaming technologies improve, consumers are more 
demanding and expect watching fluidly a certain video in 
every circumstance, either through a 3G connection or with 
broadband access, almost regardless of the quality. Traditional 
streaming approaches fail to provide high QoE for all the 
range of consumer electronics and access connections, 
especially when throughput fluctuates over time and involves 
issues like high latency or playback freezes. However, 
adaptive streaming techniques aim to minimize these 
shortcomings and guarantee a smooth streaming session for 
the users keeping the highest possible video quality [1]. This 
goal is feasible by encoding the same content with different 
qualities and dividing them in segments, making clients 
capable of dynamically switching between them. 

Several proprietary adaptive streaming implementations, 
such as HTTP Live Streaming (HLS), have arisen, but the 
disparity of solutions and media formats has promoted the 
definition of the DASH standard by MPEG [2]. One of its key 
points is the open door for the adaptation logic that selects the 
next segment's quality, which is a clients' specific task. 

Recent researches have been carried out to design 
algorithms based on either a heuristic [3] or a theoretical [4] 
approach. In this paper, we design an adaptation logic that 
maximizes the users' QoE by characterizing the stochastic 
nature of the system mathematically as a SDP problem. Then, 
applying SDP tools we compute offline the clients' optimal 
request policies, which can be easily included in current video 
consumer electronics such as smartphones or tablets. These 
techniques have already been used to control video-packets 
retransmissions in rate-limited environments [5] and match 
perfectly to the problem adaptive-streaming clients must face. 

II. STOCHASTIC DYNAMIC PROGRAMMING ALGORITHM 

When a client decides to request a DASH content, he must 
first download the manifest file which lists the different-
quality versions stored at the server. Then the player has to 
sequentially request the segments in which the video has been 
split, deciding before each query which is the most adequate 
quality according to the network characteristics. Besides, it 
can even decide not to download any segment and delay the 
following request. After an amount of time that depends on the 
available bandwidth and the segment size, it will be 
downloaded and placed into the receiver's buffer. In the 
meanwhile, already-downloaded segments will be taken out of 
the buffer to be decoded and presented to the user. 

Therefore we can formalize in terms of SDP this behavior 
as a dynamic system that evolves in stages influenced by 
random factors. Then, applying SDP techniques [7] we can 
compute optimal policies for each state, that is, the best 
quality-decisions according to the client's information. For 
that purpose, we need to define the state and action variables 
and their influence on the QoE-oriented cost function, as well 
as compute the state-transition probabilities. 

Let k be the current stage and vector sk = (bk, bwk) the state 
of the system before requesting segment k, where bk is the 
current buffer level, measured in segments and ranging from 0 
to BMAX, and bwk is the last measured bandwidth, quantified in 
M discrete values {BWb...,BWM}. Taking into account the 
state information, sk, and the expected cost, the client must 
take a decision, ak, on which quality has to be requested. The 
possibility of delaying the next request has also been included 
and denoted as ak=0. Provided that there are R quality levels 
available at the server, the set of values for ak is {0,Q¡,... ,QR}. 

The system progression is influenced by two random 
parameters: the requested-segment bit number, o)k(ak), and the 
change in the available bandwidth during next download. 

From the system behavior we can derive system equation 
(1), noting that [•] represents the rounding operation, T stands 
for the segment duration in seconds and Td is the delay time. 
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The evolution of the variable bwk is modeled as a first-order 
discrete-time Markov chain, simulating the throughput 
changes in a real environment [6]. The proposed chain is made 
up of the M discrete bandwidth values for bwk and has a 
channel state-remaining probability of 0.8, whereas the 
transition probability to other channel states is 0.1 each. 
Additionally, we model the probability distribution of mk (ak) 
as a sampled Gaussian function with mean ak-T. 



The incurred cost for selecting a quality ak when staying at 
state sk is modeled considering two aspects: (i) the requested 
average bitrate should be close to and preferable below the 
measured bandwidth, and (ii) the buffer level should stay 
around a predefined target value Bopt, avoiding high and, 
especially, low values. We define the difference between the 
modulated bandwidth and the possible bitrates as dk and the 
cost derived from the buffer level as ck, defined in (2) and (3). 

bitrates which are on average higher than the bandwidth, at the 
expense of involving more quality switches. 
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We therefore compute the cost for requesting quality ak as 
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In the case of delaying the decision, we penalize the cases 

where the buffer level is not close to the maximum value and 
where the bandwidth is close to the minimum, that is, 
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Parameters a, ¡3, y and 8 must be set to weight appropriately 
each cost component and obtain a natural policy behavior. 

The next step is computing the state-transition probabilities. 
Since state variables are independent of each other, we have 
P{sk+1/sk,ak cot 

P{bk+1/bk,bwk,ak,(Ok}-P{bwk+1/bwk} 

Once our model is completely defined and considering our 
problem as an infinite horizon one, as the number of stages 
can be extremely high, we use the S D P policy iteration 
method to compute the optimal policies for every state sk. 

III. SIMULATION AND RESULTS 

We compare our quality-adaptation algorithm based on the 
optimal S D P policies with another D A S H algorithm [3] and 
with the H L S implementation in a commercial player. 

We first encoded a two-hour-long H D video movie in 14 
quality streams with average bitrates Qi distributed between 
0.1 and 4.5 Mbps following a similar scheme to the distributed 
D A S H dataset [8]. Each stream was segmented in 2-seconds 
chunks and stored in a server connected to our computer 
through a L A N , along with the D A S H and H L S manifest files. 

In order to dynamically limit the available bandwidth and 
simulate the most frequent throughput variations in a shared 
network, we used the open source tool DummyNet. We 
followed the proposed Markov chain model with BWi ranging 
from 0.25 to 5 Mbps in steps of 250 kbps and evaluated the 
state-change possibility every second. Then we repeated the 
same sequence of bandwidth changes in all the simulations. 

The numerical values used to compute offline the optimal 
policies before performing the simulations are BMAX =10, Bopt 

=7, T=2, Td=2, a=0.5,/?=4.14, y=100 and ¿=100. 
We used a self-implemented D A S H client and an H L S 

player for the streaming sessions and registered the requested 
bitrate for every segment. An extract of the quality evolution 
for the simulations is presented in Fig. 1, along with the 
available throughput. Our algorithm manages to request 

Fig. 1. Evolution of the throughput and the requested bitrates. 

We finally carried out a numerical comparison based on 
previously proposed QoE measures [9]. Users’ satisfaction is 
modeled as a function directly proportional to the average 
segment quality (factor Q) penalized by the frequency and 
length of video freezes (factor F) and quality switches (factor 
S). The average simulation results are presented in Table I. 

T A B L E I 
COMPARISON OF Q O E RESULTS OF SIMULATIONS 

Solution Algorithm QoE Q (%) F (%) S (%) 
DASH SDP-based 3.738 75.37 6.9 4.8 
DASH Buffer-based [3] 3.360 69.59 10.2 0.6 
HLS Player’s 3.639 67.61 2.1 2.2 

As expected from Fig. 1, our SDP-based algorithm requests a 
higher average quality Q. However, as extracted from factor S, 
it has the highest quality-switch rate, which may be considered 
negative by users. Regarding the influence of freezes (F), our 
logic achieves an intermediate punctuation. 

In terms of global QoE, which is computed by weighting the 
previous factors, our proposed logic outperforms the evaluated 
algorithms. It achieves a tradeoff between the requested 
quality and the resulting video freezes, so it can be simply and 
easily implemented in existing consumer electronic devices to 
improve the users’ satisfaction relative to current solutions. 
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