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ASYMPTOTIC ANALYSIS OF VERTICAL GEOTHERMAL
BOREHOLES IN THE LIMIT OF SLOWLY VARYING HEAT

INJECTION RATES∗

MIGUEL HERMANNS† AND JOSÉ MIGUEL PÉREZ†

Abstract. Theoretical models for the thermal response of vertical geothermal boreholes often
assume that the characteristic time of variation of the heat injection rate is much larger than the
characteristic diffusion time across the borehole. In this case, heat transfer inside the borehole and
in its immediate surroundings is quasi-steady in the first approximation, while unsteady effects enter
only in the far field. Previous studies have exploited this disparity of time scales, incorporating
approximate matching conditions to couple the near-borehole region with the outer unsteady tem-
perature field. In the present work matched asymptotic expansion techniques are used to analyze
the heat transfer problem, delivering a rigorous derivation of the true matching condition between
the two regions and of the correct definition of the network of thermal resistances that represents the
quasi-steady solution near the borehole. Additionally, an apparent temperature due to the unsteady
far field is identified that needs to be taken into account by the near-borehole region for the cor-
rect computation of the heat injection rate. This temperature differs from the usual mean borehole
temperature employed in the literature.
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1. Introduction. The continuously increasing cost of energy combined with the
growing need for a more sustainable development of mankind is nowadays pushing
at all levels a more efficient use of available energy and natural resources. An area
of high impact, and therefore of potentially big savings, is the heating and cooling
of buildings, which accounts for more than 25% of world energy consumption [17].
Therefore, sustainable construction and buildings represent a fundamental tool to
achieve the sought overall increase in energy efficiency.

Among the different renewable energy sources that can be exploited for the heat-
ing and cooling of buildings, low temperature geothermal energy is considered one of
the most efficient and promising ones. Geothermal heat pumps, or ground source heat
pumps, are conventional heat pumps connected to a ground heat exchanger comprised
of vertical boreholes in which a liquid flows through a series of U-shaped pipes and ex-
changes heat with the surrounding ground. These HVAC (heating, ventilation, and air
conditioning) systems can, however, be considered truly renewable only if the ground
heat exchanger and the strategy for heat injection and extraction from the ground are
properly designed. Otherwise, the ground is progressively heated up or cooled down
and thereby thermally exhausted. Therefore, it is critical to be able to correctly and
accurately predict the thermal response of the borehole and its surrounding ground
during the design stage of the system.

The obvious choice would be to numerically solve the complete three-dimensional
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unsteady heat transfer problem that arises from the heat exchange between the ground
heat exchanger and the surrounding ground. This is nowadays possible in reasonable
amounts of time, thanks to the greatly increased computational capabilities of mod-
ern computers [8, 22, 23, 25]. However, at the design stage of the HVAC system of
a building, parametric studies are used to find the best design, which requires the
study of tens if not hundreds of different configurations. In this case, the compu-
tational cost of solving the complete problem numerically becomes prohibitive, and
more computationally efficient, but still accurate, methods and models are required.

The unsteady thermal problem under consideration presents three intrinsic char-
acteristic times. First is the residence time of the liquid in the pipes, given by
tr ∼ H/V , with H the length of the vertical borehole and V the mean flow ve-
locity of the liquid in the pipes. Second is the characteristic thermal diffusion time
in the transverse direction to the borehole, given by tb ∼ r2b/α, with rb the borehole
radius and α the thermal diffusivity of the ground. And third is the characteristic
diffusion time along the borehole, given by tH ∼ H2/α. Due to the extreme slen-
derness of commonly used vertical boreholes and the requirement of a turbulent flow
regime inside the pipes, which imposes a minimum value for the flow velocity, the
above introduced characteristic times satisfy the following relation: tr � tb � tH .

A common strategy for developing computationally less expensive, but still accu-
rate, methods and models is to exploit this difference in time scales by concentrating
on heat injection or extraction rates that vary with a characteristic time tq that is
slow compared to the characteristic transverse diffusion time, tb � tq. In this case,
the flow inside the pipes as well as the thermal conduction problem in the proxim-
ities of the borehole can as a first approximation be considered quasi-steady, thus
significantly reducing the complexity of the problem to be solved. For example, the
complete effect onto the global heat transfer problem of the complex geometry and
the thermal properties of the borehole, its grout filling, and its pipes can be condensed
into a network of thermal resistances that relates temperatures with heat rates and
that can be computed a priori with little computational effort.

To obtain that network of thermal resistances, the quasi-steady heat transfer
problem inside and around the geothermal borehole must be solved for a certain set
of operating conditions. This requires the numerical [24, 31] or analytical [3, 9, 10]
solution of the steady-state heat conduction equation together with the proper set
of boundary conditions. While the boundary conditions to be imposed at the outer
surface of the U-shaped pipes as well as at the interface between the borehole and the
surrounding ground are clear, the one to be imposed far from the borehole, and that
links with the outer unsteady heat transfer problem, is less straightforward. Several
approaches can be found in the literature for that outer boundary condition.

One approach was initiated by Bennet and coworkers in 1987 [3, 9]. They proposed
a mixed-type boundary condition at a certain distance rc from the borehole center,
allowing thereby for the inclusion of possible thermal contact resistances at that loca-
tion. However, neither the distance rc nor the mixed-type boundary condition itself
were motivated by the underlying physical problem. Therefore, the dependence of
the thermal resistances on it did not make sense. Later on, Hellström [16] continued
using the same boundary condition at rc but introduced an alternative definition of
thermal resistance. By introducing the mean azimuthal temperature Tb at the bore-
hole wall, and using it to define the thermal resistances, he formally eliminated the
dependence on rc and on the associated mixed-type boundary condition. However,
the numerical values were still varying with rc, although very weakly. It has not been
until very recently that a completely rc-free formulation of the thermal resistances has
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been presented. Claesson and Hellström recently [10] reformulated the problem and
its solution procedure in order to be able to directly impose Tb as the mean azimuthal
temperature at the borehole wall instead of doing it indirectly through a boundary
condition located at r = rc. As will be shown later, this latter approach leads to the
physically and mathematically correct definition of thermal resistances.

Another approach started with the introduction by Hellström of the mean az-
imuthal temperature at the borehole wall, which spawned the wrong impression that
the correct way of computing thermal resistances was by imposing that temperature
directly as a Dirichlet boundary condition at the borehole wall [24, 31]. Since there is
no physical reason for imposing a uniform temperature there, this approach leads to
significant errors, especially when the U-shaped pipes are located close to the borehole
wall, as shown in [22] and in the present work.

Finally, a third approach can be found in [22], where unsteady thermal simulations
of the borehole and its surroundings are performed and the values of the thermal
resistances derived from the long term evolution of those simulations. Although this
approach leads to the correct results, it is time-consuming and therefore not really
suited for industrial applications. Additionally, the numerical values are dependent on
the final time of the performed simulation. However, that dependence will be weak
if the final times of simulation are sufficiently large compared to the characteristic
transverse diffusion time tb.

Although the first of the three described approaches has finally led to the correct
definition of thermal resistances, a formally correct derivation of the outer bound-
ary condition has not been presented so far. This requires careful analysis of the
asymptotic matching of the steady-state solution close to the borehole with the un-
steady heat transfer problem far from the borehole. Therefore, in the present work
the thermal response of vertical geothermal boreholes in the limit of slowly varying
heat injection rates is studied using matched asymptotic expansion techniques [21].
Of special interest is the zeroth order asymptotic matching between the region near
the borehole (inner region) and the region far from the borehole (outer region), which
delivers the correct outer boundary condition to be used in the computation of the
network of thermal resistances that represents the quasi-steady solution to the inner
region. Additionally, the asymptotic matching also delivers an apparent temperature
imposed by the outer region onto the inner region that has to be used for the correct
computation of the heat injection rate. This temperature differs from that usually
employed in the literature.

The work is organized as follows. Section 2 presents the mathematical formulation
of the unsteady heat transfer problem inside and around the vertical borehole. The
problem is then solved in the limit of slowly varying heat injection rates in section 3
using matched asymptotic expansion techniques. From the obtained results, section
4 derives the network of thermal resistances that describes the quasi-steady thermal
response of the borehole vicinity. Thereafter, a theoretical discussion on the existing
models for the thermal resistances is carried out in section 5, followed by a quantitative
analysis of the accuracy of these models in section 6. Finally, concluding remarks are
presented in section 7.

2. Formulation of the thermal problem. Commonly used geothermal bore-
holes present lengths which are on the order of hundred meters, while their diameters
are on the order of tens of centimeters. Taking into account that the thermal dif-
fusivity of the ground α is typically around 10−6 m2/s [6, 14, 29], transverse tb and
longitudinal tH characteristic diffusion times on the order of hours and centuries are
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respectively obtained. The present work focuses on those operating conditions in
which the heat injection rate into the borehole varies with a characteristic time tq
that is much larger than tb but much smaller than tH : tb � tq � tH . This asymp-
totic limit is of practical relevance for the study of the thermal response of geothermal
boreholes to loads that vary over periods of a few days up to a few years, the lower
time limit being imposed by the condition tb � tq and the upper time limit by the
condition tq � tH .

From the point of view of the formulation of the thermal problem, the condition
tq � tH implies that the thermal diffusion along the borehole can as a first approxima-
tion be neglected when compared to the transverse thermal diffusion. This allows the
unsteady thermal problem to be formulated in independent two-dimensional planes
perpendicular to the borehole, which are only coupled to each other through the fluid
temperatures that vary along the pipes inside the borehole.

Consider one of those two-dimensional planes shown in Figure 1. The represented
configuration is comprised of two pipes located respectively at �x1 and �x2 inside the
borehole of radius rb and whose outer radii are respectively r1 and r2. Although
the shown configuration has two pipes, the results and conclusions derived in the
present work are also applicable to any other borehole configuration with a different
arrangement of pipes, like double or triple U-pipes, coaxial pipes, etc.
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Fig. 1. Cross section of a typical geothermal borehole of radius rb with a single U-shaped pipe
in it and filled with a grout material with thermal conductivity kb and thermal diffusivity αb that in
general differ from the corresponding values k and α of the surrounding ground.

A liquid flows inside the pipes at sufficiently high Reynolds numbers to ensure a
turbulent flow regime. This allows the thermal characterization of the liquid to be
done through a uniform mean temperature Ti(t) at each cross section of each pipe
i [26]. The heat exchange between the liquid and the pipe walls is governed by the
forced convection imposed by the flow and can be characterized by a convective heat
transfer coefficient hi, different for each pipe, that depends in nonlinear ways on the
flow conditions inside the pipe as well as on the transport properties of the liquid [26].

The condition that the heat flux across each pipe wall must be conserved leads to
the following boundary condition to be imposed at the outer face of the wall of each
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pipe i:

(2.1) −kbri
∂T

∂ni
=

Ti(t)− T

Rpi
,

where kb is the thermal conductivity of the grout material filling the borehole, ni is the
outward-pointing normal direction to pipe i, and Rpi is the inner thermal resistance
of pipe i. The inner thermal resistance takes into account the convective heat transfer
coefficient hi associated with the flow inside the pipe as well as the thermal resistance
associated with the finite thickness di and thermal conductivity ki of the pipe wall:

(2.2) Rpi =
1

(ri − di)hi
+

1

ki
ln

(
ri

ri − di

)
.

Implicit in the above expressions is the assumption that the heat conduction across
the pipe wall can be considered quasi-steady. This is a reasonable approximation
taking into account that the characteristic diffusion time across the pipe wall, given
by d2i /αi, with αi the thermal diffusivity of the pipe wall material, is usually small
compared to the characteristic transverse diffusion time of the borehole tb ∼ r2c/α.

The heat transfer inside the grout material is governed by the unsteady heat
conduction equation, which for the case of cylindrical coordinates is given by

(2.3)
∂T

∂t
= αb

[
1

r

∂

∂r

(
r
∂T

∂r

)
+

1

r2
∂2T

∂θ2

]
,

where αb is the thermal diffusivity of the grout material, r the radial coordinate
measured from the center of the borehole, and θ the azimuthal angle. Analogously,
the heat transfer inside the ground surrounding the borehole is also governed by the
same unsteady heat conduction equation, except that the thermal diffusivity to be
employed is that corresponding to the ground, α:

(2.4)
∂T

∂t
= α

[
1

r

∂

∂r

(
r
∂T

∂r

)
+

1

r2
∂2T

∂θ2

]
.

Across the borehole wall, located at r = rb, temperatures and normal heat fluxes
must be continuous:

(2.5) T |b = T |g , −kb
∂T

∂n

∣∣∣∣
b

= −k
∂T

∂n

∣∣∣∣
g

,

with k being the thermal conductivity of the ground and n the outward-pointing
direction normal to the borehole wall.

Far from the borehole, the temperature of the ground must be equal to the un-
perturbed ground temperature T∞:

(2.6) |�x| → ∞ : T → T∞.

And finally, the initial condition states that the ground as well as the grout
material are initially at the unperturbed ground temperature:

(2.7) t = 0 : T = T∞.

For the sake of simplicity, and without altering the applicability of the forthcom-
ing asymptotic analysis to more complex cases, all the parameters of the problem are
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considered to be constant except for the temperatures Ti(t) of the liquid flowing inside
the pipes. These are assumed to vary in prescribed ways and with a characteristic
time of variation that coincides with the characteristic time of variation tq of the heat
injection rate. Additionally, and also for the sake of simplicity in the forthcoming
development, the thermal diffusivities of the grout material and the ground are con-
sidered to be of the same order, αb ∼ α, an assumption that is reasonable in view of
their typical values [33, 34, 35].

3. Limit of slowly varying heat injection rates. Once the thermal problem
has been formulated taking into account that tq � tH , the next step is to account
for the condition that the heat injection rate varies slowly when compared with the
characteristic transverse diffusion time, tb � tq. This is accomplished by carrying out
the asymptotic analysis of the formulated thermal problem for the small parameter
ε = rb/

√
α/tq ∼ √tb/tq � 1. This gives rise to two distinct regions in the problem:

a quasi-steady inner one at distances r ∼ rb from the borehole and an unsteady outer
one at distances r ∼ √

αtq � rb from the borehole.
Formally, the asymptotic expansions that will be used are the following:

inner region: Θin = Θin0(R, θ, τ) + σin(ε)Θin1(R, θ, τ) + · · · ,
outer region: Θout = Θout0(η, θ, τ) + σout(ε)Θout1(η, θ, τ) + · · · ,

where σin(ε) � 1 and σout(ε) � 1 have to be obtained as part of the matching
process between the two regions and where the following nondimensionalization has
been employed:

(3.1) Θ =
T − T∞
qc/k

, R =
r

rb
, η = Rε =

r√
αtq

, τ =
t

tq
.

The heat injection rate per unit borehole length, whose characteristic value qc appears
in the nondimensionalization, will be introduced later on in this section.

Only the zeroth order term of the asymptotic expansion will be obtained here.
Therefore, the subscript 0 will be omitted from now on to simplify the notation. Addi-
tionally, the presentation will depart from the classical formalism used in asymptotic
analysis in order to simplify it and to allow the placing of more emphasis on the
physical aspects of the underlying problem than on the mathematical details of the
asymptotic analysis.

3.1. Zeroth order inner solution. The unsteady term in the heat conduction
equation for the borehole (2.3) and for the ground (2.4) is of order ΔcT/tq, where ΔcT
is the characteristic variation of the temperature in the problem, while the diffusion
terms of both equations are of order αΔcT/r

2
b . By comparison of one estimation with

the other it can be seen that as a first approximation the unsteady terms are negligible
due to the condition tb/tq � 1, and the thermal problem to be solved is comprised of
the steady-state heat conduction equation in the borehole and in the ground,

(3.2) 0 =
1

r

∂

∂r

(
r
∂T

∂r

)
+

1

r2
∂2T

∂θ2
,

together with the continuity conditions for temperatures and normal heat fluxes at
the borehole wall (2.5), the boundary condition at the outer pipe walls (2.1), and the
boundary condition at infinity (2.6). Since the fluid temperatures still vary with time,
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the thermal problem to be solved is quasi-steady, and time plays only the role of an
additional parameter.

It is well known that the above problem has in general no solution except for
certain very particular cases, like the trivial one in which Ti(t) = T∞ [7]. The reason
for this is that at distances to the borehole of the order of r ∼ √

αtq � rb, the
unsteady term and the diffusion terms in the unsteady heat conduction equation
(2.4) are equally important, rendering the quasi-steady approximation no longer valid
in that outer region.

3.2. Zeroth order outer solution. To analyze that outer region the formu-
lated thermal problem is nondimensionalized using the variables introduced in (3.1),
leaving the unsteady heat conduction equation in the ground as follows:

(3.3)
∂Θ

∂τ
=

1

η

∂

∂η

(
η
∂Θ

∂η

)
+

1

η2
∂2Θ

∂θ2
.

This equation has to be solved together with the following initial condition and bound-
ary condition at infinity:

τ = 0 : Θ = 0,

η → ∞ : Θ → 0.(3.4)

In contrast, the boundary conditions on the pipe walls as well as the continuity
conditions across the borehole wall are all substituted by asymptotic matching con-
ditions at η � 1 with the quasi-steady inner region discussed in the previous section.

The asymptotic matching between the inner and outer solutions has two steps.
In the first one, a matching of the heat injection rate per unit borehole length q(τ)
between both solutions is imposed. From the perspective of the inner and outer
solutions, this means that

(3.5) lim
r→∞

∫ 2π

0

−k
∂T

∂r
rdθ = lim

η→0

∫ 2π

0

−qc
∂Θ

∂η
ηdθ.

In the zeroth order approximation to the outer solution, the azimuthal variations
of the inner solution are not relevant. Therefore, the outer solution will as a first
approximation be axisymmetric, allowing the corresponding matching condition to
be rewritten as follows:

(3.6) η � 1 :
q(τ)

qc
= −2πη

∂Θ

∂η
.

The value of q(τ) is a priori unknown and will be obtained from the asymptotic
matching of the outer and inner regions. The resulting thermal problem to be solved
in the outer region corresponds to an infinite medium with a localized line source of
heat of nondimensional intensity per unit borehole length equal to q(τ) = q(τ)/qc.
The solution to this problem is well known [7]:

(3.7) Θ(η, τ) =
1

4π

∫ τ

0

q(λ)

τ − λ
exp

[
− η2

4(τ − λ)

]
dλ.

3.3. Asymptotic matching. To complete the asymptotic matching between
the outer and inner solutions, the asymptotic behavior of the outer solution when
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η � 1 is required. To accomplish this, the outer solution given in (3.7) is rewritten
as follows:

Θ(η, τ) =
1

4π

∫ τ

0

q(τ)

τ − λ
exp

[
− η2

4(τ − λ)

]
dλ

− 1

4π

∫ τ

0

q(τ)− q(λ)

τ − λ
dλ

+
1

4π

∫ τ

0

q(τ)− q(λ)

τ − λ

[
1− exp

[
− η2

4(τ − λ)

]]
dλ,(3.8)

where q(τ) is added to and subtracted from q(λ) and where the complete second
integral is added to and subtracted from the outer solution. The first of the integrals
has a primitive function, which is the exponential integral function:

(3.9)
1

4π

∫ τ

0

q(τ)

τ − λ
exp

[
− η2

4(τ − λ)

]
dλ =

q(τ)

4π
E1

(
η2

4τ

)
.

The second one is well defined for the specified integration limits, as the integrand
tends to zero or at most to a constant when λ approaches τ . Only the third integral
requires a more detailed analysis.

Close to the borehole, where η � 1, the integrand of the third integral is zero
everywhere except when (τ − λ) ∼ η2 � 1. Hence, an intermediate asymptotic
matching scale δ is introduced that also tends to zero and additionally satisfies the
relation η2 � δ � 1. With it, the third integral can be simplified as follows:

I3 =
1

4π

∫ τ

0

q(τ)− q(λ)

τ − λ

[
1− exp

[
− η2

4(τ − λ)

]]
dλ

� 1

4π

dq

dτ

∣∣∣∣
τ

∫ τ

τ−δ

[
1− exp

[
− η2

4(τ − λ)

]]
dλ,(3.10)

where the heat injection rate per unit borehole length is expanded in a Taylor series
around time τ , taking advantage of the fact that τ−λ ∼ δ � 1. The remaining integral
in (3.10) can be bounded, as its integrand is at most equal to 1, and therefore I3 ∼
Δcqδ, where Δcq is the characteristic variation experienced by the nondimensional
heat injection rate per unit borehole length. This integral turns out to be negligible
when compared to the second integral, whose order of magnitude is Δcq. Therefore,

(3.11) Θ(η, τ)|η�1 =
q(τ)

4π
E1

(
η2

4τ

)
− 1

4π

∫ τ

0

q(τ) − q(λ)

τ − λ
dλ.

Expanding the exponential integral function for small values of its argument, the
following final result is obtained:

(3.12) Θ(η, τ)|η�1 = −q(τ)

4π

[
ln

(
η2

4τ

)
+ γ

]
− 1

4π

∫ τ

0

q(τ)− q(λ)

τ − λ
dλ,

where γ = 0.57721 . . . is Euler’s constant. To perform the matching with the inner
solution, the nondimensionalization is reverted and the logarithm expanded, leading
to

(3.13) T (r, t)|r�rb
= − q(t)

2πk
ln

(
r

rb

)
+ Ta(q, t),
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where the apparent temperature Ta is given by

(3.14) Ta(q, t) = T∞ +
q(t)

4πk

[
ln

(
4αt

r2b

)
− γ

]
− 1

4πk

∫ t

0

q(t) − q(λ)

t− λ
dλ.

It can be seen that close to the borehole the outer solution behaves in a quasi-
steady way with an apparent temperature Ta that depends on the history of the ap-
plied heat injection rate per unit borehole length q(t). The emergence of an apparent
temperature in the asymptotic matching process of outer and inner solutions is com-
mon when dealing with cylindrically or spherically symmetrical problems [11, 19, 21].
Since the outer and inner solutions must behave equally in the intermediate matching
region, (3.13) has to be imposed as a boundary condition at infinity for the inner
region instead of the original boundary condition given in (2.6):

(3.15) |�x| → ∞ : T → − q(t)

2πk
ln

(
r

rb

)
+ Ta(q, t).

4. Borehole thermal resistances. The quasi-steady zeroth order inner prob-
lem to be solved is comprised of the steady-state heat conduction equation (3.2), the
boundary condition at the pipe walls (2.1), the continuity conditions at the borehole
wall (2.5), and the matching condition given in (3.15).

In the present section it is proven that, despite the more complex boundary
condition to be imposed at the outer boundary of the inner region, the solution to
the formulated problem can be expressed as a network of thermal resistances that
depends only on the geometrical and thermal parameters of the problem, and that
relates the heat injection rates per unit borehole length qi of each pipe i with the
temperature differences between each pipe and the apparent temperature Ta.

By convenient a priori grouping of variables and parameters and the subsequent
application of the Pi-theorem from dimensional analysis [5], the following functional
dependency of the nondimensional temperature on the independent variables and
parameters of the problem is obtained:

(4.1)
T − Ta

q/kb
= F

(
�x

rb
,
Ti − Ta

q/kb
;
ri
rb
,
�xi

rb
, kbRpi,

k

kb

)
,

where the nondimensional numbers that contain the subindex i represent the complete
set of nondimensional numbers for all N pipes inside the borehole. This result can
now be used to obtain the functional dependency of derived quantities, such as the
heat injection rate per unit borehole length qi at each pipe i, defined as

(4.2) qi = −
∫ 2π

0

kb
∂T

∂ni
ridθi,

where θi is the azimuthal angle corresponding to the polar coordinate system centered
in pipe i. Substitution of (4.1) into (4.2) leads to the following functional dependency
for qi:

(4.3)
qi
q

= Fi

(
Ti − Ta

q/kb
;
ri
rb
,
�xi

rb
, kbRpi,

k

kb

)
.

Thanks to the linearity of the thermal problem to be solved, its solution can be
expressed as superposition of a set of basic solutions. Following the same procedure
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as in [10], these basic solutions correspond to the simpler problems in which a heat
injection rate per unit borehole length qi is applied to pipe i, while the heat injection
rates per unit borehole length for all the remaining pipes are set equal to zero. For
the sake of simplicity in the forthcoming discussion, the particular case of a borehole
with only two pipes is presented, the generalization to the case of N pipes being
straightforward. The resulting system of equations for the basic solution 1, obtained
for q1/q = 1 and q2/q = 0, would be

1 = F1

(
T1 − Ta

q1/kb
,
T2 − Ta

q1/kb
;
ri
rb
,
�xi

rb
, kbRpi,

k

kb

)
,

0 = F2

(
T1 − Ta

q1/kb
,
T2 − Ta

q1/kb
;
ri
rb
,
�xi

rb
, kbRpi,

k

kb

)
,(4.4)

where the fact that q = q1 has been used to rewrite the right-hand side of the ex-
pressions. This system of two equations for the two unknowns (T1 − Ta)/(q1/kb) and
(T2 − Ta)/(q1/kb) has the following unique solution:

T1 − Ta

q1/kb
= C1

(
ri
rb
,
�xi

rb
, kbRpi,

k

kb

)
,

T2 − Ta

q1/kb
= C2

(
ri
rb
,
�xi

rb
, kbRpi,

k

kb

)
.(4.5)

Uniqueness can be assured through the uniqueness of the solution to the underlying
steady-state heat transfer problem [18]. In the literature these constants Ci, divided
by the thermal conductivity kb of the grout material, are commonly called thermal
resistances R̂1i = Ci/kb. Thus introducing this nomenclature and rearranging the
expressions, the following final result is obtained:

(4.6) T1 − Ta = R̂11q1, T2 − Ta = R̂12q1.

Analogously, the system of equations for the basic solution 2, obtained for the
heat injection rates per unit borehole length q1/q = 0 and q2/q = 1, leads to

(4.7) T1 − Ta = R̂21q2, T2 − Ta = R̂22q2.

As pointed out in [3, 10, 16], by means of Maxwell’s reciprocal theorem it can be
shown that R̂12 = R̂21.

By superposition of the obtained basic solutions, the general solution to the zeroth
order inner problem can be written as follows:

T1 − Ta = R̂11q1 + R̂12q2,

T2 − Ta = R̂12q1 + R̂22q2,(4.8)

showing that it can be represented as a network of thermal resistances that relates
the heat injection rates per unit borehole length qi with the temperature differences
between each pipe and the apparent temperature Ta. From (4.5) it can be seen that
these thermal resistances depend only on the geometrical and thermal parameters of
the problem. Two important notes must be made here. First, this result is exact and
not only an approximation or model for the zeroth order inner problem. Therefore,
relations between heat injection rates per unit borehole length and temperatures with
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a structure that differs from the one given in (4.8) are not consistent with the un-
derlying physics. Second, the constants Ci can attain negative values. This fact may
lead to erroneous conclusions regarding the validity of the derived expressions, like
in [22], when these constants are strictly reinterpreted as thermal resistances, as the
latter ones are assumed to always be positive.

Solving the above system of equations for the heat injection rates per unit borehole
length leads to

q1 =
T1 − Ta

R1
+

T1 − T2

R12
,

q2 =
T2 − Ta

R2
+

T2 − T1

R12
,(4.9)

where

1

R1
=

R̂22 − R̂12

R̂11R̂22 − R̂2
12

,
1

R2
=

R̂11 − R̂12

R̂11R̂22 − R̂2
12

,

1

R12
=

R̂12

R̂11R̂22 − R̂2
12

.(4.10)

A more convenient way of writing the above relationships is as follows:

q1 =
Tm − Ta

R1
+

T1 − T2

Ra
,

q2 =
Tm − Ta

R2
+

T2 − T1

Ra
,(4.11)

where the internal thermal resistance between the two pipes Ra is given by

(4.12)
1

Ra
=

1

R1 +R2
+

1

R12

and the following weighted mean fluid temperature Tm is introduced:

(4.13) Tm =
T1

R1
+ T2

R2

1
R1

+ 1
R2

.

This weighted mean fluid temperature, which differs from the arithmetic mean fluid
temperature (T1 + T2)/2 for geothermal boreholes that are not thermally symmetric
(R1 	= R2), is the temperature with which the borehole exchanges heat with the
surrounding ground. To show it, the heat injection rate per unit borehole length
q = q1 + q2 is computed:

(4.14) q =
Tm − Ta

Rb
,

where the borehole thermal resistance Rb is given by

(4.15)
1

Rb
=

1

R1
+

1

R2
.

Having reached this point, the still unknown heat injection rate per unit borehole
length q(t) can finally be obtained. By combining (4.14) with the expression for the
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apparent temperature Ta given in (3.14), the following integro-algebraic equation for
q(t) is obtained:

(4.16) Tm(t)− T∞ = Rbq(t) +
q(t)

4πk

[
ln

(
4αt

r2b

)
− γ

]
− 1

4πk

∫ t

0

q(t)− q(λ)

t− λ
dλ.

Although in general this equation has to be solved numerically, that is quite
straightforward to do once a piecewise constant or linear approximation for Tm(t) and
q(t) is considered, which is the usual approach followed in the analysis of geothermal
boreholes [4, 13].

5. Existing models for thermal resistances. The considered limit of slowly
varying heat injection rates has been extensively studied in the literature, and many
software simulation packages for geothermal heat exchangers rely on it [4, 12, 15, 27,
32]. Different approximate and exact approaches and models exist for the definition
and computation of the thermal resistances that represent the quasi-steady solution to
the inner region. Of interest for the present analysis are those that explicitly compute
the thermal resistances out of the thermal problem defined in the two-dimensional
plane perpendicular to the borehole. Therefore, all those methods that fit or infer
thermal resistances out of experimental data, like in [28, 30], are not considered here.

In the present section a review of the most relevant and/or extended approaches
and models is presented, and their merits and drawbacks are briefly discussed in view
of the results derived in the present work. In this sense, it is worth noting that the
definition of thermal resistance given in the present work, based on the zeroth order
asymptotic matching of the outer and inner regions, is the formally correct one in the
limit of slowly varying heat injection rates.

The first relevant work on borehole thermal resistances was done by researchers
at Lund University [3, 9]. Their approach was based on the analytical solution of the
quasi-steady thermal problem in the inner region by means of a multipole expansion of
the temperature field. The series was then truncated at a certain point to allow for the
numerical solution of the system of algebraic equations resulting from the imposition
of the boundary conditions of the thermal problem. Far from the borehole, a mixed-
type boundary condition was imposed at a distance rc from the borehole center,

(5.1) r = rc : T + 2πkRcrc
∂T

∂r
= Tc,

allowing for the inclusion of possible thermal contact resistances Rc at that loca-
tion. In the context of geothermal boreholes and the computation of the associated
thermal resistances, a drawback of the proposed procedure is that the distance rc
as well as the mixed-type boundary condition itself are arbitrary and not motivated
by the underlying physical problem. Therefore, the dependence of the solution on
them is unphysical. However, despite all that, it is possible to reinterpret the above
mixed-type boundary condition as a numerical approximation at r = rc of the correct
asymptotic matching condition given in (3.15) through the following suitable choice
of the values of Rc and Tc:

(5.2) Rc = − 1

2πk
ln

(
rc
rb

)
, Tc = Ta.

Later on, Hellström [16] reviewed the multipole method and studied the behavior
of the multipole expansion, and therefore of the temperature distribution, far from
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the borehole. He saw that the thermal resistances R̂mn,c between pipes m and n
behaved as follows when rc � rb:

(5.3) R̂mn,c = R̂mn +
1

2πk
ln

(
rc
rb

)
,

where R̂mn would not depend on rc. Therefore, he introduced a new temperature Tb

at the borehole wall located at r = rb, defined by

(5.4) Tb = Tc +
q

2πk
ln

(
rc
rb

)
.

The advantage of this procedure is that the thermal resistances based on it, namely
R̂mn, still account for the effect of the ground region outside of the borehole, and in
principle do not depend on the specific value of rc. But as shown by Hellström, the
particular choice of rc still alters the numerical value of R̂mn, since an azimuthally
constant temperature Tc is imposed at rc, and there is no physical reason for that.
However, the influence of rc becomes negligible once rc is sufficiently large compared
to rb [16].

The introduction of the above temperature Tb, which is by definition constant
along the borehole wall, spawned the wrong impression that the correct way of com-
puting thermal resistances was by solving the quasi-steady heat transfer problem
strictly inside the borehole, and imposing Tb as a Dirichlet boundary condition at the
borehole wall. Good examples of such approaches can be found in [24, 31]. This is
clearly wrong, as there is no physical justification for forcing the temperature to be
constant there, leading to significant errors especially when the pipes are located close
to the borehole wall, as shown in [22] and in the next section.

In their recent review, Lamarche, Kajl, and Beauchamp [22] compared several
of the above-mentioned approaches to compute the thermal resistances with values
derived from the long term evolution of detailed unsteady numerical simulations, and
highlighted the flaws of imposing Tb as a Dirichlet boundary condition at the borehole
wall. They showed that the temperature varies considerably along the borehole wall,
and they therefore proposed an alternative model based on the imposition of two
different temperatures, each one constant over half of the borehole wall. Although
their model seems to improve the previous one, it raises two important questions.
First, the zeroth order outer solution returns only one temperature and not two. This
a priori seems to render the coupling to the outer solution impossible. And second,
the structure of the network of thermal resistances differs from that presented in (4.8);
thus it should be either physically inconsistent or mathematically equivalent to (4.8).

It was not until very recently that the mathematically correct approach for com-
puting thermal resistances was presented. Claesson and Hellström [10] reformulated
the multipole expansion technique in order to completely eliminate the need for the
outer circle located at rc. Instead, they directly imposed that the mean azimuthal
temperature at the borehole wall be equal to Tb, and not the temperature itself as in
[24, 31]. In this way, they derived a formulation for the thermal resistances that turns
out to be equivalent to the one derived in the present work, as the boundary condition
given in (3.15) leads to the same multipole expansion as their boundary condition on
the mean azimuthal temperature.

Regarding the temperature Tb to be imposed, Eskilson [13] took the value attained
by the axisymmetric zeroth order outer solution at r = rb. In the present case, in
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which the outer solution is given by (3.7), that would be

(5.5) Tb = T∞ +
1

4πk

∫ t

0

q(λ)

t− λ
exp

[
− r2b
4α(t− λ)

]
dλ.

This same approach has extensively been used since then [4, 13, 15, 16, 24, 27, 32].
This choice of temperature differs from the apparent temperature Ta derived in the
present work, and that shall be used instead. However, it will be shown in the next
section that the differences are small.

6. Comparison with existing models. The developed asymptotic solution
is compared in the present section with the existing thermal models just presented
as well as with exact solutions obtained by analytical or numerical integration of
the thermal problem formulated in section 2. Three key aspects are analyzed: first,
the errors introduced by the imposition of the Dirichlet boundary condition at the
borehole wall instead of the asymptotic matching condition at infinity; second, the
range of validity of the derived asymptotic solution; and third, the errors or differences
between using the mean borehole temperature Tb, obtained by evaluating the outer
solution at r = rb, instead of the apparent temperature Ta.

6.1. Asymptotic condition versus Dirichlet condition. The first aspect to
be analyzed is the errors introduced due to the computation of the borehole thermal
resistance Rb by imposing the Dirichlet boundary condition at r = rb instead of the
asymptotic matching condition given in (3.15). When using the asymptotic match-
ing condition, it can be concluded from section 4 that the nondimensional borehole
thermal resistance kbRb depends on the following nondimensional parameters:

(6.1) kbRb = f

(
ri
rb
,
�xi

rb
, kbRpi,

k

kb

)
.

To get an overall picture, the full range of reasonable values for the nondimensional
parameters is considered here, limiting the study, however, for the sake of simplicity,
to thermally symmetric single U-pipe borehole configurations with pipe and borehole
diameters fixed, respectively, to the typical values of 32 mm and 152 mm. The
resulting nondimensional borehole thermal resistances kbRb are obtained from the
computation of the basic solutions introduced in section 4. For this calculation, the
zeroth order inner problem comprising the steady-state heat conduction equation
(3.2), the boundary condition at the pipe walls (2.1), the continuity conditions at the
borehole wall (2.5), and the matching condition given in (3.15) is solved using the
multipole expansion technique presented in [3, 9, 10]. Figure 2 shows the resulting
nondimensional borehole thermal resistances kbRb as functions of the nondimensional
distance xp/rb of the pipe centers to the borehole center, the nondimensional ratio of
thermal conductivities k/kb, and the nondimensional inner thermal resistance kbRp

of the pipes. Also represented in the figure are the values for kbRb obtained through
the imposition of the Dirichlet boundary condition at the borehole wall instead of the
asymptotic matching condition at infinity.

As expected, the results show that the values of the borehole thermal resistances
drop as the pipes are moved towards the borehole wall. Unexpected is the fact that
a minima exists for pipe locations close to the borehole wall when k/kb is small.
However, the differences between the values attained at the minima and at the extreme
location xp/rb = 1− rp/rb are negligible.
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Fig. 2. Nondimensional borehole thermal resistance kbRb for a thermally symmetric single
U-pipe borehole configuration with pipe and borehole diameters equal to 32 mm and 152 mm, respec-
tively, as a function of the nondimensional distance xp/rb of the pipe centers to the borehole center,
the nondimensional ratio of thermal conductivities k/kb, and the nondimensional inner thermal
resistance kbRp of the pipes. Also represented, with thicker lines, are the values obtained through
the imposition of the Dirichlet boundary condition at the borehole wall instead of the asymptotic
matching condition at infinity.

When comparing the borehole thermal resistances computed using the Dirichlet
boundary condition with those computed using the asymptotic matching condition
given in (3.15), the following three conclusions can be derived. First, since in the
former case the problem to be solved does not take into account the surrounding
ground, the obtained nondimensional borehole thermal resistances do not depend on
the ratio of thermal conductivities k/kb, leading to a single curve for each value of
the nondimensional inner thermal resistance kbRp. Second, as the pipes are moved
towards the borehole wall, the errors committed by the former approach increase,
especially when k/kb is small, leading in some cases to errors well above 100%. And
third, the borehole thermal resistances predicted by the former approach are not
conservative, meaning that borehole heat exchangers designed with them will have
fewer heat exchange capabilities than predicted. This is due to the fact that the
thermal borehole resistances computed using the Dirichlet boundary condition are
always smaller than the correct ones, as seen in Figure 2.

6.2. Range of validity of the asymptotic solution. The next aspect to be
analyzed is the range of validity of the derived asymptotic description of the solution in
terms of characteristic times of variation tq of the heat injection rate. It is important
to remember that the performed asymptotic analysis is based on the limit tb/tq � 1,
and therefore for not so slowly varying heat injection rates the derived expressions
are expected to become less accurate.

A time periodic problem is considered in all comparisons to be performed in the
present and the next subsections, in which the fluid temperatures vary as

(6.2) Ti = T∞ +Re
[
T̂i exp (iωt)

]
,
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where 2π/ω is the time period of the harmonic variation of all the fluid temperatures,
T̂i the complex harmonic amplitude of Ti, and i2 = −1. In this way, analytical
expressions are derived, and the spectral responses of the different methods can easily
be compared. All the remaining variables of the problem vary in the same way,
with the corresponding complex harmonic amplitudes denoted by a hat on top of the
variables, like in T̂i.

By substituting the harmonic behaviors of the variables into (4.16), the following
expression for the asymptotic solution is obtained:

T̂m = lim
t0→−∞

q̂

4πk

[
4πkRb + ln

(
4α(t− t0)

r2b

)
− γ

−
∫ t

t0

1− exp [−iω(t− λ)]

t− λ
dλ

]
,(6.3)

where it is necessary to change the initial condition from t = 0 to t = t0 → −∞
because of the time periodicity of the problem and the absence of an initial condition.
Evaluating the integral on the right-hand side and solving for the heat injection rate
per unit borehole length leads to

(6.4)
q̂

2πkT̂m

=

[
2πkRb + ln

(√
4
ω−1

r2b/α

)
− γ − π

4
i

]−1

.

The derived expression represents the spectral transfer function of the system and
depends on the nondimensional borehole thermal resistance kRb = (k/kb)kbRb and
the ratio between the characteristic time of variation tq ∼ ω−1 and the characteristic
transverse diffusion time tb ∼ r2b/α.

A pipe-in-pipe coaxial borehole configuration, like the one depicted in Figure 3, is
considered here to assess the range of validity of the above asymptotic expression. The
simple geometrical configuration allows the analytical determination of the borehole
thermal resistance following the steps outlined in section 4, leading to

(6.5) kbRb =
kbRp − ln (rp/rb)

2π
.

Additionally, analytical expressions for the exact time periodic thermal response of the
pipe-in-pipe coaxial borehole configuration can be obtained, leading to the following
expression for the nondimensional heat injection rate per unit borehole length:

(6.6)
q̂

2πkT̂m

=
1

K

A1B1 −A2B2

C1B1 − C2B2
,

where

A1 = −I1

(√
iξAR

)√
iξAR,

A2 = K1

(√
iξAR

)√
iξAR,

B1 = K0

(√
iξA
)
K1

(√
iξ
)
K −K1

(√
iξA
)
K0

(√
iξ
)√

A,

B2 = I0

(√
iξA
)
K1

(√
iξ
)
K + I1

(√
iξA
)
K0

(√
iξ
)√

A,

C1 = I0

(√
iξAR

)
− I1

(√
iξAR

)
β
√
iξAR,

C2 = K0

(√
iξAR

)
+K1

(√
iξAR

)
β
√
iξAR,(6.7)
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Fig. 3. (a) Modulus and (b) argument (in degrees) of the nondimensional heat injection rate

per unit borehole length q̂/(2πkT̂m) for a pipe-in-pipe coaxial borehole configuration with pipe and
borehole diameters equal to 63 mm and 152 mm, respectively, and a nondimensional inner thermal
resistance of the pipes of kbRp = 1.25 as functions of the ratio between the characteristic time of
variation ω−1 of the mean fluid temperature Tm and the characteristic transverse diffusion time
r2b/α of the borehole and for different values of the ratio of thermal conductivities k/kb. Shown
are the values corresponding to the asymptotic solution (continuous lines) and the exact analytical
solutions for different values of the ratio of thermal diffusivities α/αb (discontinuous lines).
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where In(z) and Kn(z) are the modified Bessel functions of the first and second kind,
respectively, of order n, and

(6.8) ξ =
r2b/α

ω−1
, R =

rp
rb
, K =

k

kb
, A =

α

αb
, β = kbRp.

The exact thermal response of the borehole depends on an additional nondimensional
parameter, namely the ratio of thermal diffusivities α/αb. In contrast, the derived
asymptotic solution does not depend on this ratio since in the first order asymptotic
approximation the unsteady terms in the heat conduction equations are negligible
close to the borehole, as shown in section 3.

Figure 3 represents the modulus and argument of the nondimensional heat injec-
tion rate per unit borehole length q̂/(2πkT̂m), as given by the asymptotic solution
and by the exact analytical solution, as functions of the ratio between the character-
istic time of variation ω−1 of the mean fluid temperature Tm and the characteristic
transverse diffusion time r2b/α of the borehole. The full range of reasonable values
for the ratio of thermal conductivities k/kb and for the ratio of thermal diffusivities
α/αb is considered here, while for the sake of simplicity the diameters of the coaxial
pipe-in-pipe and of the borehole are fixed respectively to the typical values of 63 mm
and 152 mm, and the inner thermal resistance is set to kbRp = 1.25.

Consistent with the presented analysis and results, the influence of the ratio of
thermal diffusivities α/αb becomes negligible once the ratio of characteristic times
is large enough. On the other hand, when the ratio of characteristic times is small
enough, the influence of the ratio of thermal conductivities k/kb becomes negligible.
This is due to the fact that the characteristic thermal penetration length associated
with the characteristic time ω−1, of order

√
α/ω, is smaller than the radius of the

borehole, meaning that the surrounding ground is not reached by the imposed periodic
temperature variation and therefore its thermal conductivity does not play a role in
the thermal response of the borehole. This can be seen best in Figure 3(b), where
for small values of ω−1/(r2b/α) the curves corresponding to different values of k/kb
collapse into a single curve for each value of α/αb.

As expected, the asymptotic approximation departs from the exact solution as
the ratio of characteristic times ω−1/(r2b/α) becomes smaller and the hypothesis of
slowly varying heat injection rate ceases to be valid, with the differences smaller
in the modulus than in the argument of q̂/(2πkT̂m). In general, the asymptotic
approximation can be considered sufficiently accurate for ratios of characteristic times
on the order of 102 and above, although for highly conducting grounds sufficiently
accurate results are already obtained for ratios on the order of 101.

6.3. Apparent temperature versus outer solution at r = rb. The third
aspect to be analyzed is the differences that arise due to the use of the outer solution
evaluated at r = rb instead of the apparent temperature Ta defined in (3.14). To derive
the spectral transfer function for the former approach, first the harmonic behaviors
of the variables are substituted into (5.5), leading to

T̂b = lim
t0→−∞

q̂

4πk

∫ t

t0

exp [−iω(t− λ)]

t− λ
exp

[
− r2b/α

4(t− λ)

]
dλ

=
q̂

4πk
2K0

(√
i
r2b/α

ω−1

)
,(6.9)

where again it is necessary to change the initial condition from t = 0 to t = t0 → −∞
because of the time periodicity of the problem and the absence of an initial condition.
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Afterwards, this result is used to substitute the apparent temperature Ta in (4.14).
Solving then for the heat injection rate per unit borehole length leads to the desired
spectral transfer function, which depends on the same nondimensional parameters as
the spectral transfer function of the asymptotic solution:

(6.10)
q̂

2πkT̂m

=

[
2πkRb +K0

(√
i
r2b/α

ω−1

)]−1

.

The comparison between this expression and the asymptotic one given in (6.4)
is carried out for the thermally symmetric single U-pipe borehole configuration in-
troduced in subsection 6.1. From the four nondimensional parameters that alter the
value of the nondimensional borehole thermal resistance, only k/kb is varied in order
to see the effect of different values of kRb on the temporal response of the solutions,
while all the remaining parameters are kept fixed at

(6.11)
rp
rb

=
32

152
,

xp

rb
= 0.70, kbRp = 1.25.

The computed nondimensional borehole thermal resistances kRb are given in Table 6.1
for the four nondimensional ground thermal conductivities k/kb chosen for the present
comparison and which cover the full range of reasonable values of the parameter.

Table 6.1

Values of the nondimensional ground thermal conductivity k/kb and of the corresponding nondi-
mensional borehole thermal resistance kRb to be used in the comparison of the asymptotic expression,
the expression obtained from imposing the outer solution at r = rb, and the numerically obtained
exact solution to the thermally symmetric single U-pipe borehole configuration.

k/kb 5.485 2.670 1.017 0.238
kRb 1.000 0.500 0.200 0.050

Both expressions are also compared with the exact solution obtained from solving
the complete thermal problem formulated in section 2 with T1 = T2 = Tm. Instead
of performing the numerical time integration of the problem, the harmonic behavior
for the variables defined in (6.2) is substituted into the governing equations, leading
to complex-valued Poisson equations that are then solved numerically. The spatial
discretization of these equations is performed using an in-house developed first order
finite volume method code based on Voronoi dual control volumes [20]. Figure 4
shows a coarsened version of one of the employed unstructured spatial meshes. The
resulting system of complex algebraic equations is finally solved using the multifrontal
massively parallel sparse direct solver MUMPS [1, 2].

Figure 5 represents the modulus and argument of the nondimensional heat injec-
tion rate per unit borehole length q̂/(2πkT̂m), as given by the asymptotic expression,
the expression obtained by imposing the outer solution at r = rb, and by the numeri-
cally obtained exact solution, as functions of the ratio between the characteristic time
of variation ω−1 of the mean fluid temperature Tm and the characteristic transverse
diffusion time r2b/α of the borehole. Different values of the nondimensional borehole
thermal resistance kRb are considered, while the corresponding values for the nondi-
mensional parameters fixed in previous paragraphs and in Table 6.1 are used for the
numerically obtained exact solution. Since the exact thermal problem also depends
on the ratio of thermal diffusivities α/αb, three different values have been considered
here, which cover the full range of reasonable values of the parameter.
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Fig. 4. Coarsened version of one of the unstructured meshes based on Voronoi dual control
volumes employed in the numerical computation of the exact time periodic thermal response of single
U-pipe borehole configurations by means of a first order finite volume discretization of the governing
equations.

Conclusions can be derived from the present comparison similar to those from
the previous one, namely, that the asymptotic approximation departs from the exact
thermal response as the ratio of characteristic times ω−1/(r2b/α) becomes smaller.
Again, sufficiently accurate results are obtained for ratios on the order of 102 and
above, although for highly conducting grounds sufficiently accurate rates are already
obtained for ratios on the order of 101. Comparing the asymptotic approximation with
the one obtained from imposing the outer solution directly at r = rb, it can be seen
that both perform similarly in their range of validity. This result is not surprising,
despite the latter not being formally correct, since the asymptotic matching condition
derived in the present work is an integral part of the outer solution given by (3.7) and
that is directly evaluated at r = rb in the latter approach.

7. Conclusions. In the present work the thermal response of vertical geothermal
boreholes in the limit of slowly varying heat injection rates has been studied using
matched asymptotic expansion techniques. The zeroth order approximation to the
problem shows the existence of a quasi-steady region close to the borehole and an
unsteady region far from the borehole. The asymptotic matching between these two
regions delivers the correct outer boundary condition to be used in the computation
of the network of thermal resistances that represents the quasi-steady solution to the
inner region. The asymptotic matching also delivers an apparent temperature Ta

imposed by the outer solution onto the inner solution that is the one to be used when
computing the heat injection rates per unit borehole length.

It was also shown that the above-mentioned network of thermal resistances must
have a specific mathematical structure, as otherwise it is not consistent with the
functional relationships derived from dimensional analysis. Additionally, we discussed
that negative values for some of the thermal resistances are a physically correct result
despite the fact that thermal resistances are normally assumed to be positive.

The presented comparison with existing models for thermal resistances shows that
the approach based on the imposition of the outer solution as a Dirichlet boundary
condition at the borehole wall leads to significantly underpredicted borehole thermal
resistances, with errors in some cases well above 100%. The consequence of this is that
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Fig. 5. (a) Modulus and (b) argument (in degrees) of the nondimensional heat injection rate

per unit borehole length q̂/(2πkT̂m) for a thermally symmetric single U-pipe borehole configuration
with pipe and borehole diameters equal to 32 mm and 152 mm, respectively, nondimensional pipe
center distance to borehole center of x/rb = 0.70, and a nondimensional inner thermal resistance of
the pipes of kbRp = 1.25 as functions of the ratio between the characteristic time of variation ω−1 of
the mean fluid temperature Tm and the characteristic transverse diffusion time r2b/α of the borehole
and for different values of the nondimensional borehole thermal resistance kRb. Shown are the
values corresponding to the asymptotic expression (thick continuous lines), the expression obtained
from imposing the outer solution at r = rb (thick dashed lines), and the numerically obtained exact
solution for different values of the ratio of thermal diffusivities α/αb (other discontinuous lines).



ASYMPTOTIC ANALYSIS OF GEOTHERMAL BOREHOLES 81

geothermal heat exchangers designed with them will perform worse than predicted.
In contrast, the theoretical comparison with the approach presented by Claesson and
Hellström in [10] reveals that theirs is formally correct and therefore fully equivalent
to the definition of thermal resistance given here.

The analysis of the range of validity of the zeroth order asymptotic approximation
shows that sufficiently accurate results are obtained for ratios of the characteristic time
of variation ω−1 of the mean fluid temperature Tm and the characteristic transverse
diffusion time r2b/α of the borehole on the order of 102 and above, and that for highly
conducting grounds sufficiently accurate results are already obtained for ratios on the
order of 101. Additionally, the comparison between the derived asymptotic analysis
with its apparent temperature Ta and the usual approach of directly using the outer
solution evaluated at r = rb shows that both perform similarly in their range of
validity despite the latter not being formally correct.

Thanks to the use of matched asymptotic expansion techniques, the present work
sets the foundations for a more systematic approach to the analysis of the heat transfer
problem in vertical geothermal boreholes. This approach allows the coherent integra-
tion of future improvements into the analysis. For example, inclusion of the next term
in the asymptotic expansion not only introduces radial corrections to the presented ze-
roth order approximation, leading to an extended range of validity, but also the first
azimuthal corrections that lead to unsteady thermal dipoles in the region far from
the borehole. These dipoles would allow a better prediction of the thermal interfer-
ence between adjacent vertical geothermal boreholes. Or, for example, the inclusion,
through a multiscale variant of the present analysis, of short term variations in the
heat injection rate, typically caused by the starting and stopping of geothermal heat
pumps, would allow one to take into account changes of operation with characteristic
times of variation on the order of the characteristic transverse diffusion time.
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