
1

Toolset for Mixed-Criticality Partitioned Systems:
Partitioning Algorithm and Extensibility Support
Alejandro Alonso, Emilio Salazar
Dept. de Ingenería de Sistemas Telemáticos, Universidad Politécnica de Madrid, Spain,
Email: {aalonso, esalazar}@dit.upm.es

Abstract

The development of mixed-criticality virtualized multi-
core systems poses new challenges that are being subject
of active research work. There is an additional complex-
ity: it is now required to identify a set of partitions, and
allocate applications to partitions. In this job, a number
of issues have to be considered, such as the criticality
level of the application, security and dependability re-
quirements, operating system used by the application,
time requirements granularity, specific hardware needs,
etc. MultiPARTES [6] toolset relies on Model Driven
Engineering (MDE) [12], which is a suitable approach
in this setting. In this paper, it is described the support
provided for automatic system partitioning generation
and toolset extensibility.

Keywords: Real-time systems, Partitioned Systems,
Mixed Criticality, Model Driven Engineering.

1 Introduction
The increasing power of processing hardware makes it pos-
sible to integrate system functionality in just one processor,
instead of using several ones. Although this has a number
of advantages, it presents a major problem when developing
complex embedded systems. It is common that these systems
include applications with different criticality level. This type
of systems is called mixed-criticality. This approach presents
new challenges, as it is necessary to certify the whole system,
even though there are parts that are no critical.

A suitable approach is based on system virtualization. A virtu-
alization kernel or hypervisor allows the creation of partitions
that are isolated. Applications with different criticality level
are executed in different partitions in a safe way.

MultiPARTES is a FP7 project aimed at developing tools and
solutions for building trusted embedded systems with mixed
criticality components on multicore platforms. The approach
is based on an innovative open-source multicore-platform
virtualization layer based on the XtratuM hypervisor. A soft-
ware development methodology and an associated toolset will
be provided, in order to enable trusted real-time embedded
systems to be built as partitioned applications, in a timely and
cost-effective way.

XtratuM [10] [5] is based on para-virtualization, which means
that a given operating system has to be adapted for being able

to run on top of the hypervisor. This improves system per-
formance and predictability, making it suitable for real-time
systems. XtratuM has been designed for providing spatial
and space isolation. Partitions scheduling is based on a cyclic
policy, that it is statically generated, compliant with ARINC-
653 [2]. It precisely states when each partition has to be
executed. XtratuM also supports multi-core processors.

In this paper, some aspects of the MultiPARTES toolset [11]
[1] are presented. Its main goal is to support the develop-
ment of mixed-criticality multi-core partitioned systems. The
toolset integrates a number of tools for supporting activities
such as system modelling, system partitioning, validation,
and system building.

2 Toolset requirements
The development of the toolset has been driven by the re-
quirements specification in [7]. It was mainly defined by
the consortium, which is composed by academia, research
institutes, and industrial partners, from the automotive, rail-
way, space, video surveillance, and wind power domains.
This specification has been refined with the comments from
experts in the project Advisory Board. The most relevant
requirements are summarized below.

• Development of mixed-criticality systems: The toolset is
aimed at supporting the development of mixed-criticality
systems. This implies that the concept of criticality is
central in the whole development process. The criticality
level of each application has to be stated.

• System model: The toolset has to provide means for
modeling the whole system, which includes the appli-
cations, platform, and any other information that the
developer has to provide for performing the requested
functionality.

• Support for non-functional requirements: Non-
functional requirements are of great importance when
dealing with embedded systems. Time, safety, and se-
curity, are of non-functional requirements that will be
supported. The toolset has to provide means for specify-
ing them, and validating their fulfillment.

• Support for partitioned systems: System partitioning
is a fundamental activity on the target type of systems.
However, there is little support in similar development
tools. This toolset should generate system partitioning
that has to be compliant with the system models and
non-functional requirements.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148674091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2
Toolset for Mixed-Cr i t i ca l i ty Par t i t ioned Systems: Par t i t ion ing Algor i thm and Extens ib i l i t y

Suppor t

• Support for multi-core architectures: The execution plat-
form can be multi-core, as it is commonplace in current
industrial systems. The toolset shall support modeling
multi-core systems and assigning partitions to cores.

• Validation and consistency: The toolset performs a num-
ber of models transformations, and artefacts generation.
An aim of this work is to ensure that these outcomes
are valid with respect to the system requirements. These
objectives are considered in the implementation of the
transformers. In addition, the toolset allows the inte-
gration of validation tools for performing checks when
required.

• Support for legacy systems: It is common in industry to
have applications that have been developed in the past,
perhaps with different methods and tools. The toolset
will provide means for allowing the integration of this
type of applications in the development flow.

• Support system deployment: Deployment is the last step
required before running the system. When dealing with
partitioned embedded systems, this implies the genera-
tion of a bootable software image that includes the hy-
pervisor, the partitions, and their operating system and
applications. The toolset supports system deployment
by generating mechanisms for the automatic building
of the system. System deployment also requires the
configuration of XtratuM.

3 Toolset architecture

The main components of the toolset and data flows are de-
picted in figure 1. Their basic role is:

System 
partitioning
 Partitioning

tool

Deployment model

Neutral model

Transformation to
neutral model

Source code

Transfor-
mation

XtratuM configuration
files

System building 
files

Validation

tool

Tool input model
 Transfor- 
mation

Tool output
model

Transfor- 
mation

Toolset 
result model

Validation

Final 
Artifacts

Generation

Applications model
Platform model

Partitioning
restrictions model

System model

Transfor- 
mation

Transfor-
mation

Transfor-
mation

Transfor-
mation

Documentation

Figure 1: Overall architecture

System modelling: It comprises the main input to the tool.
It is composed by three models for describing the execution
platforms, the applications, and the restrictions to be applied
in the partitioning.

Partitioning tool: It is in charge of generating a system parti-
tioning, that is described in the deployment model. It includes
system partitions, the assignment of applications to partitions,
and the characteristics of the partitions, including the operat-
ing system, processor time, memory, etc. The partitioning tool
takes as input the system model. It has to consider informa-
tion, such as the applications’ criticality level, their required
operating system and hardware devices, etc. Based on this
information it generates a deployment model that meets the
restrictions and some basic requirements.

Validation: Full correctness of a system partitioning may re-
quire complex checks that are difficult to integrate within a
single tool. In addition, it is desirable for the toolset to be ex-
tended for supporting additional non-functional requirements.
It is convenient to be able to use external validation tools that
check the correctness of the system configuration with respect
to a given criteria.

Generation of final artefacts: when the system partitioning
is correct a number of transformation tools generates a set
of outcomes that are necessary for creating and building the
final system:

• XtratuM configuration files

• System building files.

• Source code skeletons.

This toolset is currently under development. There is a work-
ing version that is able to handle simple models. Complexity
is being added gradually. The toolset is being developed based
on the Eclipse Modelling Tools. Model to model transformers
are programmed in Query View Transformation Language
(QVT). Model to text generators are based on Acceleo MTL.
Metamodels are created using eCore.

4 Toolset extensibility
The MultiPARTES toolset has been designed for being easily
extended and evolved. This has been a driver in the design
of the architecture, shown in the previous section. There
are a number of ways of enriching the current functionali-
ties provided by the toolset, as adding support for additional
non-functional requirements, validation tools, or tools for
supporting system deployment.

The aim of this section is to describe the basic means for
performing toolset extensions, as those mentioned. In fact,
these facilities have been the basis for integrating in the core
toolset the contributions developed by the partners in the
project.

Toolset extension can be done at four main levels:

• System model level: to include in the model annotations
for different non-functional properties, or other system
aspects.

A. Alonso, E. Salazar 3

• Partitioning level: to convert annotations that have to do
with partitioning into partitioning constraints.

• Validation level: to use external tools, a deployment
model can be validated, according to the system model
semantics, as stated by non-functional requirements an-
notations.

• Generation level: to generate code compliant with non-
functional properties annotation or specific configuration
parameters for XtratuM.

4.1 Toolset extension at model level

System models can be annotated with information related
with non-functional requirements. This is the case with the
application model. Initially, all application models include
information for partitioning and artefacts generation, such as
criticality level or resources needed. Modelled applications
rely on the class model in UML2 [8] for its description. The
initial version of the toolset relies on the UML-MARTE [9]
profile for describing time and resource requirements. In
this case, it is possible to model real-time entities (tasks,
protected objects) and real-time requirements and parameters.
Application resource needs are derived from those of the
individual entities.

Following this basis, additional annotations with respect to
useful information for the developer can be added. If the
information is associated to the application as a whole, then it
can be enriched with annotations describing these new aspects.
For example, it could be possible to mark an application as
being of a specific type that requires specific handling by
other tools.

In other cases, the annotations have to be made at the level of
application components, such as classes, packages or threads.
This case is more demanding. It requires the definition of a
profile or metamodel, for defining the way and properties to
be specified. Once again, other tools will have access to this
information for performing their functions.

4.2 Toolset extension at partitioning level

The partitioning tool is in charge of generating a system par-
titioning that is consistent with the policies for the different
non-functional requirements. The proposed approach is to use
the partitioning restrictions model as the basis for the integra-
tion of policies of different nature. For each non-functional
property or developing aspect, a restrictions generator can
be provided. It takes as inputs the platform and applications
models, and generates a set of restrictions that ensures that
the final system partitioning will meet the constraints in the
policies. It is important to point out that the implementation
language of the generator is not defined. Anyone can be used,
provided that it generates valid restrictions, according to the
provided meta-model.

Once all the restrictions derived from the different non-
functional properties generators are available, the partitioning
tool produces a system partitioning (deployment model) that
is compliant with them, if one there exists.

4.3 Toolset extension at validation level

The toolset allows the integration of additional validation
tools. This can be required for supporting a new non-
functional requirement, or performing a specific validation
required in the development of a given system. The inputs to
a new validation tool are system and deployment models. The
outputs of the validation tool indicates to the partitioning tool
whether the proposed deployment model is valid, and a set
of new restrictions for driving its correct generation. It may
be necessary to include new transformers for generating the
validation tool input model or converting the corresponding
output, for its integration in the toolset.

4.4 Toolset extension at generation level

The aim is to allow the generation of additional artefacts
useful for the development team. As mentioned above, cur-
rently the toolset generates XtratuM configuration files, sys-
tem building files, and source code (Ada skeletons). However,
there are additional artefacts that may be generated automati-
cally, such as documentation or files for testing purposes.

Currently, the transformation components in the core toolset
take as input the neutral model, for simplification purposes.
However, new tools can access other models in the system,
such as the system model or deployment model. A new
transformation component can access this information for
generating the desired artefacts. It is needed to ensure that
the required information for this job is included in the models.
This integration has to be performed at system model level.
The toolset provides means for invoking them and their be-
haviour will be independent of other transformers, ensuring a
straightforward integration.

5 System partitioning

The purpose of this section is to describe the general algorithm
taken in the toolset for generating a feasible and automatic
system partitioning. This component takes as input the system
model: platform model, applications models, and partitioning
restrictions model. This one is of particular interest, as it
compiles restrictions that must be fulfilled by the resulting
partitioning. They can be grouped in two types:

• Explicit: The developers and system integrator define
this type of restrictions, which response to specific re-
quirements. As instance, they can define specific hard-
ware devices that must be used by an application, force
specific allocations of application into partitions defined
by the system integrator, etc.

• Implicit: They are automatically deduced from the sys-
tem model. As mentioned in section 4, these restrictions
are intended to ensure the fulfillment of non-functional
requirements specified in the model. As instance, two
applications with different criticality level cannot be in
the same partition.

4
Toolset for Mixed-Cr i t i ca l i ty Par t i t ioned Systems: Par t i t ion ing Algor i thm and Extens ib i l i t y

Suppor t

The output of this tool is a deployment model, which defines
the system partitioning. It includes the description of the
partitions. Each of them is characterized by the allocated ap-
plications, the used operating system, and required hardware
resources.

The global approach for system partitioning relies on the
divide and conquer principle. The complexity of this problem,
and the requirements for extensibility are additional reasons
for this approach. In consequence, the problem is broken
down into four stages:

• Allocation of applications into partitions: The aim is to
allocate all applications to partitions, trying to minimize
its number, while fulfilling the restrictions.

• Allocation of partitions on processor cores. The result
of this stage must meet the restrictions related with hard-
ware devices.

• Cyclic plan scheduling design: As mentioned above
XtratuM temporal isolation relies on a cyclic scheduling
policy that is statically defined. The aim of this stage is to
generate the cyclic plan, taking into account application
allocation to cores, and applications CPU needs. These
are defined in the applications model.

• Validation of the deployment model: Finally, it is pos-
sible to validate the resulting system partitioning with
respect to general or non-functional requirements. This
activity is performed by external tools that can be easily
integrated in the toolset. For instance, a response time
analysis tool is to be used [4]. Its aim is to ensure that
time requirements are met by the proposed partitioning
and scheduling plan.

The two initial stages are instances of the general allocation
problem. It is NP-Hard, which means that there is no known
algorithm that resolves it in polynomial time. This problem
has been soundly researched for a long time. After making an
analysis of some available options, the allocation problems
on the partitioning algorithm in this toolset are based on the
greedy algorithm of Iterated Register Coalescing (IRC) [3].

The IRC algorithm is based on colored graph theory. The
allocation problem is modeled in a graph, where nodes rep-
resents the entities to allocate, colors are the allocation re-
sources, and vertices represent restrictions. Originally, it was
intended to help in the allocation of variables into hardware
registers for code generation. There are a number of similar-
ities, such as the existence of a number of restrictions that
must be followed. This algorithm has been selected due to
its good balance between the quality of the results and the
implementation complexity.

The use of this approach for allocating applications on par-
titions required some adaptations. In the proposed solution,
nodes represent applications, colors stand for partitions, and
vertices are restrictions. The original IRC algorithm assumes
a fixed number of resources (registers). However, in this allo-
cation case, the number of resources (partitions) is not limited.
Then, the proposed algorithm generates new colors when the
allocation is not feasible or additional solutions are required.

The developed algorithm for the allocation of partitions to
cores has also been adapted. The aim has been to prioritize
solutions where the cores workload is balanced.

In addition, both algorithms have been improved with respect
to the original IRC, in order to generate alternative solutions.
A proposed system partitioning at this point may be invalid.
This can be caused by not being able of generating a feasi-
ble cyclic plan or by failing in the validation stage. Then
alternatives partitioning are generated, if it is feasible.

There is a working version of the two initial stages, which
has been successfully tested with a number of system mod-
els. Work is ongoing for performing a more exhaustive and
systematic test of these algorithms. There is a very simple
version of the cyclic scheduling plan generator, that has been
used in simple systems. A more advanced algorithm is cur-
rently under development.

6 Conclusions
This paper describes a toolset for supporting the development
of mixed-criticality multi-core embedded systems. It relies
on the XtratuM hypervisor that provides spatial and temporal
isolation, as well as a number of additional features suitable
for the development of this type of systems. The presented
toolset has been designed according to a set of requirements
produced by experts from academia and industry, with knowl-
edge on a number of application domains.

Currently, the toolset provides most of the mentioned func-
tionality, but for simple systems. Support for more complex
systems is gradually being included. Future work includes
the integration of improved support for time, safety and se-
curity, and improvements on the partitioning algorithm. The
toolset is being validated in three different use cases: a wind-
power turbine control system, the onboard software of the
UPMSAT2 satellite, and a video surveillance system.

Acknowledgment
The work in this paper is partially funded by FP7 STREP
MultiPARTES project, no 287702 (www.multipartes.eu). The
wish to thank the MultiPARTES consortium for its collabora-
tion and help.. The work in this paper has also been funded
by the Spanish Ministerio de Educación, Cultura y Deporte,
project HI-PARTES (High Integrity Partitioned embedded
systems), TIN2011- 28567-C03-01 in the Plan Nacional de
I+D+i.

References
[1] Alonso, A., Salazar, E., de Miguel, M.A., A Toolset for

the Development of Mixed-Criticality Partitioned Sys-
tems, in 2nd Workshop on High-performance and Real-
time Embedded Systems, 2014, Vienna, Austria

[2] ARINC: Avionics Application Software Standard Inter-
face ARINC Specification 653-1 (October 2003)

[3] George, L., Appel, A.W.: Iterated register coalescing.
TOPLAS 18(3), 300–324 (1996).

A. Alonso, E. Salazar 5

[4] González Harbour, M., Gutiérrez, J.J., Palencia, J.C.,
Drake, J.M.: "MAST modeling and analysis suite for real
time applications". In: Proceedings of 13th Euromicro
Conference on Real-Time Systems,(June 2001).

[5] M. Masmano, I. Ripoll, A. Crespo, S. Peiro. XtratuM for
LEON3: an OpenSource Hypervisor for High-Integrity
Systems. Embedded Real Time Software and Systems
(ERTS2 2010), May 2010.

[6] MultiPARTES: Multi-cores Partitioning for Trusted Em-
bedded Systems, Available: www.multipartes.eu

[7] MultiPARTES project, "Requirements Platform
and Methodology Viewpoint", Deliverable D2.2,
http://www.multipartes.eu.

[8] OMG Unified Modeling Language (UML) (2011),
http://www.omg.org/spec/UML/2.4.1/, version 2.4.1

[9] OMG UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems (2011),
http://www.omg.org/spec/MARTE/, version 1.1

[10] S. Peiro, M. Masmano, I. Ripoll, and A. Crespo. "PaR-
TiKle OS, a replacement of the core of RTLinux", in Proc.
of the Real-Time Linux Workshop, 2007.

[11] E. Salazar, A. Alonso, M.A. de Miguel, J.A. de la Puente.
"A Model-Based Framework for Developing Real-Time
Safety Ada Systems". In H.B. Keller, et al (eds.), Reliable
Software Technologies — Ada-Europe, LNCS 7896, pp.
126–141. Springer-Verlag, 2013.

[12] Schmidt, Douglas C. "Guest editor’s introduction:
Model-driven engineering." Computer 39.2 (2006): 0025-
31.

