
MAIA: An Event-based Modular Architecture for
Intelligent Agents

J. Fernando Sánchez-Rada
Carlos A. Iglesias

and Miguel Coronado
Grupo de Sistemas Inteligentes

Universidad Politécnica de Madrid
Email: {jfernando, cif, miguelcb}@dit.upm.es

Abstract—Online services are no longer isolated. The release
of public APIs and technologies such as web hooks are allowing
users and developers to access their information easily. Intelligent
agents could use this information to provide a better user expe-
rience across services, connecting services with smart automatic
behaviours or actions. However, agent platforms are not prepared
to easily add external sources such as web services, which hinders
the usage of agents in the so-called Evented or Live Web. As a
solution, this paper introduces an event-based architecture for
agent systems, in accordance with the new tendencies in web
programming. In particular, it is focused on personal agents
that interact with several web services. With this architecture,
called MAIA, connecting to new web services does not involve
any modification in the platform.

Keywords—Agent architecture, evented web, events, web hooks,
jason

I. INTRODUCTION

Agent architectures provide a valuable general guideline for
designing and implementing agent applications [1] and have
been a very active research topic in the agent community. In
the 1990s, research interest was focused on the investigation of
architectural issues raised by three influential threads of agent
research (i.e. reactive agents, deliberative agents and interact-
ing agents), as collects the excellent survey by Müller [2].

Software agent platforms are usually specialized in a
particular agent architecture.For instance, most platforms for
deliberative agents have adopted the Belief-Desire-Intention
(BDI) model, as Jadex [3], Jack [4] or Jason [5], while the
most popular agent platform for interacting agents, Jade [6],
is based on FIPA [7]. Some of these platforms provide facilities
to combine reasoning and interacting features, such as Jadex
or Jason, which can be integrated with Jade.

The BDI architecture defined by Rao and Georgeff [8]
is based on the original model proposed by Bratman for
modelling human reasoning [9]. The BDI abstract architecture
models human-like reasoning by capturing the mentalistic
notions of belief, desire and intention, which are processed
according to a generic interpreter. This interpreter assumes that
events are atomic and recognized after they have occurred.

Traditionally, both messages and percepts have been man-
aged in the same interpretation cycle, since both are considered
forms of external events. As a result, most agent implementa-
tions mix reasoning processes with the communication logic

and make them hard to reuse, debug and develop. Recently,
several works such as ACRE [10] and Alfonso et al. [11]
have proposed to delegate conversation management in a
specific module external to the agent reasoning process. The
interaction between these two modules is done through actions
and perceptions. The reasoning module can reason about the
outcomes of every conversation through a set of predefined
perceptions, and then execute several actions to manage the
status of those conversations (e.g. cancelling, forgetting or
retrying a conversation).

Furthermore, agent platforms do not provide standardised
mechanisms to integrate sensory information. This integration
of sensors and actuators typically requires extending the basic
agent architecture and a deep understanding of its implemen-
tation.

On the other hand, gathering information from external
sources is a key aspect of any agent system. Lately, we are
relying more and more on web services to store, share and
generate new information.

Several works have proposed different mechanisms for
integrating agents and web services, as surveyed in [12]. The
existing solutions provide mappings between addressing and
messaging schemes in web services and agent systems, and
are implemented using a gateway that publishes web service
descriptions into FIPA’s directory facilitator and vice-versa.
Nevertheless, there are application domains such as personal
agents where the FIPA platform infrastructure is not needed but
there is still the need to invoke services as a standard action.

A new trend in web service development is relying on event
based interaction to allow services to interact. So much so
that it is leading to a new generation of the web, called real
time web or evented web [13]. This new wave of web services
is characterised by its capability to process incoming events
originated by a wide range of sources, such as social networks,
service notifications or sensors.

Our proposal consists in overcoming the typical limitations
in agent architectures while keeping them up to the current
scenario. We do so by providing an event-based perspective to
the internal composition of agent modules. This paper also
explains how this architecture, called event-based Modular
Architecture for Intelligent Agents (MAIA), can be used in
applications that interact with a variable and increasing number
of services, as well as its inner workings and implementation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148674069?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

challenges. To illustrate this, we also present an implementa-
tion of a personal cloud agent using MAIA.

This paper is structured as follows: Section III presents an
overview of the architecture and describes its components in
detail; Section IV covers the format and purpose of events;
Section V shows how to use MAIA to build a personal agent;
Section VI goes through related work; and in Section VII we
present our conclusions and future work.

II. EVENT-BASED PROGRAMMING

Event-based programming [14], also called Event-Driven
Architecture (EDA) is an architectural style in which one or
more components in a software system execute in response to
receiving one or more notifications. Event based programming
differs from traditional web synchronous request-response
interactions, since the main concepts are the events. Then,
instead of speaking of clients and services, we refer to event
producers and consumers. One of the main advantages of this
architecture is that event producers and consumers can be
decoupled, which improves its scalability and fault-tolerance
capabilities. There are three main interaction styles in event
programming [14]:

• Push event distribution: event producers emit an event
and usually do not expect any specific action by event
producers

• Channel event distributions: event producers send
events to an event channel which acts as a broker,
redirecting the event to event consumers subscribed
to that particular event. This model is usually imple-
mented using Message-oriented Middleware (MOM).

• Pull event distribution: event consumers follow the
traditional request-response pattern to request an event
from an event producers or from an event channel.

Event-based programming has been traditionally popular
for programming user interfaces (e.g., Swing or JavaScript)
as well as for integration architectures based on a Enterprise
Service Bus. Given the requirements of the Live Web, event-
based programming has given a step forward and is one of
the cornerstones of highly interactive applications. We review
in the following subsections Node.js, one of the most popular
server-side programming environments, which is an example
of the event oriented paradigm. Node.js applications are written
in JavaScript and thus rely heavily on events.

III. MAIA ARCHITECTURE

An agent that does not interact with its environment (other
software components, sensors, actuators, etc.) is of little prac-
tical use. For that reason, it is common practice to modify or
extend agent platforms to include external sources. However,
as previously explained, agent architectures tend to be mono-
lithic. Connecting to external components is often a tedious and
ad-hoc process. Regardless of the specific implementation, the
resulting modifications are very heterogeneous and bound to
the agent platform they were made for.

In an attempt to adapt generic BDI multi agent systems to
seamlessly interact with different sources, we propose a new
architecture, called MAIA.

The architecture has been designed to allow easy hot-
plugging of new components that expand the capabilities of
the system (e.g. new sensors). It consists of independent
modules that perform different tasks (e.g. BDI reasoning, User
Interface), which are connected using a common interface to
a core platform that controls the flow of information between
them.

Figure 1 shows an overview of the main modules in the
architecture. At its core there is a bus for the modules that
are closely related to a typical agent (BDI platform, sensors,
actuators, etc.), another bus for the modules that connect to
the Evented Web, and a central piece that connects both buses
and provides additional services.

This section briefly presents these modules, focusing on
the relationship between them. The following sections will de-
scribe each module separately in greater detail. The underlying
communication mechanism is covered in Section IV.

First of all, the architecture includes a BDI Platform
module which encapsulates all BDI functions and logic. This
platform can be used to develop and run BDI agents that will
communicate with the rest of the modules in the architecture.

An Adapter (labelled BDI Adapter) makes this communi-
cation possible by interfacing between the agent platform and
the rest of the modules. Part of this adaptation is translating
MAIA events to a format the platform understands, and vice
versa. It will also make all the high level services from the rest
of the modules available to the agents within the platform.

We use Jason as the reference BDI Platform in this paper,
but any other platform such as Jade or Jadex would be suitable.
The design of the BDI Adapter depends on the platform
chosen.

The BDI Adapter is directly connected to the Agent Bus.
The role of this bus is to connect the different high level
modules of the agent, in contrast with the connectors to web
services and other sources, which connect to the Evented Web
Bus. This separation serves two main purposes: protecting the
agent modules from an overload of events from the web, and
providing additional capabilities to the modules connected to
the Agent Bus (see Section III-B).

The Event Manager mediates between both buses, pro-
viding extra services to the Agent Bus as described in Sec-
tion III-C. These services will have an important role in the
development of BDI agents. Section III-A2 contains several
plans and goals in Agent Speak that make use of these services.

A. Adapters

To be able to connect to any of the MAIA buses a module
must communicate via events that are MAIA compliant (see
Section IV) and use one of the protocols that its bus imple-
ments. Unfortunately, not all systems are natively evented.
Even when they are, they do not always follow the MAIA
events format or use the same protocol as the bus.

An Adapter is a piece of software that mediates between
such systems and the rest of the modules. In the best case
scenario, which is that of software that is already event
oriented, the adaptation process is as simple as translating
event formats on the fly and dealing with protocol differences.

Fig. 1. High level representation of the MAIA architecture.

In the worst case scenario, deeper changes in the software itself
might be needed.

We group the adapters in two categories according to the
level of integration they provide: basic adapters and Agent
Adapters. Basic adapters make the features of an external
service or module available to the rest of the modules. Agent
Adapters also make the advanced services provided by the
Event Manager available to the module in question.

In essence, basic adapters simply add sources of informa-
tion or interaction with external services, whereas an Agent
Adapter connects to a module with more complex logic.

1) Basic Adapters: These adapters take care of: connecting
with the Event Manager; translating event formats, back and
forth; generating MAIA events and storing events for later
consumption. Every adapter that connects to the Evented Web
Bus is a basic adapter.

2) Agent Adapter: Agent Adapters are the interface be-
tween an agent system, typically an Agent Platform, and the
Agent Bus. The role of these agent systems is to implement
the logic of the final application, adding intelligence to the
system and communicating to the different modules. The Event
Manager provides several services to make it easier to perform
certain common actions or simply delegate tasks that would
otherwise be done by the agent. Thus, an Agent Adapter should
integrate these services in the agent platform.

The design and features of the Agent Adapter highly
depend on the target Agent Platform, its internals and the
programming interface it offers. Hence, we will focus on the
development of an adapter for Jason. Nevertheless, most of the

Fig. 2. Adding perceptions to agents in Jason

concepts herein are general and can be used in other Agent
Platforms.

We identified three main challenges in the adaptation
process. The first one consisted in communicating with the
platform itself, and its individual agents. The second one was
translating MAIA events to Jason beliefs. Lastly, there needs
to be a way to use the extra services provided by the Event
Manager from within any Jason agent. This section covers the
first two, whereas Section V contains excerpts of Agent Speak
code to deal with the most common MAIA services.

Every agent within Jason has its own knowledge database,
which is populated by data from the different sources. To be
able to actually modify the perceptions of the agents, a custom
Jason Environment is needed, along with an ad-hoc model for
this scenario. By modifying the basic Jason Environment we
are able to control not only the sources through which new
information is added, but the life cycle of such information.

More precisely, the custom model follows the data inbox
concept, the same as regular mailboxes. All information re-
ceived by the agent is volatile, and will be discarded after it
is fetched. Should the agent find the information interesting
or necessary for the future, it will save it as beliefs in its
permanent knowledge database.

Using these data boxes it is rather easy to integrate our Java
code and our agents in AgentSpeak. A special function allows
any Java method to send information to any certain agent, and
any Java function can be wrapped and made available to the
agents in the platform. Figure 2 shows the custom elements
created for the adapter.

Apart from the modifications explained above, events them-
selves need to be converted to beliefs internally. For this
purpose, we created the libraries to translate a a subset of
the JSON notation to beliefs and vice versa. Unfortunately,

the limited syntax of beliefs makes it impossible to perform a
complete mapping.

Lastly, it is important to note that every agent should sub-
scribe only to those events that are relevant to its functioning,
and to avoid permanently storing them. Otherwise, we risk
overloading the agents with too many facts, which hinders the
reasoning process and might lead to undesired behaviours.

B. The Agent Bus and the Evented Web Bus

The role of the Evented Web Bus is to gather information
from different web services and other non-web sensors, and to
send information to those services when needed.

In addition to plain message passing, the bus has the
following features: event filtering, event subscription and store
and forward. Event Filtering provides the ability to select only
the relevant events in each situation and for each module. By
using Event Subscription modules can indicate their interest
in certain kind of event which they wish to receive. Store
and Forward means that modules can receive the events they
subscribed to and that were sent while they were disconnected.
It also means that events will be saved until they can be
forwarded to a module. Without it, an overloaded module
would not be able to consume all the events sent to it, which
might then be discarded.

The Agent Bus connects the different modules that are
directly related to the agents. The Agent Platform, the User-
Interface and the Communication Manager are the most im-
portant examples of such modules.

In essence the Agent Bus works similarly to the Evented
Web Bus. However, the modules connected are in charge of
some of the highest level functions of the agent architecture.
Thence they require some capabilities from the bus that were
not necessary for the evented web. These capabilities are ex-
posed to the agents in the form of services that highly ease the
development of systems that take advantage of web services.
Most of these services are focused on the development of
personal agents that interact with social networks.

These services will be transparently provided to the mod-
ules in the Agent Bus by the Event Manager, covered in the
following section.

It is important to note that the existence of these buses
makes it possible to spread the modules that connect to it into
several machines. Nonetheless, a simpler local configuration is
possible.

C. Event Manager

The Event Manager is the core of the MAIA architecture.
It is the bridge between the two buses. One of its roles
is to exchange events between them, making Evented Web
and sensory information available to agents and forwarding
requests from agents to services. However, such information
is usually verbose and frequent. Most of the times it is re-
dundant or not critical. In contrast, the communication among
agents or between agents and the user interface are usually
more critical and sensitive to delays. As a consequence, the
exchange between both buses obeys specific rules within the
Event Manager. Such rules make the existence of two buses

transparent to the clients of both while avoiding unnecessary
forwarding between them.

Besides controlling the flow of events between the different
modules, it complements the Agent Bus by providing higher
level functions that are not present in it. The Event Manager
provides several useful services for the development of per-
sonal agents.

Namely, these services are: Identity, Event Based Task Au-
tomation, Location, Semantic Information, Social Networks,
Calendar and Transactions.

The Identity Service allows agents to define virtual identi-
ties. These identities can be linked to the rest of the services.
For instance, an identity can be linked to several calendars and
social networks. These identities are defined via FOAF [15].
Each identity has a unique ID that can be used to subscribe to
the events from the sources linked to it. The Event Based Task
Automation offers the option for agents to delegate actions to
the Event Manager. These actions will be fired by a certain
event, and their result will be another event.

The Social Network service homogenises the connection
and interaction with different social networks. Social networks
are an important part of the average user’s everyday activity.
By integrating them in a personal agent, we can gather relevant
information about the user and improve the user’s experience.
Each social network profile can be linked to several identities.
As we saw before, this means the events from different profiles
will share a common namespace, making it easy to subscribe
to all of them.

The Location service makes it possible to set locations to
each identity. Events are sent every time there is a location
change, or when a module queries the location of an identity.

The Calendar Service is a common interface to deal with
calendars from different sources within Maia. It is especially
meant as an abstraction for online calendar services.

The Information Service offers a simple unified interface
for agents to query information from external information
sources. As of this writing, the Information service supports
SPARQL, being able to send queries to multiple endpoints
(DBpedia, data.gov, etc.).

The Transaction service makes it easier for agents to
handle operations with online services that follow a known
pattern. For instance, the processes between booking a flight
and arriving safe to the destination accommodation are quite
similar regardless of the flight company, shuttle bus operator,
etc. Given that, the Transaction service identifies different
events as steps in such processes and acts accordingly to offer
extra information to the agents.

IV. MAIA EVENTS

The communication paradigm in MAIA purposely mimics
that of the evented web [13]: all modules communicate through
atomic messages called events. This paradigm follows the
channel event distribution style.

The communication based on events is what confers loose
coupling to the architecture. However, it also means that the
structure and format of these events must cover a wide range

of scenarios. Furthermore, it is desirable to make events as
compatible with the evented web as possible so that the inter-
action is seamless. This compatibility that must be achieved
both in a conceptual level and in the format level.

The conceptual level deals with questions such as: what
type of information does an event carry?, how do events
relate to each other?, how are modules/services and events
related? Most of these questions have already been answered
in the previous sections, especially those related to the purpose
and usage of events. The Live Web [13] introduces a very
generic schema for events. However, a formal definition of the
information within events is still missing.

The Evented Web Ontology (EWE) by Coronado et al. [16]
formalises the idea of events on the web in the form of an
ontology. The ontology itself was created after studying several
task automation portals such as IFTTT. These portals either
actively access services (web requests) or receive notification
from them (web hooks). Either way, any new information from
a services is modelled as an event. Users can choose what
actions should be triggered when an event is detected (e.g.
upload a picture to an image hosting site whenever there is
new email with attachments). Interestingly, this scenario can
be seen as a particular case of the evented web. The EWE
vocabulary allows for such generalisation, which turns it into a
consistent semantic model for representation of events. Hence,
it provides the formal definition necessary for conceptual
compatibility.

Describing EWE in depth is out of the scope of this paper.
However, we will describe the concepts that are necessary
to understand its use in this work and how it had to be
expanded. Among other things, EWE defines Channels, Events
and Actions. A Channel is a source of information, such as an
e-mail inbox. Channels generate Events whenever there is new
information, like whenever there is new mail. Each Channel
also has a list of available Actions, like deleting an email.

In MAIA every new module is a Channel. For adapters,
this Channel actually represents the source they are adapting.
Additionally, an event can be either informative or a request,
in the sense that it may inform of an action performed or of
an intention to trigger an action in a remote entity. In other
words, a module emits an event when there is new information
to share, or when it expects another module to perform an
action.

On the other hand, there are several possible formats
to serialise semantic information. To simplify the task of
developing new adapters to the evented web, MAIA events
use the JSON-LD [17] format in its compact form. This
approach has multiple advantages: it is a lightweight human-
readable format; there are libraries to efficiently process JSON
in almost every programming language and JSON-LD libraries
have been made for most of them; semantic and non-semantic
information can coexist in the same JSON object; and plain
JSON information from the evented web might be converted
to semantic JSON-LD by adding an appropriate context.

In summary, MAIA events are messages in JSON-LD
format that are modelled using the EWE ontology. Events have
the following fields:

• id (@id) Unique identifier of the sent event for the

specified entity (source).

• timestamp (dcterms:created) Time of the original
emission. This makes time reasoning possible and
prevents the side effects of asynchronous communi-
cations.

• source (ewe:source) Unique identifier of the sending
entity.

• name (dcterms:title) Which describes the event, and
is the only required field. Ideally, it will not only
consist of a basic string, but of a complete namespace.
This allows for a complex processing of the events
and an advanced filtering for triggers. We will get into
details later in this section.

• parameters (ewe:hasParameter) For any kind of
non-trivial event, we will need more information about
the entities involved in the event, or the parameters if
it is a request. This field is a list of ewe:Parameter
objects, with description, title and value.

• expiration Used to announce other entities that after
this time the success or error callbacks will not be
called, to prevent them from replying to or acknowl-
edging the event.

{
"@context": {
"ewe": "http://www.gsi.dit.upm.es/ontologies

/ewe/ns",
"dcterms": "http://purl.org/dc/terms",
"id": "@id",
"@type": "ewe:Event",
"source": "ewe:source",
"timestamp": {
"@id": "dcterms:created",
},
"name": "dcterms:title",
"parameters": {
"@id": "ewe:hasParameter",
"@container": "@list",
"@type": "ewe:Parameter"

},
"description": "dcterms:description",
"title": "dcterms:title",
"value": "dcterms:value",

},
"id": "http://demos.gsi.dit.upm.es/maia#

MailChannel_"
"source": "http://demos.gsi.dit.upm.es/maia#

MailChannel_ev_1389937684001
"timestamp": 1389937684,
"name": "MailChannel::email::new",
"parameters": [
{

"title": "subject",
"value": "Testing Maia",
"description": "Subject of the email"

}
],
"expiration": 1389937694

}

Listing 1. Example of an event in MAIA that represents a MailChannel.

In addition to these fields, the complete JSON-LD object
also includes a context to provide the semantic metadata of

each field. A complete example of an event can be seen in
Listing 1

All events are named following a simple convention,
the names are strings separated by double colons, the first
string being the name of the module that sent it, for ex-
ample: MailChannel::email::new. Modules use these names
to subscribe to events from other sources. For instance, in
our previous example a module would need to subscribe to
MailChannel::email::new to receive the new email events from
MailChannel.

What is interesting about MAIA events is that they may
contain wildcards * or double wildcards **. Using wildcards,
a module can subscribe to a wide range of events. If the name
of the event and the name used in the subscription match, the
event will be forwarded. A single wildcard replaces/matches
any string between double colons (e.g. a::b::c and a::*::c
match). A double wildcard replaces/matches zero or more slots
(e.g. a::b::c and **::c match, and also a::b::c::**). Wildcards
can be used either in the subscription name or in the event
name, the comparison is applied symmetrically.

In order to efficiently process these matches and allow
a high throughput of events, MAIA buses use an optimised
subscription handling algorithm based on subscription trees.

Although one of the aims of the events system is
to achieve asynchronous, it is worth noting that names-
paces and the expiration information allow some sort of
remote method invocation. To reply to an event, another
event with the name <source>::success::<id> or
<source>::error::<id> can be sent before Expiration,
where ¡source¿ is the identifier of the sender and ¡id¿ is the
ID of the original event. These events are currently not being
forwarded to the rest of the modules.

As a last comment about the format of events, we have
developed adapters for SPARQL and Spotlight endpoints. A
W3C recommendation [18] can be used to include the results
from SPARQL queries in events.

V. CASE STUDY: BUILDING A PERSONAL AGENT

To clarify some of the concepts explained before and put
them in context, we will go through an example implementa-
tion of a personal agent in the travelling domain.

The aim of this personal agent is to assist users with their
trips. This assistance includes: following the process between
booking a ticket and arriving to the destination, alerting of
any irregularity such as delays, cancellations or forecast alerts;
informing users about flight deals during their free days;
checking the activity on social networks about topics related
to the trip; and handling emails and social activity on behalf
of the users when they are away.

For all this to work, the agent will need to connect to: a
flight search service; a forecast service; an email server; and
a social network. The interaction between the user and the
personal agent will be via text messages. The natural language
processing of the messages from the user to an external REST
Natural Language Understanding (NLU) Service. Each of the
external services has an associated adapter module, as seen in
Figure 3.

Fig. 3. Architecture of the Prototype.

The logic of the personal agent is provided by a single
Jason agent, the travel agent. This section shows excerpts of
code and simplified examples that demonstrate how to interact
with the Event Manager to make use of its services. More
specifically, it contains AgentSpeak plans to: get the semantic
information of the country of the flight destination, which can
later be used to fetch more information; alert the user via
email when the user has confirmed a flight and the forecast
information in the city of origin or destination is negative;
subscribe to activity in all the subscribed microblogging sites
about the country or city of destination two weeks before the
flight, and alert the user about suspicious activity.

It is possible to simplify the syntax to emit frequent events,
as seen in Listing 2

1 email(To,From,Subject,Body) :- parameters((
name("to"),value(To)),(name("from"),value
(From)),(name("subject"),value(Subject))
,(name("body"),value("body"))).

2 sendEmail(To,From,Subject,Body) :- event(["
action","email","send"],email(To,From,
Subject,Body)).

Listing 2. Definitions for email handling.

Listing 3 contains a plan to process forecast information
during or close to a day of a scheduled flight. To receive such
forecast information, the agent must have already subscribed
to forecast alerts or any event from the information service.

Listing 4 exemplifies how an agent can query a SPARQL
endpoint to get more information. In particular, it fetches the
capitals of the capitals in Europe if a new flight is booked but

the country of the destination city is not known. The query is
limited to European cities to use a simple query to a public
endpoint (DBpedia).

1 +info("forecast",data(Date,City,Temperature,
Forecast,Chances))

2 : flight(Dept,City,From,To)[id(Identity)] |
flight(City,Arriv,From,To)[id(Identity

)] ((Temperature < 20 | Forecast ==
"rain") Chances > 0.3)

3 <-!suggest_deals(Identity,Dept,Arriv,From,
To);

4 sendEmail(email_address(Identity),null,"
Bad weather for your trip",(Date,
Temperature,Meteo,Chances)).

Listing 3. Process forecast information when a flight has been scheduled.

1 +flight(_,City,_,_)
2 : ˜country(City,_)
3 <-query_sparql("
4 SELECT distinct ?country ?capital (SAMPLE

(?caplat) AS ?caplat) (SAMPLE(?
caplong) AS ?caplong)

5 WHERE {
6 ?country rdf:type dbpedia-owl:Country .
7 ?country dcterms:subject <http://dbpedia

.org/resource/Category:
Countries_in_Europe> .

8 ?country dbpedia-owl:capital ?capital .
9 OPTIONAL {

10 ?capital geo:lat ?caplat ;
11 geo:long ?caplong .
12 }
13 }
14 ORDER BY ?country
15 ",country(1,2),location(2,3,4,_)).

Listing 4. Demonstrates how to use a SPARQL query to gather new
information.

Lastly, Listing 5 presents a simple example which makes
use of the social service. More specifically, the agent sub-
scribes to microblogging events up to fifteen days before a
flight is scheduled to depart. The social service will then send
alerts about activity when there are enough microblogging
posts related to the destination city or country. It is easy
to imagine that this feature is helpful to detect noteworthy
happenings in the destination country (riots, strikes, concerts,
etc.)

1 +flight(_,City,Dept(YY,MM,DD,_,_,_),_)[id(
UserID)]:

2 : ((DD > 15 .date(YY,MM,DD-15)) |
(.date(YY,MM-1,DD+15)))
country(City,Country)

3 <-social(event(["id",UserID,"social","
ublogging","**","stream","peak"), [
Country,City], ["alert","activity","
ublogging","away"]).

4
5 +event(["alert", "activity", "ublogging", _],

data(Volume, Posts))[id(Identity)]
6 : Volume > 10
7 <-ui_alert(Identity, "Relevant info from

the social networks about your
destination:", Posts).

Listing 5. Subscribe to notifications about peaks in activity about the
destination of a trip and warn the user via the UI upon alert.

The interaction with the user can be done via a Web client
(a Google Chrome extension that connects to the Agent Bus),
or an Android application. Both clients also send the location
of the user, so they are both UIs and sensors.

Fig. 4. User Interface as a Chrome Extension

VI. RELATED WORK

Several authors have addressed the definition of an event
based agent architecture. Munteanu [19] proposes an event-
based middleware for Cloud Governance based on multiagent
system. Their work is focused on identifying the agent roles
for cloud governance and does not deal with engineering an
event-based agent system. Thus, our solution can complement
their proposal since it provides a suitable architecture for event-
based processing.

In the first prototypes of this system, different multi agent
system platforms were evaluated. The most promising of
them being SPADE (Smart Python multi-Agent Development
Environment) [20], as it includes the XMPP protocol in its core
and many of its communication features and its advantages:
publish-subscribe mechanism to allow push updates, form-
data to manage work-flow between user, libraries for many
programming languages and platforms, etc..

So far, we referred to communication between modules in
the general sense. The elements mentioned make it possible
to exchange information between different parties. However,
agent communication is a more sophisticated process that has
been treated broadly in other texts [10], which describe com-
plex agent communication solutions. Although MAIA focuses
on a different problem, it was designed so that these solutions
are compatible with and can be implemented on top of it. To
make this possible, two possible additions might be needed:
one in the agent level, adding the communication logic and
protocols; and another one on the platform level, which allows
agents to announce or subscribe their services, share protocol
definitions or that acts as a mediator in disputes. The first
addition would be made on top or within the MAIA adapter,
if it is not already contemplated in the agent platform. The
second one is labelled as Communication Manager module in
the MAIA architecture. This paper will not cover this specific
module, but it is important to note that the architecture was
created with it in mind.

VII. CONCLUSIONS AND FUTURE WORK

The architecture presented in this paper proves that it is
possible to achieve modern systems that combine the potential
of intelligent agent systems and the interconnection and ever-
growing applications of the modern web.

The resulting application goes beyond the state of the art,
putting together already existing solutions from different fields.
It thus shows that we can make good use of the existing
technologies to implement innovative ideas.

It is important to note that the most important shift is in the
way we understand agents and agent communication. Adapting
existing systems and frameworks to MAIA also requires work,
especially in the case of Multi Agent Systems. However, such
adaptation only needs to be done once, and it allows its
connection to a wide range of modules.

There are several aspects in which MAIA can be extended
or improved. It also opens the discussion about the integration
of the evented programming paradigm and the design of BDI
agents.

One of the main aspects to improve from a pragmatic point
of view is the security of the information being exchanged
and the scope in which it is visible. Currently MAIA allows
username/password authentication and mechanisms to control
event subscription on a per-module basis.

Another field for future research is to further expand
the definition of events to include other concepts such as
propagation of events. This might lead to delegation and
collective planning, but it also poses challenges related to agent
communication.

REFERENCES

[1] J. P. Müller and M. Pischel, “The agent architecture interrap: Concept
and application,” German Research Center for Artificial Intelligence
(DFKI), Tech. Rep., 1993.

[2] J. P. Müller, “Architectures and applications of intelligent agents: A
survey,” The Knowledge Engineering Review, vol. 13, no. 4, pp. 353–
380, 1999.

[3] A. Pokahr and L. Braubach, “From a research to an industry-strength
agent platform: Jadex v2,” Business Services: Konzepte, Technologien,
Anwendungen. 9. Internationale Tagung Wirtschaftsinformatik, pp. 769–
780, 2009.

[4] P. Wallis, R. Ronnquist, D. Jarvis, and A. Lucas, “The automated
wingman - using jack intelligent agents for unmanned autonomous
vehicles,” in Aerospace Conference Proceedings, 2002. IEEE, vol. 5,
pp. 5–2615–5–2622 vol.5.

[5] R. H. Bordini and J. F. Hübner, “Bdi agent programming in agentspeak
using jason,” in Proceedings of 6th International Workshop on Compu-
tational Logic in Multi-Agent Systems. Volume 3900 of lncs. Springer,
2005, pp. 143–164.

[6] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent
Systems with JADE (Wiley Series in Agent Technology). John Wiley
& Sons, 2007.

[7] “Foundations for intelligent physical agents (FIPA),” 2001, available
from http://www.fipa.org.

[8] A. S. Rao, M. P. Georgeff et al., “Bdi agents: From theory to practice,”
in Proceedings of the first international conference on multi-agent
systems (ICMAS-95). San Francisco, 1995, pp. 312–319.

[9] I. Bratman, “Plans, and practical reason,” Cambridge, Mass.: Harvard
UP, 1987.

[10] D. Lillis, “Internalising Interaction Protocols as First-Class Program-
ming Elements in Multi Agent Systems,” Ph.D. dissertation, University
College Dublin, 2012.

[11] B. Alfonso, E. Vivancos, V. Botti, and A. Garcı́a-Fornes, “Integrating
jason in a multi-agent platform with support for interaction protocols.”
in Proceedings of the compilation of the co-located workshops on
DSM’11, TMC’11, AGERE!’11, AOOPES’11, NEAT’11 and VMIL’11,
ser. SPLASH ’11 Workshops. New York, NY, USA: ACM, 2011,
pp. 221–226. [Online]. Available: http://doi.acm.org/10.1145/2095050.
2095084

[12] D. Greenwood, M. Lyell, A. Mallya, and H. Suguri, “The ieee
fipa approach to integrating software agents and web services,” in
Proceedings of the 6th international joint conference on Autonomous
agents and multiagent systems, ser. AAMAS ’07. New York,
NY, USA: ACM, 2007, pp. 276:1–276:7. [Online]. Available:
http://doi.acm.org/10.1145/1329125.1329458

[13] P. Windley, The Live Web: Building Event-Based Connections
in the Cloud. Course Technology, 2011. [Online]. Available:
http://books.google.es/books?id= AxfXwAACAAJ

[14] O. Etzion and P. Niblett, Event Processing in Action. Manning
Publications Co., 2010.

[15] D. Brickley and L. Miller. (2014, Jan.) Foaf vocabulary specification.
[Online]. Available: http://xmlns.com/foaf/spec/

[16] M. Coronado and C. A. Iglesias. (2013) Ewe ontology: Modeling
rules for automating the evented web. GSI. [Online]. Available:
http://www.gsi.dit.upm.es/ontologies/ewe/

[17] M. S. et al. (2014, Jan.) Json-ld 1.0. [Online]. Available: http:
//json-ld.org/spec/latest/json-ld/

[18] A. Seaborne. (2011, Jan.) Sparql results in json. [Online]. Available:
http://www.w3.org/TR/sparql11-results-json/

[19] V. I. Munteanu, T.-F. Fortis, and V. Negru, “An event driven multi-
agent architecture for enabling cloud governance,” in Proceedings
of the 2012 IEEE/ACM Fifth International Conference on Utility
and Cloud Computing, ser. UCC ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 309–314. [Online]. Available:
http://dx.doi.org/10.1109/UCC.2012.50

[20] M. E. Gregori, J. P. Cámara, and G. A. Bada, “A jabber-based multi-
agent system platform,” in Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems. ACM, 2006,
pp. 1282–1284.

http://doi.acm.org/10.1145/2095050.2095084
http://doi.acm.org/10.1145/2095050.2095084
http://doi.acm.org/10.1145/1329125.1329458
http://books.google.es/books?id=_AxfXwAACAAJ
http://xmlns.com/foaf/spec/
http://www.gsi.dit.upm.es/ontologies/ewe/
http://json-ld.org/spec/latest/json-ld/
http://json-ld.org/spec/latest/json-ld/
http://www.w3.org/TR/sparql11-results-json/
http://dx.doi.org/10.1109/UCC.2012.50

