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a b s t r a c t 

Services in smart environments pursue to increase the quality of people’s lives. The most important issues when developing this kind of 
environments is testing and validating such services. These tasks usually imply high costs and annoying or unfeasible real-world test-ing. 
In such cases, artificial societies may be used to simulate the smart environment (i.e. physical environment, equipment and humans). With 
this aim, the CHROMUBE methodol-ogy guides test engineers when modeling human beings. Such models reproduce behaviors which are 
highly similar to the real ones. Originally, these models are based on automata whose transitions are governed by random variables. 
Automaton’s structure and the prob-ability distribution functions of each random variable are determined by a manual test and error 
process. In this paper, it is presented an alternative extension of this methodology which avoids the said manual process. It is based on 
learning human behavior patterns automatically from sensor data by using machine learning techniques. The presented approach has 
been tested on a real scenario, where this extension has given highly accurate human behavior models. 

1. Introduction 

A smart environment [13] provides a set of software and hardware elements that support an intelligent and unobtrusive 
interaction between environment and users. These intelligent environments acquire context knowledge from the physical 
world, i.e. they are Context-Aware, and provide services that support daily user tasks in an adaptive way. The main goal 
of these services is to augment quality of people’s lives. Before their deployment, services need to be tested and validated. 
Testing [35] is the process by which a program is executed with the intent of finding errors in the code, whereas validation 
[15] is the process of evaluating a system or component during or at the end of the development process in order to deter­
mine whether it satisfies specific requirements. A common approach to test and validate smart environments is living labs. 
A living lab [42,37] is a physical environment where a system under test (SUT) is deployed, tested and validated. The living 
lab environment must emulate the real environment where the SUT is going to be deployed, including users and their inter­
actions with the SUT. But living labs present an important lack: sometimes they are not feasible, e.g. when the environment 
to be emulated includes a large number of users. Moreover, a physical deployment may involve very high costs. 
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As an alternative, in validation scenarios where the living lab option is not applicable, new approaches based on social 
simulation are being used. Social simulation [18] implies the imitation of real social phenomena, human or not, over t ime 
by using simulation models on a computer. A virtual model of a smart environment scenario may be created by including 
simulated users, sensors and appliances, whereas some components of the model may be real (i.e. the SUT or the middleware 
software). The use of simulated users is an interesting alternative as long as the generated human models are realistic 
enough. For this purpose, the CHROMUBE methodology (CHROnobiology for Modeling hUman BEhavior) was proposed in 
a previous work [9]. This methodology describes how a developer can analyze real data on a target subject (TS) by means 
of some chronobiological techniques. The results of this analysis are employed to create Computational Models of Human 
Behavior (CMHB) that imitate the behavior of the TS. The underlying CMHB model is an automaton whose states represent 
behaviors. Every behavior (i.e. automaton state) requires some input parameters the developer mus t configure, e.g. type of 
behavior, priority or hour intervals. The most important parameter of every behavior is a probability distribution function 
(pdf) that generates the t ime instants of the day when the CMHB is going to manifest such behavior. Considering these t ime 
instants and other parameters as the priority, an interpreter is in charge of managing the transitions between states through­
out the day. The developer can obtain some configuration parameters from the data and the chronobiological representa­
t ions (e.g. plexograms) and they mus t be adjusted to coordinate the different behaviors of the CMHB properly. This 
process may be difficult, as it requires some expert knowledge and trial and error tests until a model becomes realistic 
enough to fit to the developer’s purpose. 

This paper proposes an alternative extension of CHROMUBE which tries to avoid the initial analysis of real data and the 
manual configuration of t he model by means of a machine learning process. The main hypothesis behind this extension is the 
following. A machine learning technique (e.g. a neural network) can learn behavior pat terns directly from behavior data and 
imitate the TS. If this hypothesis is validated, it can represent the first s tep for designing an automatic process in which the 
data analysis performed by the developer is no longer necessary and the models are automatically generated and validated. 
These features would produce an important improvement to the generation of realistic CMHBs for simulation. Numerous 
simulation tools (e.g. Ubiwise [5], UbiREAL [38], TATUS [39], UbikSim [44]) could improve their performance by including 
an automatic generator of human models. 

The realistic human models generated in this paper are intended to be used in simulated scenarios wi th different pur­
poses. One of t hem is the validation of smart environments [10], e.g. CMHBs previously produced by CHROMUBE were used 
prior to the pilot experience of the Necesity system.1 Necesity is an Ambient Assisted Living (AAL) system which deploys a set 
of sensors (i.e. motion sensors, presence sensors and open-door detectors) in all the rooms of a house where an elder person 
lives. Events generated by sensors are registered in a log. As a consequence, the system is able to know the elder’s activity 
and location at any time. One of the most important elements of Necesity is the adaptation algorithm used to learn from the 
user’s habits and to detect when the user is suffering an unexpected situation, e.g. a fall. The CMHBs were useful for testing 
the generalization capacity of the algorithm in a simulated environment. Thanks to this, the duration of the pilot experience 
was considerably reduced. Nowadays CHROMUBE is being implemented on other application fields; CMHBs are intended to 
be used in simulations of several scenarios such as emergency evacuations in geriatrics or hospitals. 

The present paper is structured as follows. Section revises some related works Section 2. Section 3 outlines the basic ideas 
of CHROMUBE and presents t he machine learning based alternative. Section 4 applies the different steps of CHROMUBE 
machine learning process (i.e. data adaptation, machine learning process, generation and validation) to an AAL smart envi­
ronment . Section 5 presents conclusions and future works. 

2 . Related w o r k 

As a result of the massive presence of sensors in everyday life deployments, more and more applications and services are 
concerned wi th the user’s behavior. All these environments may benefit from the use of CHROMUBE. Some examples of envi­
ronments with heterogeneous sensors are cameras [22,16], wearable sensors [20], unobstrusive sensors (i.e. presence, open 
door, pressure sensors) [14,25], sensors integrated in mobile phones or PDAs [29,40], etc. Some scenarios in which these sen­
sors are used to monitor the user and from which behavior pat terns can be learned are intelligent environments [8], human 
robot interaction [6] or Ambient Assisted Living (AAL) [10]. 

In this paper, an alternative extension of the CHROMUBE methodology is proposed. Such extension offers an alternative 
manner to create CMHBs that imitate a TS. The alternative proposes using machine learning to generate a CMHB. Machine 
learning has been extensively used to create behavior models from sensor data [36,27]. Examples of machine learning tech­
niques used include Partially Observable Markov Models [21], Kernel density est imators [27], Naive Bayes [17], boosting 
ensembles like AdaBoost [28], inductive logic programming [26], decision t ree classifiers [4] or Hidden Markov Models 
[25,11,24]. 

In this paper, the application of the n e w CHROMUBE extension is exemplified by using ANNs as t he machine learning 
technique. ANNs are a common method used to interpret data obtained from sensors. An example is t he work of Atkeson 
e t al. [2], where data from both h u m a n and robot a rm movements are collected and neural networks are used to correlate 
inputs (i.e. h u m a n movements) and outputs (i.e. robot movements) in order to create robots that move like humans . Another 
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Fig. 1. A plexogram that represents the activity rate of a person. This activity rate is represented by the number of times, in average, the person moves from 
one room to another at home. 

example is the work of Al Mashhadany [1]. It uses ANNs to generate a virtual human, but considering only simple postures, 
not behaviors, in this case. There are also some proposals which apply ANNs to location data. Azam et al. [3] present a pre­
diction system whose goal is to detect whether an elder person may be having any kind of trouble depending on his/her loca­
tion. The inputs for the ANN are location, hour of t he day and day of the week. The output is a behavioral level be tween 1 and 
0 in which 1 represents a normal situation and 0 represents abnormality. Alternative works go in the direction of using ANNs 
for modeling the user to predict location [45,46]. This paper goes beyond as it applies ANNs to sensor data. CHROMUBE uses 
the resulting trained ANN to generate a CMHB that behaves in a similar way to the TS. This approach is a complete process 
for the automatic generation of faithful computational models of human behaviors in order to get realistic simulations. 

3 . Proposal of t h e CHROMUBE’s ex tens ion 

CHROMUBE addresses the problem of obtaining computational human models which are useful for realistic simulations 
in general and for service testing and validation in particular. This methodology is capable of generating and validating a 
realistic CMHB, i.e. one that reproduces a behavior highly similar to that used as a source. The approach is based on tools 
from t w o rather different but somewhat related disciplines. 

On the one hand, statistical techniques allow for the construction of the model with a probabilistic automaton. They are 
used to assess the validity of the pdf for each transition be tween states. This validation is based on source data resulting from 
sensors deployed a t the smart environment. This source data reflect the real behavior of the TS. 

On the other hand, behavior representation tools from Chronobiology are used to characterize t he subject’s behavior. 
Chronobiology [19] is the field of biology that studies the mechanisms and alterations of each organism’s temporal structure. 
Plexograms are the behavior representation tool used in CHROMUBE. A plexogram characterizes t he activity rate of humans 
or animals and how it varies depending on t ime. Activity rate is represented by a curve consisting of a number of points. Each 
point corresponds to an interval of the day. The day is divided into n intervals, and for each interval, a mean is obtained with 
all the sample’s activity values within the same interval for all the days. Thus, an increase in the curve represents an increase 
of the subject’s activity in the corresponding period, and it occurs analogously when it decreases. 

An example of a plexogram is shown in Fig. 1. In this case, t he curve consists of 24 points. Every point represents an hour 
of the day, although more precise intervals could be defined. The TS of the figure represents a person w h o probably sleeps 
during the night (from 1 a.m. to 7 a.m. approximately) and has his max imum activity rate around 9 a.m. 

Plexograms are interesting because they provide a means to display visual representations of the TS’s behavior. As a con­
sequence, plexograms are used as the basic means for t he description of behavior. Thus, the ul t imate goal of CHROMUBE is to 
produce CMHBs which reproduce plexograms which are highly similar to those of the TS. In the original CHROMUBE pro­
posal [9], the responsibility of tuning the CMHB so as to get t he required plexograms falls on the developer. But as it has 
been pointed out above, this mus t be done by means of a tedious test and error process. Thus, CHROMUBE has been extended 
in order to provide automated means to generate CHMBs based on machine learning. Fig. 2 shows a diagram representing 
the overall methodology including the proposed extension. Such extension includes steps 3b, 4b and 5b. The rest of the steps 
remains unchanged. 
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Fig. 2. CHROMUBE steps to obtain computational models of human behavior. 

In the next paragraphs, the steps to be followed in this methodology are revised. It is worth noting that the methodology 
has two branches (i.e. steps 3, 4 and 5, a and b). The one at the left side represents the generation of CMHBs by means of a 
manual probabilistic automaton. The one at the right side includes the proposal presented in this paper: generation of 
CMHBs by means of machine learning techniques. Step 1 consists in defining the subject of observation (i.e. the TS). In this 
step, the human to be modeled must be selected. It must include a human whose presence and action influence the behavior 
of the smart environment. Step 2 corresponds to data gathering from sensors deployed at the smart environment. Such sen­
sors are the eyes through which the system perceives the human and sensor’s data granularity settles down the abstraction 
level of the CMHB to be produced (i.e. the CMHB is not required to do anything no sensor will perceive).2 

2 In this paper, it is assumed that sensors are the only data source. But there are cases in which CMHBs are used to study how to deploy a smart environment 
instead of testing it once it is deployed. In these cases, no sensor data are available and it is recommended instead to extract information from other sources 
such as experts who know how the TS’s behave daily (e.g. the manager of a geriatric about its residents). We are currently working on this particular case 
regarding step 2. 



Depending on the kind of data obtained and the developer’s validation purposes, one of the two proposed approaches 
mus t be chosen (choice of technique). If the manual probabilistic automaton option is selected, s teps 3a, 4a and 5a are 
required to produce a CMHB. Step 3a generates a visual representation from the data gathered in s tep 2 . These visual rep­
resentations should be performed by means of chronobiological techniques as plexograms or actograms.3 These techniques 
are the basis for step 4a, where a detailed analysis of both data and representations is needed to extract behavior patterns. 
Statistical approaches allow for finding probability distribution functions (pdfs) governing transitions at the automaton. Then, 
a basic design description including pdfs and their associated parameters (e.g. a k value for the exponential pdf) for every 
detected behavior pattern is generated. Such description is used in step 5a, where a suitable CMHB that reproduces the behavior 
of the TS is generated. More details about this part can be found in [9]. 

In case of choosing the machine learning based branch of CHROMUBE to produce the CMHB, s teps 3b, 4b and 5b mus t be 
followed. Step 3b consists in obtaining the most relevant information from behavior data. These data should be encoded 
afterwards to be transformed into an appropriate input for t he specific supervised learning technique (e.g. neural networks, 
decision trees, etc.). These techniques are characterized by the usage of a training data set composed of training examples. 
Every training example consists of some input variables and one or more output variables. Step 4b entails using the encoded 
data to obtain a reliable behavior model which is tested in s tep 5b. The testing process assures the correctness of the behav­
ior model created. If the results are not favorable, it means the behavior model is not suitable enough to represent a CMHB. 
Thus, the developer may repeat the training process including some changes in it. Changes can be introduced in the data 
encoding step, or they can consist in choosing a different machine learning technique or maintaining the learning technique 
but modifying some parameters of the training process. This iterative process may be repeated until quality of the behavior 
model proves to be enough in s tep 5b. 

Steps 6 and 7 are also common to both approaches. Step 6 simulates the behavior model generated by either s tep 5a or 5b. 
The s tep receives a behavior model and returns behavior data in the same format than the one generated in s tep 2 . Notice 
that each behavior model has a concrete means for simulation. For example, the probabilistic automaton has an interpreter 
capable of generating a sequence of event changes resembling the TS’s behavior [9]. See Section 4.3 for details about the way 
the CMHB produced by means of a machine learning technique (i.e. a regression model) can generate behavior data. Finally, a 
validation of the CMHB is performed in s tep 7. It is important to obtain accurate representations of the CMHBs when com­
paring t hem with the representations of the original TS. In this step, the use of chronobiological representations of the 
CMHBs and the TS’s behavior can help the developer to validate the CMHBs and to select the CMHB whose behavior is most 
similar to that of t he TS. The next section shows the application of the machine learning based branch of CHROMUBE to illus­
trate its applicability. A previous work [9] shows the proposal and applicability of the probabilistic automaton based 
CHROMUBE branch to the same real problem. 

4. Applying methodology in the ambient assisted living domain 

In this section, an example of the application of CHROMUBE is shown. It exemplifies the application of the machine learn­
ing based branch of CHROMUBE to the AAL domain which was presented in the last part of the introduction. Step 1 involves 
selecting the subject of observation. As it was mentioned before, the TS is an elder living alone and independently at his/her 
own house. In this work, two TSs of the same kind are used to illustrate the use of CHROMUBE. The houses where the two TSs 
live have five rooms each (living room, bathroom, bedroom, kitchen and corridor). Step 2 consists in data gathering. Data are 
generated at an AAL system called Necesity. Necesity is composed of a wireless sensor network deployed at the houses 
where the two selected TSs live and a minicomputer with wireless connection that serves as a base station. The sensors gen­
erate information about the TS’s activity, which is measured in terms of room changes. Once sensor data are processed at the 
minicomputer, an historical log is generated. Its data represent an elder person living independently at home during 20 days. 
The logs obtained from the smart environment are the base for the generation of the CMHBs. Every log entry is an activity 
mark. Such marks are then transformed into training examples for the learning algorithm, and this learning algorithm will 
produce a model of the TS’s behavior to be used as the basis for the CMHB. Such machine learning model works in the fol­
lowing way. Let us suppose that the simulated TS is, in a concrete instant of time t, at the living room. The model is used to 
predict where the simulated TS will go to when leaving the living room. But it will also predict how much time the person is 
going to spend at the living room before moving to the next one. Thus, the output of step 2 is the behavior data needed to 
generate such machine learning model. 

Before describing steps 3b, 4b and 5b, some details about the generic definition of the learning process are given. The TS’s 
daily behavior to be reproduced can be expressed as a function/TS(/oc, t) —> {loc1', ts) where loc is the location where the TS is 
at the moment t of the day and loc' is the next location the TS goes to by the time elapsed in ts. The learning problem may be 
defined in terms of searching for a target function, precisely/TS as it perfectly encodes the TS’s behavior. Given that the real 
fjs cannot be reached, the task is redefined to search for the/TS that minimizes a generic error function, A(/re,/TS). Thus, in 

3 Actograms are chronobiological representations where each daily activity pattern is superimposed to the previous daily pattern so as to compound the 
whole activity lectures of the subject. The patterns are composed of marks that represent activity and blank spaces that stand for inactivity. Actograms could 
serve as an alternative to plexograms as they show more detailed activity patterns. However, in this work activity patterns are unnecessary as they do not need 
to be interpreted by the developer. 



order to define the learning process totally, the form of fTS (e.g. a neural network, a decision tree, etc.), the search process 
used to find a good fTS and the definition for A function are needed. 

The form of/re selected for this example is an Artificial Neural Network (ANN) [7]. For certain types of problems, such as 
learning to model complex real-world from sensor data, ANNs are among the most effective learning techniques currently 
known. Due to the nature of the CHROMUBE extension presented in this paper, any supervised learning technique could be 
used. Other alternatives to this technique are Bayesian Learning, Fuzzy Learning or Decision Trees [33]. Precisely, these 
machine learning techniques can generate interpretable models, however they are not required in this particular application 
domain. Instead, the main goal of the CMHB is to behave as similar as possible to the TS during a simulation. No understand­
ing of the internal dynamics of the CMHB is required. Moreover, ANNs, as they are used here, allow for an automatic training, 
evaluation and model selection process to be integrated within CHROMUBE. Thus, the choice is clear. 

In a previous work [9], the form of fTS was an automaton whose states represented human behaviors. In this example, 
/ B e F where F is a set that contains all the possible ANNs which present the same configuration of input and output nodes. 
The following subsections explain how behavior data are used to learn the TS’s behaviors and therefore, to emulate them 
once the ANN is properly trained. In other words, it consists in minimizing A by obtaining an ANN (i.e./TS) as similar as pos­
sible to the TS behavior (i.e. / r e ) . The error function A is defined in Section 4.4. 

4.1. Adaptation of behavior data 

The training data set can be denoted as the set {(x,y)} where x refers to the input variables (i.e. the covariates) and y refers 
to the set of output variables (i.e. the response variables). The basic measure used in this study to reflect the TS activity level 
is based on location changes (i.e. if the subject moves from one room to another, a record of activity should be registered). 
Given such abstraction level for behavior description, it is obvious that the same abstraction level should be deployed by the 
CMHBs. Thus, in this case the CMHB is a model of changes between two different rooms. In a previous work involving the 
sameTSs [9], sensor data from Necesity were obtained in the form of log entries. In this work, the same scenario is addressed. 
Thus, the same data are used in order to compare the two different approaches of CHROMUBE methodology, the original one 
and the machine learning based alternative. 

Fig. 3 shows an extract of the behavior data. Every log entry provided by Necesity is a pair {loc, t), where loc is the location 
towards which the TS moves at time t. The format of t is the number of seconds elapsed since 0:00 h. This data representation 
contains only log entries which indicate when the subject moves from one room to another. Each pair contains the new loca­
tion the subject goes to and its associated timestamp. Thus, every one of these log entries corresponds to a room change. Let 
L = {(/oc1, t1), {loc2,t2),..., {locn,tn)} be the sequence of log entries in which loc, represents the location where the subject 
moves at time t¡. L is the training data from which the ANN is going to learn the elder’s activity rate during the day. 

A peculiarity of the training data set arises when a TS shows long inactivity periods. It is necessary to create new log 
entries during these inactivity periods in order to train the ANN in a proper way. The ANN should learn the TS’s routines 
for the whole day period. And to be able of doing this, ANNs need training data for the whole 24 h period. Instead, what Nece­
sity generates is a set of sensor events spared throughout the day. Thus, if there are long periods (e.g. more than five minutes) 
with little or no training data at all, the ANN will not learn properly how the TS behaves during that period. To solve this, new 
artificial tuples were included every T seconds into the training data. This condition of regular intervals must be accom­
plished. Thus a new log history including L and some new tuples must be generated. These new tuples include a timestamp 
which is a multiple of T and their location is the same as the previous one. Let T be a predefined time value measured in 
seconds which is useful to split a day timeline in 8 6 4 0 0 / T regular intervals, being 86,400 the total number of seconds on 
a 24 h period. Then, let L' = {{loc\, t\), (loc'2,t'2),..., {loc'm,t'm)} be a set of tuples where t'¡ - t'¡ _1 sg T and L c L'. The value of 
T affects the size of the training data set. For that reason, the developer should define a value of T that implies a compromise 
between the amount of training data and its granularity. In this work, T was set to 120 s. Let us see an example based on how 
to generate L' from the example of! shown in Fig. 3. Fig. 4 shows the resulting log L' which includes some new log entries at 
the interval between timestamps 1397 and 28,899. In consequence, the ANN has enough data to learn that the TS should be 
at the bedroom during this time interval. 

4.1.1. Input encoding 
Given that the ANN input must be adapted from the form of L' to the typical format needed by the inputs of the network, a 

key issue is how to encode this log into effective training data. On the one hand, for a TS whose house contains r different 

livingroom,78815 
bathroom,86334 
livingroom,643 
corridor,1123 
bedroom,1397 
corridor,28899 
livingroom,29259 

Fig. 3. An extract of the log L provided by Necesity. It consists of pairs (location, timestamp). 
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Fig. 4. An extract of log L', including the originals pairs from L and new pairs multiple of T. 

rooms, the location input is represented as a binary vector with the form loe' = (l1, l2,... /r), where r is the number of loca­
tions (i.e. rooms) in the house and 

( 1, if TS is at location k 

0, otherwise. 

On the other hand, the original timestamp values ranging from 1 to 86,400 are linearly scaled to (0,1). Let t' be the ori­
ginal timestamp measured in seconds, then t" = t'/86,400 where t" is the encoded timestamp and 86,400 is the maximum 
possible value of timestamp. 

Thus, let (loc, t') be the original tuple from L' and let x = (/1, l2,... I,, t") be its corresponding encoded tuple. x provides the 
ANN with enough information in the appropriate format to learn the TS’s context (i.e. the location where the subject is at 
every time of day). 

4.1.2. Output encoding 
Defining training data outputs is a more complex task. An ANN always computes the same output for a given input. It is a 

deterministic model. However, human behavior is not deterministic. Such non deterministic behavior should also be 
reflected by the ANN by means of some probabilistic mechanism. Then, the ANN should generate an output which contains 
a probabilistic value for every one of the r locations at the TSs’ house. Let y = (p1, p 2 , . . . , p r, £s) be an output produced by the 
ANN, where ts is the amount of time the person will take to move to the next room, and every pk represents the probability 
for the TS to move to location k. In this case, a softmax function must be applied to values of pk in order to ensure the con­
dition Yl=1Pk = 1 being r the number of rooms. The softmax function returns a new tuple y' = (pi,p2 , . . . ,pj,ts) where 

Pk H 1 t 
The pseudocode at Fig. 5 shows how to calculate pk and ts from the L' log. Let us suppose we want to encode the output of 

a tuple (loc'j, tj) e L'. Then, we iterate through all the days of log L' (line 14) to detect all the existing tuples (loc'j, tj) e L' where 
the TS is at the same location (loc'¡ = loc'j) within the same time interval tj e (tj - S, tj + ó), all the days (line 15). For each one 
of these tuples, a new tuple with the form (nextLocation,nextTime) is created in order to represent the transition between 
{loc'j, tj) and the following tuple of L',(/ocJ+1,tj+1). The value of nextLocation is equal to the location the TS moves to 
(nextLocation = ío¿+1) (line 16) and the value of nextTime is the time difference between tj and t'+1 (line 17). Every tuple 
(nextLocation, nextTime) is added to a set Transitions{lo¿f,:j (line 18). In summary, Transitions ̂ ¿^ contains an entry for each 
location the TS moves to at a concrete hour interval from location loc'¡ during the study and how much time the TS spends 
at loc'j before moving to each one of the next locations. Every value of pk is an estimate of the probability of going to room k. 
The number of occurrences of k in Transitions^¿^ is compared with the total size of the set (line 22) and pk is generated. 

Once p1, p 2 , . . . , pj are generated, the ts value (i.e. the time the TS will take to go to the next room) must be estimated. This 
is simply done by using the arithmetic mean of all the ts values of Transitions ̂ ¿^ (line 26). 

4.1.3. Applicability of input and output encoding 
It has been explained how to adapt raw sensor data so as to be used in the required machine learning experiments. At this 

point, it is worth noting that a neural network model is used for learning from data. However, the encoding process 
explained above is the same for any regression model capable of taking values in Rn and generating values in Rm (e.g. any 
other universal approximation method like, for example, a fuzzy rule set model or a multivariate regression tree) being R 
the domain of real numbers. Thus, input and output encoding used in this paper is always applicable regardless of the 
machine learning technique used. On the other hand, Section 4.2 introduces how to train and evaluate the model. Thus, most 
of the details included there are attached to the use of neural networks and they must not be generalized when using other 
techniques. 
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Let V be 
(¡OÍ/ , i') . 

Let (loc'^t't) be the tuple of V to encode. 

Let Transitions^,^ be a set of transitions 

with the form* (loc',ts), where ts is a 

between two values of t'. 
Let S be a time constant with a small value. 

Let r be the number of locations in the house. 

Let k be an array with all possible locations, 

k = {k±, &2, ••-, K} . 

Let T be a predefined threshold. 

Let count(SJ) be a function that returns the number of 

tuples in the set S whose location is equal to I. 

Let getTS(S) be a function that return an array with all 

the ts values of the set S. 
Let mean(a) be a function that returns the arithmetic 

mean of all the values of o. 

Transitions^,^ *- 0 

//Probabilities encoding 

for every (loc'-,t'-) G V 

if loc'j = = loc't and t'j e [t¿ -S,t¿ + 6} then 

nextLocation ^- loc':+1 

nextTime ^ - ¿'-+1 — t'-

Transitionsnoci:tr\ ^- Transitionsaoc(tf\ + (nextLocation, nextTime) 

endif 

endfor 

for k ^- l..r 
count(Transitionsnocl t,r k) 

» = ^(Transitions,,^'/,',,) 

end 

//Timestamp encoding 

timestamps ^- getTS'{Transitions,;oc,;i/\) 

is ^ mean(timestamps) 

Fig. 5 . Pseudocode of t h e o u t p u t encod ing for e ach t up l e . 

p1 

,p2 

pr 

Fig. 6 . The ANN s t ruc tu r e u s e d t o g e n e r a t e CMHBs. 

4.2. Training and evaluating the behavior model 

This section shows how to configure the ANN learning process to create a realistic CMHB. But prior to this, and given the 
input and output encoding just commented, Fig. 6 shows the ANN structure. Please note that it is a feed forward ANN (every 
node is a sigmoidal node connected with all the nodes of the next layer). The ANN architecture is a multilayer perceptron 
with a single hidden layer. This is a conventional ANN architecture with inputs at the leftmost layer and output at the right­
most layer. All arcs connecting two nodes i j have a weight wij indicating the relevance of such connection. The fTS is this 
network and the most important parameters offTS are the set of wij. The learning task is oriented towards obtaining a good 
{wij} set that minimizes A(fTS,fTS), the error function. 

In the first place, an ANN training algorithm had to be chosen. The selected learning algorithm was an improved version of 
Backpropagation [31,41]. The Backpropagation algorithm has been proven successfully in many practical problems such as 
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Generalization error versus number of hidden neurons 
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Fig. 7. Best generalization error obtained from ANNs with a varying number of hidden neurons. 

learning to recognize handwritten characters and learning robot control strategies. This algorithm uses gradient descent to 
tune network parameters to best fit a training set of input-output pairs. 

The set of w¡¡ values is initialized to small random values between the range [-0.5,0.5]. For the Backpropagation algo­
rithm, a learning rate must be specified. It determines how weights are changed from successive iterations. In this work a 
small learning rate 10~3 is used. Another important feature to be configured in the ANN is the activation function for each 
network node. Each node j receives a set of inputs, {x,}"=1. The basic output of the node is given by the linear expression 
o = X1 Wf1 + x2wl2 + ... + x„win. The activation function takes this expression as an argument and introduces a degree of non-
linearity that is valuable for most ANN applications. A typical function used is the sigmoid 

(7(0) = 
1 

1 + e-°' 

Regarding the optimal number of hidden nodes for the ANN model, Cybenko’s theorem [12] proved that a feedforward 
ANN with any continuous sigmoidal nonlinearity and only a single hidden layer can approximate any continuous function. 
Given the choice of a layered feedforward network with one hidden layer, how many hidden neurons should be included? In 
general, networks with fewer hidden nodes are preferable as they usually have a better ability to generalize and less 
overfitting problems. But networks with too few hidden nodes may not have enough power to model and learn data. 
There is no theoretical basis for the selection of this parameter. Some attempts were made in the past but an appropriate 
a priori ANN configuration is still an open issue in machine learning [32]. In this work, the optimal number of hidden nodes 
is a key parameter in order to obtain well-trained ANNs able to generate artificial data logs. A number of different ANNs were 
trained for each one of the two TSs under study. Each ANN was configured varying the number of hidden neurons and the 
number of training steps. The following paragraphs explain how the right number of hidden neurons and training steps were 
chosen. 

It is worth noting that the selection of training and testing samples may affect the performance of ANNs in production 
mode. The training sample is used for ANN model learning, whereas the testing sample is adopted for the evaluation of 
the model correctness (step 5b of CHROMUBE). Given that the size of the data logs is 20 days, the first 14 days were used 
for training (70%) and the last 6 days (30%) were devoted to testing (i.e. a holdout approach was followed for model 
evaluation). 

Fig. 7 shows a set of points representing the evolution of the best generalization error (i.e. that obtained by using the ANN 
to make predictions from testing data) obtained when training and evaluating the network. Each point corresponds to an 
ANN with a different number of hidden neurons, from 2 to 35. Within the test process, a generalization error is generated 
by using the Mean Squared Error, 

MSE \ Cv¡ - o¡)2 
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Fig. 8. Evolution of generalization error for a 100,000 training steps process. 

where n is the number of evaluation examples, y, are the output values for the i-th sample and o, the network output for that 
sample.4 Notice that the generalization error evolution represented in the graph clearly starts decreasing and then raises again 
resembling a parabola. Following this, configurations with 6, 8 and 10 hidden neurons were selected as the best candidate 
configurations. 

Regarding the number of steps for training the ANN, there is a trade off that must be noticed. On the one hand, the higher 
the number of epochs used, the slower the training process is. On the other hand, longer training experiments in terms of 
epochs produce ANNs whose CMHBs are more accurate (see Section 4.3). But after a concrete number of epochs used in 
training a given ANN, the quality improvement of the model is not significant. However, there is no other way to test the 
ANN’s quality as a CMHB than simulating it after training. Thus, we are forced to use different values for learning epochs 
in learning experiments. 

Another important issue is illustrated in Fig. 8. It shows the evolution of generalization error for a concrete ANN with 8 
hidden neurons trained until 100000 epochs (a similar phenomena occurs with the rest of topologies considered). The gen­
eralization error monotonically decreases no matter how many epochs are used. Thus, this reflects that the only relevant 
configuration parameter to control overfitting is the number of hidden nodes. In consequence, we tested values of 10,000, 
20,000, 50,000,100,000,150,000 and 200,000 epochs. Section 4.3 shows how the right models have been achieved by using 
such bounds. 

Section 4.4 offers more details about all the CMHBs obtained in each different learning experiment and also proposes val­
idation and model selection methods whose objective is to select the most realistic CMHB. 

4.3. Simulation of CMHB from a trained ANN 

Let us suppose the ANN was successfully trained and tested (i.e. a correct behavior model was created). Now, it is 
explained how to generate from the ANN model a new log like the one appearing in Fig. 3, which represents the behavior 
of the simulated TS. In other words, how to perform a simulation of the CMHB. Given a tuple of location and timestamp 
as an input, the ANN computes an output y = (p1,p2,-.. ,pr,ts) where every pk, 1 sg k sg r represents the probability of going 
to room k. But these outputs must be decoded in order to extract information directly interpretable as CMHB behavior, e.g. a 
pair (location, timestamp). Such decoding is performed by simulating the random process induced by probabilities 
P1 ,p2 , . . . ,pr. The simulation generates a concrete room. The value of ts represents how much time the subject is going to 
stay in the current room before moving to the next room, whatever it is. 

The location chosen by this process represents the next location where the subject moves to once ts seconds are elapsed. 
The pair of location and amount of time obtained is used as the next input of the ANN, taking into account that the time entry 
results from adding the t value of the last entry and ts value of the ANN’s prediction. The overall process is repeated itera-
tively. Each decoded output represents a log entry in the CMHB’s behavior log which has the next form: 

4 MSE is adequate here, as well as many other error measures, because it is only used for model selection and not as an estimator of the ANN’s quality when 
used in production mode. Thus, there is no special requirement for measuring the evaluation error. 
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Fig. 9. Simulation process of a CMHB. 

{(ÍOC1, t1), (ioc2, t 2 ) , . . . (locn, t„), } 

where (/oc1, U) could be a tuple randomly selected from the test data set or any tuple chosen by the developer. The overall 
process is illustrated in Fig. 9. 

4.4. Selection of the best CMHB 

A number of different CMHBs were obtained following the steps introduced in the previous section. They were intended 
to represent the two TSs. In this section the CHROMUBE’s approach for selecting the best CMHB for each TS is introduced. See 
Fig. 10 for a schematic representation of the process. There are three sequential tests a CHMB mus t pass to become a suitable 
model. First, the circadian rhythm mus t be checked. The subset of CMHBs that passes this first test is then statistically tested 
to check its similarity with the real TS. Finally, among those which are similar, the most similar CMHB to the TS is selected. 

The first test is based on the ANOVA technique and its main purpose is to investigate if t he CMHBs show regularity in their 
behaviors by following an approach used in Chronobiology: detection of circadian rhythms. A circadian rhythm is a biolog­
ical rhythm of 24 h, and its detection is important to prove that the human evidences activity pat terns during the day. In 
consequence, the human’s behavior can be modeled. As described in [30], t he ANOVA test [34] mus t be applied to the plex-
ogram in order to detect circadian rhythms. 

znd 



Init model selection 

1 . ANOVA test 

Discard CMHBs 
without circadian 

rhythm 

YES 

2. Student t-test 

Discard CMHBs not 
similar to TS 

YES 

Fig. 10. Validation methods to select the best CMHB. 

ANOVA applies a statistical test to determine whether or not the means of several samples are all equal. In this case study, 
a plexogram is partitioned in 24 intervals of 1 h each. Each of these intervals compounds a group of activity rates (i.e. as 
many values as the number of days devoted to each interval during the experiment), and their corresponding means (i.e. 
the points of the plexogram) are compared by ANOVA. Thus, the null hypothesis H0, ‘‘the mean of all groups are equal’’, 
and the alternative H1 are the following: 

H0 :p1 = p 2 = . . . ^p2 4 ,H1 :p1 ^ p 2 p24-

If the main hypothesis is rejected, then the CMHBs pass the test as there exist different activity patterns in their behavior 
depending on the time of the day. 

The second test is a statistical comparison of the original log data with the log data generated by the CMHB. Thus, a test 
that checks if two samples are highly similar is used, i.e. a Student’s t-test for independent samples [34]. Let l T S be the mean 

CMHBs 

NO 

TS 

NO 
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End 



Table 1 

ANOVA resul ts for t he CMHBs: p-values. nA;B refers to the CMHB for either TSA or TSB and h is the number of hidden nodes in the ANN. 

£A, h = 6 

£A, h = 8 

£A, /i = 10 

£B , /l = 6 

£B , /l = 8 

£B , h = 10 

10,000 Epochs 

7.43e-4 
6.70e-6 
1.49e-4 
4.12e-10 
4.09e-7 
1.68e-9 

20,000 

2.23e-4 
5.87e-5 
5.54e-3 
1.85e-5 
9.09e-9 
1.81e-8 

50,000 

4.6e-3 
5.42e-4 
1.28e-5 
4.88e-8 
1.47e-8 
1.44e-9 

100,000 

5.45e-4 
8.09e-6 
5.27e-3 
1.13e-10 
7.91e-9 
2.14e-9 

150,000 

2.37e-8 
1.2e-3 
1.49e-2 
2.72e-7 
9.04e-9 
2.64e-9 

200,000 

1.06e-5 
9.56e-5 
3.04e-3 
5.15e-7 
4.84e-7 
8.69e-9 

Table 2 
All p-values for Student’s t test for statistical similarity between CMHB and TS. nA;B refers to the CMHB for either TSA or TSB and h is the number of hidden nodes 
in the ANN. Asterisks show the values which pass the test. 

£,A, h = 6 
£,A, h = 8 

£,A, /l = 10 

£,Q, h = 6 

£B , h = 8 

£,Q, h = 10 

10,000 Epochs 

0.031 
0.018 
0.134* 
0.001 
9.8e-4 
0.01 

20,000 

0.452* 
0.057* 
0.05* 
0.013 
0.001 
0.002 

50,000 

0.104* 
0.513* 
0.062* 
0.008 
0.064* 
0.005 

100,000 

0.066* 
0.772* 
0.347* 
0.126* 
0.657* 
0.079* 

150,000 

0.007 
0.181* 
0.857* 
0.387* 
0.364* 
0.52* 

200,000 

0.187* 
0.426* 
0.379* 
0.01 
0.972* 
0.687* 

Table 3 
RMSE values for plexogram comparison between TS and CMHB. The asterisk shows the best CMHB for each TS. 

100,000 Epochs 150,000 200,000 

^A, h = 8 
£,A, h = 10 

£B , h = 8 

£B , h = 10 

3.869396 
3.358413* 
5.120109 
5.378785 

10.17856 
8.006409 
6.496569 
3.846136* 

7.199836 
5.62893 
5.716604 
4.299864 

of the sample composed of the points of the TS’s plexogram generated from log data. Let also fié be the mean of the sample 
points from the plexogram generated from the CMHB’s log data for the same TS. Then the tested hypotheses are the 
following 

H0 : / % = ¡i^U\ : / % ^ \i^. 

If H0 is rejected, Hi must be accepted, thus the two samples are different. 
After these two tests, if more than one CMHB are selected, a further test is done based on AifjsJjs). Let us suppose tha t /^ 

generates a plexogram PTS and /^ generates a plexogram P¿, where f is a CMHB that imitates TS. The CMHB with the lower 
RMSE (Rooted Mean Squared Error) between the plexograms P^ and P¿ is chosen, 

E(PTS,PZ) = y2-_-, ' 
24 

being p i and p0
i the i-th point of PTS and Pn, respectively. 

4.4.1. Obtained results 
The results derived from using the ANOVA test for every CMHB obtained appear in Table 1. As all the resulting p-values 

are lower than 0.05, all the CMHBs show a circadian rhythm. As a consequence, the ANOVA test does not reject any one of the 
CMHBs. All of t hem could represent a real h u m a n as they present circadian rhythms. 

Results, i.e. p-values, for the second test are shown in Table 2 . Values marked with asterisks pass the test, i.e. they are 
greater than 0.05 (95% confidence level). Notice that asterisks are more frequent as t he number of epochs increases. If w e 
focus on results wi th 8 or 10 hidden neurons and more than 50,000 training steps, none of the null hypotheses can be 
rejected. Thus, the CMHBs are statistically similar to the TSs. 

Table 3 shows the results obtained by comparing the CMHB’s plexograms wi th the TS’s plexogram for both subjects. The 
best configuration is marked wi th an asterisk. The most similar plexogram to PTSA was obtained with 10 hidden neurons and 
100,000 training steps. For PTSB the best option was 10 hidden neurons and 150,000 training steps. PnA and PnB for t he best 
CMHBs are shown in Fig. 1 1 . 

The previous analysis is valid when the CMHB is intended to simulate the overall activity of the TS. However, a CMHB that 
behaves similarly to the TS in each room of the house may be needed. The next analysis shows that the ANN model is useful 
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Fig. 11 . Visual comparison between plexograms associated to (a) real subjects, (b) simulated subjects. 

Table 4 
RMSE values for by room plexogram of CMHBs. 

Living room 

nA 1.126671 
nB 1.662312 

Bathroom 

0.4316742 
0.9489902 

Bedroom 

0.5017331 
1.192935 

Kitchen 

1.299706 
0.7046667 

Corridor 

0.8198563 
0.3079284 

also to address this problem. Specific plexograms for each room of both TSs and CMHBs were generated and compared by the 
RMSE. Table 4 shows the error results obtained. Some plexograms are visually shown in Fig. 12 . The artificial plexograms are 
actually similar. 

Notice that the best ANN based CMHB for TSA has a RMSE of 3:358513 (see Table 3) . The best probabilistic automaton 
based CMHB for the same subject (see details at [9]) is 7:834205. It shows an improvement of 57:1%. For TSB, the ANN based 
CHMB gets a RMSE of 3:846136 wi th respect to a RMSE of 5:232643 for t he probabilistic automaton based CMHB, showing 
again an improvement of 26:5%. It is reasonable to expect that the CMHB’s behavior based on a neural network model will be 
more similar to their TS’s behavior than the one of the CMHBs previously obtained by the probabilistic automaton approach. 
In this sense, the n e w machine learning branch of CHROMUBE represents an improvement. This does not necessarily mean 

0 0 

0 0 
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Fig. 12. Comparison between plexograms associated to (a) real subjects, (b) simulated subjects. 
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that the old branch should be removed. Depending on the data source, the TS and the validation scenario, a developer may 
prefer a manual configuration of the TS’s behavior patterns. 



5. Conclusions a n d fu ture w o r k 

This paper presents an automatic process to create Computational Models of Human Behavior (CMHB) based on machine 
learning techniques for simulation. This process is an alternative extension of t he CHROMUBE methodology. In CHROMUBE 
the CMHBs were originally created through manual analysis thanks to the use of Chronobiology techniques. 

The proposal presented here allows for learning human behavior pat terns automatically from sensor data and, therefore, 
avoiding the manual process which was necessary in the previous CHROMUBE proposal in order to configure t he probability 
distribution functions of the probabilistic automaton. 

With the aim of showing the proposal feasibility, it is presented an example which involves the use of artificial neural 
networks. This example reveals that machine learning techniques improve the results previously obtained by the generation 
of CMHBs. In fact, when data obtained from sensors are available, this process is able to generate more realistic human 
behaviors than those generated by a manual configuration of each target subject. This extension defines a more appropriate 
process when sensor data are available. It provides the system with a whole process of automatic generation of realistic 
CMHBs that are able to simulate human behaviors accurately. 

In the future, CHROMUBE will be extended to supply it with the capability of detecting similar behaviors be tween differ­
en t humans . This will enable the use of such behaviors in situations where t he available data are not enough to generate an 
accurate model and to model multi-inhabitant environments more easily. Furthermore, optimization algorithms (e.g. evol­
utive algorithms) are being considered to obtain the most suitable configuration of the learning process parameters in a 
totally autonomous way (in the example presented, the number of hidden neurons of t he ANN and the number of training 
steps). This may improve the quality of models and the usability of CHROMUBE by non machine learning experts. 

Another possible future work implies the use of evolving system methodologies for supervised learning. Some method­
ologies in this direction can be found in [23,43]. These evolving systems modify their internal s tructure (e.g. the number of 
hidden neurons of an ANN) every t ime new input data are received. This way, it is possible to omit t ime-intensive retrainings 
on the complete data set. In the case of CHROMUBE, it could provide real-t ime learning from human behavior gathered every 
day. 

Finally, another extension of CHROMUBE methodology for an easier and more automatic extraction of information and 
generation of models when sensor data are unavailable is being developed. Information comes, in this case, from experts 
on the behavior to be imitated. This extension will provide CHROMUBE methodology wi th a whole, easy and more automatic 
process regardless of the presence of sensors data. 
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