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Abstract Measures of functional connectivity are com­
monly employed in neuroimaging research. Among the 
most popular measures is the Synchronization Likelihood 
which provides a non-linear estimate of the statistical 
dependencies between the activity time courses of different 
brain areas. One aspect which has limited a wider use of 
this algorithm is the fact that it is very computationally and 
memory demanding. In the present work we propose new 
implementations and parallelizations of the Synchronization 
Likelihood algorithm with significantly better performance 
both in time and in memory use. As a result both the amount 
of required computational time is reduced by 3 orders of 
magnitude and the amount of memory needed for calcu­
lations is reduced by 2 orders of magnitude. This allows 
performing analyses that were not feasible before from a 
computational standpoint. 
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Introduction 

Two notions coexist in brain functioning: segregation 
and integration. The functional segregation of informa­
tion among distinct local areas (differing in anatomy and 
physiology) contrasts with its global integration during 
perception and behavior (Tononi et al. 1994). 

In a recent review (Singer 2013), the brain is defined as a 
"complex, self-organised system, in which principles of dis­
tributed, parallel processing coexist with serial operations 
within highly interconnected networks". 

Functional connectivity (FC) measures resulting from 
calculating the statistical dependencies among the activity 
time-course of different brain regions (Friston 1994) are 
typically obtained from neuroimaging recordings to provide 
an index of how brain regions are coordinated to sup­
port higher cognitive functions. Long range synchronization 
between signals originated in relatively distant neuronal 
populations have been proposed as the mechanism for com­
municating and integrating the information in the brain 
(Várela et al. 2001; Fries 2005). It should be noted that 
FC is a different concept to both anatomical and effective 
connectivity (Friston 1994; Niso et al. 2013). Anatomi­
cal connectivity refers to the existence of tracts or fibres 
linking the brain areas. The term effective connectivity is 
used to convey that one area is directly influencing the 
other. 

FC is considered to be an essential "tool" for the study of 
both healthy and pathological brain function (Singer 1999; 
Várela et al. 2001; Buzsáki and Draguhn 2004). There is 



increasing evidence of differences in FC between patients 
and control groups in a large number of condition such as 
schizophrenia, autism and Alzheimer disease (Singer 2013; 
Guggisberg et al. 2008; Stam et al. 2009; Bajo et al. 2010; 
Castellanos et al. 2010). 

Many FC measures have their roots on dynamical sys­
tems or information theory and can be classified as reflect­
ing either generalized or phase synchronization (Pereda 
et al. 2005). Among the generalized synchronization 
indexes, the Synchronization Likelihood (SL) (Stam and 
Van Dijk 2002) is arguably the most popular measure for 
neurophysiological data (Pijnenburg et al. 2004; Ahmadlou 
et al. 2012; Bulduetal. 2011; Montez et al. 2006). 

The SL provides a normalized estimate of the dynami­
cal interdependencies between two simultaneously recorded 
time series. It is closely related to the concept of general­
ized mutual information (Buzug et al. 1994) and relies on 
the detection of simultaneously occurring patterns in the 
two time series, which can be complex and widely different 
across signals. Besides, it is robust and sensitive to nonlinear 
dependencies. 

Two important limitations for the practical use of 
the SL are its computational and memory costs of cur­
rent implementations. Although references in the liter­
ature to the computational demands have been soft­
ening over time, ("computationally prohibitive" (Stam 
et al. 2003), "very computationally demanding" (David 
et al. 2004), "computationally demanding" (Montez et al. 
2006) or "not computationally efficient" (Acharya et al. 
2010)) probably alongside the progress in computa­
tional capabilities of computers, the limitation is still 
serious. 

In the present work we present three new very efficient 
implementations of the SL algorithm: a sequential version 
and two parallelizations based on the OpenMP and CUDA 
architectures. 

Methods 

The Synchronization Likelihood Algorithm 

The Synchronization Likelihood (SL) measures the gener­
alized synchronization between two signals. It is sensitive 
to whether when one signal repeats its pattern of activity 
other signals tend to repeat their own pattern at the same 
times. 

The SL algorithm uses the observation time-series of 
dynamical systems in order to measure the degree of syn­
chronization or coupling between each pair of signals. 
When applied to more than two signals, all calculations 
should be done simultaneously in order to reduce the num­
ber of redundant computations. 

Phase one: Construction of the Time-delay Embedding 
Vectors 

Typically we do not have access to all the variables that 
characterize a dynamical system but rather to a subset or 
combination of them. The behaviour of an underlying sys­
tem can be characterized from a time series of observations. 
The state of the system at any time instant can be repre­
sented by a time-delay embedding vector (Takens 1981), 
which is a set of values of the signal in a given time-window. 
Takens proved that, if the time-delay vector is chosen appro­
priately, the reconstructed vectors convey the fundamental 
characteristics of the underlying system such as degrees of 
freedom, dependence on initial conditions and dynamics, 
and that recurrent states of the system are represented by 
similar time-delay vectors. (Takens 1981; Posthuma et al. 
2005) 

For each single observation of a signal x¡ (where i 
denotes the time instant), a state vector Z¡ is defined as, 

X{ = (Xi,Xi+L,Xi+2L, ..., *; + (m-l)L) (1) 

where m is the embedding dimension and L is the time 
lag between chosen samples. The optimal values of these 
parameters are a function of the frequency band of interest 
(Montez et al. 2006). The lag should be chosen so that the 
highest frequency is sampled at least twice per cycle, and 
the embedding dimension should be such that at least one 
whole cycle of the slowest oscillations is captured (Betzel 
et al. 2012). 

Of course, there is a gap of (m — \)L samples at the end 
of the time-series where Z¡ cannot be defined with the same 
dimension. This is a boundary situation to take into account. 

Phase two: Localization of the Recurrent Dynamical States 

The probability P | ; that state vectors X¡ in the time-
interval defined by parameters w\ and w2 are closer than 
certain distance e to a reference state vector X¡ at time 
instant i can be defined (Stam and Van Dijk 2002) as 

PY; = V 6(e-\Xi-Xi+i\) (2) 
z ' ! 2x(w2-wl) ¿— y ' + J l > ; 

The distance || between state vectors can be the 
Euclidean distance or any other such the maximum norm. 
The Heaviside step function 6 (d) is 1 when its argument d 
is positive and 0 otherwise. 

The w\ parameter establishes an exclusion window 
around the time instant i where similar state vectors are not 
likely to represent a recurrence but rather that the system has 
not had time to evolve (Theiler 1986). 

The w2 parameter establishes an inclusion window 
around the time instant i that sharpens the time resolution 
of the synchronization measure (Stam and Van Dijk 2002). 



It has to be large enough for Pf to make sense as the pro­
portion of vectors considered as recurrences (Montez et al. 
2006). 

The combination of wl and w2 establishes the surround­
ings of i given by the subintervals [/ — w2, i — wl) and 
(/ + wl, i + w2]. 

The original description of Stam and Van Dijk (2002) 
states that: 

"Now for each X and each i the critical distance ex,i is 
determined for which P^x:' = pref, where pref <C 1" 

A literal interpretation of this statement would lead to a 
naive algorithm implementation to find changing values of 
the "critical distance ex," for each signal X and each time 
instant i, but this is far from necessary, because pref is not 
an unknown but one of the SL algorithm input parameters. 

When applied to Eq. 2, the pref parameter represents 
the fraction of state vectors inside the time subintervals 
[/ — w2, i — wl) and (/ + wl, i + w2], which are to be 
considered closer to Xi than the critical distance. So, as 
pref, wl and w2 are constant values for any signal and for 
any time instant1, then the number of state vectors closer 
than the distance is also a constant integer, and equal to: 

N = \2 X ( w 2 — w l ) X Pref]-

The roundup operator |~] is used to obtain a non zero 
integer. So the actual effective pref which is used is: 
Effective pref = N/(2 x (w2 — wl)). 

What we need to determine therefore, for any signal X 
and time instant i, is the set Cxj of time instants; relative to 
i where the Heaviside step function 6 takes value 1. In other 
words, to identify where, within the defined interval, the N 
most similar state vectors to the reference state vector Z¡ 
are. As we will see, this set of points is all that is necessary 
for the next phase of the algorithm. 

Phase three: Likelihood of Simultaneous Recurrent States 
in two Signals 

The SL measures the likelihood that there is recurrence in 
the simultaneous states of the two systems. 

The number of simultaneous repetitions for signals X and 
Y around time instant i is defined as: 

nxr,i= J2 0(ex,i-\Xi-Xi+j\)e(eY,i-\Yi-Yi+jt) 
M±w2M±wl] 

(3) 

It follows that the Synchronization Likelihood at time 
instant i is just the number recurrences over the total possi­
ble number of recurrences in the time interval considered: 

The problem of dealing with the head and the tail of the time series 
will be discussed later. 

Phase four: Computation of the SL Across a Time Interval 

Usually, the SL is expressed as an average across time of 
SLi. can be reduced by computing SLi at time steps larger 
than the sampling interval of the original signal at the cost of 
losing precision and time resolution. The original algorithm 
implementation calls this step parameter speed2(Ca\mel& 
et al. 2008). Caution should be exerted when using this 
speeded-up calculation as SLi can change rapidly on time 
scales smaller than wl (Montez et al. 2006). 

Low Level Description of the Implementation 

Although we had access to a MATLAB3 implementation 
of the algorithm from the original author's group termed 
"Synchronization Likelihood Stand-Alone Calculator", we 
decided to use it only as a reference. Instead we chose to 
develop our own complete reimplementation of the algo­
rithm in the C language, starting from the analysis of the 
algorithm as shown in the previous section. The C lan­
guage is very suitable for optimization because of the level 
of control it allows. The compiler can be tuned to produce 
efficient code in terms of computational time and mem­
ory requirements. Additionally there is a large set of tools 
and technologies available to produce all kinds of parallel 
code. 

Interfaces and Applications 

The pseudocode of the algorithm implementation, 
FSL_delta, is provided in Fig. 1. Two different versions 
are used to compute SLi for all the signals at time i. The 
"generalized" version is used at the beginning and end of 
the time series and takes into account boundary effects. It 
works by narrowing the considered surrounding intervals, 
changing wl, w2 and m as i approaches the edges of the 
time series. This method is completely general in the sense 
that it is able to cope with any i including those close to the 
end of the time series. This version is particularly useful for 
short datasets. A second "specialized" version is suitable 
only for the middle part of the time series, where boundary 
effects are not an issue. This is a specialized more efficient 
method. Both methods have the same external interface and 
the same internal structure. 

The external interface allows to serially process any 
amount of data in finite increments of any size, and for 
any number of synchronized signals. This allows the time 
i to monotonously grow at any rate, and with any constant 
speed value. Therefore it can be applied to the processing of 

2The BrainWave and the MATLAB versions also use the speed 
parameter 
3 http://ww w. mathworks. com 

http://ww


FSL_delta(L,m,wl,w2,pref,speed,data[I] [K] , Ib,Ie,SL[K] [K]) 

{ 
/* Size of the se t of c lo ses t vec to rs */ 
N = [2 x (w2 - wl) x pref~\ 

/* Main time loop across data */ 
For each time instant i € [Ib...Ie] at step speed 

/* First subloop */ 
For each channel X 6 K 

I* Localize the recurrent dynamical states */ 
For each j e [±w2] g [±wl] 
Calculate \Xi — Xi+j 
/* On-the-fly time-embedding vectors access */ 
Remember the set of the N closest j's 

I* Second subloop */ 
For each channel X 6 K 
For each channel Y G K 

I* Likelihood of simultaneous recurrent state */ 
nxY,i = count of simultaneous j's 

in both closest sets 
SL[X][Y]+ = nXY,i/N 

/* To externally average SL along the time */ 
Return the number of time steps carried out 

} 

Fig. 1 Pseudocode of the FSL.delta method 

pre-loaded data as well as to the processing of streams of 
data, as in the case of real-time applications. 

Internal Structure and Features 

As Fig. 1 shows, to optimize computational time, the inter­
nal structure of the FSL_delta method does not literally 
follow the phases described previously. For example, the 
"construction of the time-delay embedding vectors" phase 
is done implicitly. The raw data are accessed directly in 
the right order as the state vectors components are needed. 
Obviously, this eliminates the need to store the vectors 
in memory. The "localization of the recurrent dynamical 
states" phase can be done independently for each signal, and 
the way it is done critically affects the computational effi­
ciency. To determine which are the "N" shortest distances 
between the reference state vector and each one of the state 
vectors in its surrounding intervals, all distances need to be 
calculated. Only the N shortest distances need to be stored 
which can be done with insertion sorting. There is no need 
to determine e. All that needs to be temporarily stored is the 
; relative position of the N closest vectors to i. 

Optimization techniques try to avoid the repetition of 
prior calculations. Values that may be needed later should 
ideally be kept in memory for later reuse. Although we have 
evaluated this through several alternatives, for the present 
algorithm the results indicate that this does not constitute 
an advantage given the computing power of current CPUs 
and current compiler performance. The computation of the 
"likelihood of simultaneous recurrent state between each 

pair of signals" phase should be done after all the corre­
sponding sets of closest points have been computed for all 
the signals. Each set contains only N relative ; positions 
of the closest vectors, and by temporarily transforming it 
into an indexable bytemap, the cross comparison between 
signals is trivial and very fast. 

As suggested by Stam et al. (2003), the Synchronization 
Entropy (Hs), which gives the spatio-temporal variability of 
synchronization, can be computed from the Synchronization 
Likelihood (SL) at a negligible additional cost. 

Finally, the "computation of SL across a time-interval" 
is not done by the FSL_delta method. The number of 
coincidences is accumulated in global data structures. The 
averaging along the desired period of time is done externally 
and can be done at any moment. In this way, we can com­
pute, not only the global SL, but also a partial SL for any 
smaller time interval as defined by parameter T. 

It should be noticed that the computations for differ­
ent values of i inside the FSL_delta method are mostly 
independent. This allows for parallelization, as we will see 
below. 

Description of the Different SL Implementations 

We compare two different SL algorithm implementations, 
the Fast SL implementation (FSL) described in this arti­
cle, and the original SL algorithm (Orig) as described in 
Stam and Van Dijk (2002). The most similar version to the 
original one we have had access to is a MATLAB script 
called sync_sa.m, entitled "Synchronization Likelihood 
Stand-Alone Calculator" and dated July 2003. As it is a 
bit outdated, we also consider BrainWave,4 the Java based 
application for functional connectivity and network analy­
sis currently supported by the group of C.J. Stam. Whenever 
possible we also consider a parallelization of the different 
implementations.5 

The different algorithms (Table 1 have been named after 
the algorithm implementation (Orig or FSL), the computer 
language used (MATLAB, Java or C) and the type of 
parallelization applied and are the following: 

Orig-Matl-MulTh: This is the s y n c s a . m MATLAB 
script executed with the options "-nodesktop" and "-
nosplash" to reduce the memory footprint. Because MAT­
LAB uses the Intel Math Kernel Library internally, which 
includes a multithreaded version of BLAS (Basic Linear 
Algebra Subroutines), the elementary library functions 
with vector arguments are multithreaded. Therefore this 
constitutes a multithread execution. 



Table 1 The different SL implementations evaluated in this article 

Version name Algorithm implementation Language Parallelization 

Orig-Matl-Seq 

Orig-Matl-MulTh 

Orig-Matl-parfor 

Orig-Java-Seq 

Orig-C-Seq 

FSL-C-Seq 

FSL-C-OMP 

FSL-C-CUDA 

The original 

The original 

The original 

Supposedly the original 

The original 

Fast SL 

Fast SL 

Fast SL 

MATLAB 

MATLAB 

MATLAB 

Java 

C 

C 

C 

C 

Sequential 

Multithreaded 

Multiple CPU cores 

Sequential 

Sequential 

Sequential 

Multiple CPU cores 

Graphic processing units 

Orig-Matl-Seq: This adds the option 
"-singleCompThread" to the previous version to limit 
MATLAB (and the underlying MKL library) to a sin­
gle computational thread. This version is consequently 
executed sequentially. 

Orig-Matl-parfor: This is an explicitly parallel version of 
the sync . sa . ra script with only minimal changes. The 
MATLAB p a r f o r sentence is used for the main parallel 
loop and a matlabpool is opened to use multiple proces­
sors. The number of processors is limited to 8 by the 
toolbox. 

Orig-Java-Seq: This is the BrainWave's SL algorithm 
implementation. The source code is not available, but the 
application can be downloaded for free in a Java precom­
piled form. We assume that this implementation of the 
SL remains similar to the original one. No parallelization 
seems to have been implemented. 

Orig-C-Seq: This is a C translation of the original algo­
rithm, resulting from rewriting the sync . sa . ra script in 
the C language without modifying the algorithm. It is 
used for comparing the MATLAB interpreted language 
efficiency with that of a fully compilable language such 
as C. All the MATLAB matricial operations were writ­
ten directly in C as nested loops, without using additional 
libraries. Any possible code vectorization is automaticaly 
done by the compiler. 

FSL-C-Seq: This is a fully optimized sequential C code 
implementation of the Fast SL suitable for compiler 
vectorization as described before. 

FSL-C-OMP: This is an adaptation of the sequential ver­
sion using the OpenMP standard6 (Dagum and Menon 
1998) to take advantage of current shared memory com­
puter architectures to execute the code in parallel over 
multiple local CPU cores. In a straightforward adapta­
tion, only the main time loop of the FSL_delta method 
has been parallelized using OpenMP directives. Therefore, 

6http://www.openmp.org 

different time instants will be executed in parallel by dif­
ferent threads over the available CPU cores, but both 
subloops will be executed one after the other by the 
same thread. The first subloop has no dependencies 
between channels. For the second subloop, the partial 
result obtained by each thread must be accumulated, so 
the access to the variable that contains the final results 
must be synchronized using an atomic directive. The tem­
porary partial results are stored in local private variables. 
The shared variable that contains the final results has 
been replicated to avoid using critical regions as they 
impose serialization in the access to these variables. At 
the beginning these private variables were stored in the 
stack, but sometimes the stack was overflowed due to the 
size of these variables and the final solution has been to 
use the heap, even if it is a less efficient solution. 

FSL-C-CUDA: This version uses a completely differ­
ent and add-hoc reimplementation of the "specialized" 
version of the FSL_delta method, using the CUDA-C 
language to exploit the huge amount of low level paral­
lelism available in the current GPUs. The main difficulty 
of programming a GPU is to correctly map the inher­
ent application parallelism onto the parallel hardware 
available in the GPU, to optimize the access of the 
computing threads to internal memory. The GPU board 
attached to the PCI-X bus acts as a coprocessor, so only 
the routines computationally more expensive are exe­
cuted on the GPU as so called kernels. While the main 
part of the program and data remains in the host, the nec­
essary input and output data for the kernels need to be 
transferred through the PCI-X bus. In our case, the spe­
cialized main time loop has been splitted into two parts, 
each one being implemented as a different kernel. The 
intermediate results of the first kernel are used in the sec­
ond one. These results are not transferred to the host, but 
kept in the GPU memory for efficiency. The threads run­
ning the first loop do not need explicit synchronization, 
as there are no dependencies between channels. In the 
second loop, a reduction operation has been implemented 

http://www.openmp.org
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dataset. Speed-up factor for the different implementations with respect to a non-optimized MATLAB implementation of the SL 

using the shared memory (which is limited in size but 
very fast, even if it is explicitly controlled by the pro­
grammer) and the registers (to reuse the data previously 
read), accumulating the final partial results in a shared 
variable that is sent back to the host at the end. But the 
use of this reduction impose severe restrictions in paral-
lalelization, as synchronization barriers must be used to 
ensure that results are correct. In the GPU each thread 
is in a block and multiple blocks are ordered in a grid. 
In this way the threads are organized in a logical hierar­
chy, which gets established when calling a kernel, when 
the dimensions of the grids and blocks are specified. In 
the first kernel, each block computes the embedding vec­
tors for a different channel, and each thread of this block 
compute a different time-instant i. If there are more chan­
nels than blocks, each block computes several channels. 
In the second kernel, the recurrent states are computed. 
To compensate for the high latency of the global mem­
ory, Instruction Level Parallelism (ILP) is used ((Volkov 
2010)). Both loops are unrolled to increment the avail­
able instructions that can be used to compensate for the 

high latencies. To improve the coalesced access to global 
memory the input data are transposed and aligned. To 
avoid using bifurcations, the beginning and end of the 
time series are not computed in the GPU, but elsewhere. 
As the GPU executes the same instruction for each warp, 
where a warp consists of a set of 32 threads, every bifur­
cation imposes the serial execution of each branch of the 
bifurcation. 

Computer Hardware and SL Parameters 

The SL parameters used in all the calculations are: wl = 
100, w2 = 410, L = 1, m = 10, Pref = 0.049, speed = 1. 
These parameters determine the number of state vectors to 
be considered: N = \2 x (410 - 100) x 0.0491 = 31, for 
an Effective pref = 31/(2 x (410 - 100)) = 0.05. 

In the case of the MATLAB calculations, the measures 
were taken without using the user interface (nodesktop and 
nosplash options) to avoid measuring the memory con­
sumed by the interface. The MATLAB version used was 
R2012a 64-bit. 



The calculations were carried out with double precision 
floating point (64 bits), on a dual processor Intel Xeon 
E5645 2.4 GHz with six cores each, totalling 12 cores with 
hyperthreading.7 

Memory requirements (Fig. 3) were defined as the max­
imum resident set size, that is, the maximum amount of 
RAM memory used by the program during its execution. 

For Fig. 6 the GPU used was a Nvidia GeForce GTX 580 
with 512cores, 1.5 GB of memory and a memory bandwidth 
of 192.4 GB/s. 

The performance and memory requirements of the differ­
ent algorithm implementations are reported in Figs. 2 and 3. 
A dataset with 148 channels and 50,863 samples per channel 
was used (sampling rate=254 Hz, duration=3 min 20 sec). 

Results 

Evaluation of Implementations 

Figure 2 shows the processing time taken by the different 
SL implementations. A dataset consisting of 148 channels 
and 50,863 samples was used. Two MATLAB versions, the 
sequential (Orig-Matl-Seq) and the multithreading (Orig-
Matl-MulTh) version, and the BrainWave version (Orig-
Java-Seq) are quite slow, as they are able to process only 
0.18, 0.19 and 0.61 Ksamples per second respectively. The 
translation of the original implementation to C (Orig-C-Seq) 
is much faster than these three versions, even if the same 
algorithm is used, processing 3.58 Ksamples per second. 
The main reason is that MATLAB is an interpreted lan­
guage while C produces a compiled code. The explicitly 
parallel MATLAB version (Orig-Matl-parfor) has a speedup 
of nearly 8 with respect to the original MATLAB imple­
mentation, which we use as a reference. This is close to 
the nominal maximum of 8 cores imposed by the toolbox. 
Nevertheless it is still very slow, as it is able to process 
only 1.45 Ksamples per second. In contrasts, our sequential 
reimplementation of the Synchronization Likelihood (FSL-
C-Seq) is able to process 54.1 Ksamples per second, being 
295 times faster than the reference version. The GPU ver­
sion (FSL-C-CUDA) implemented with CUDA on Nvidia 
graphic cards has a very high speedup factor of 1,865, 
compared to Orig-Matl-Seq and 6.32 compared to FSL-
C-Seq, being able to process 342 Ksamples per second 
using an inexpensive graphics card. The version for shared 
memory computers (FSL-C-OMP) using OpenMP on a 
computer with 12 cores, presents an even higher speedup of 
3,009 compared to Orig-Matl-Seq and 10.2 compared to the 

7When hyperthreading technology is in use, each real core simulates 
two logical cores 

sequential FSL (FSL-C-Seq), reaching 552 Ksamples per 
second. 

Figure 3 shows the memory requirements of the dif­
ferent implementations for the same dataset, with 148 
channels and 50,863 samples. The explicitly parallel MAT­
LAB version (Orig-Matl-parfor) requires significantly more 
memory, 58 % more, than the sequential MATLAB ver­
sion. All the MATLAB implementations seem to use 
large amounts of memory in the form of auxiliary matri­
ces of size proportional to the input data. This mem­
ory allocation is present for as long as the process 
is running. BrainWave (Orig-Java-Seq) is more memory 
efficient. 

FSL-C-Seq is an autonomous program which highly opti­
mizes the use of the memory. In fact, it has been designed 
to be able to process a data stream. It does not require load­
ing all the data into memory, but just the necessary data to 
compute the distances in the surrounding double inclusion 
interval around each time point. All our versions (FSL-
C-Seq, FSL-C-OMP and FSL-C-CUDA) require less than 
1 % of the memory needed by the sequential MATLAB 
version, Orig-Matl-Seq, and are not limited by the dataset 
length as they only load into memory the data required 
to compute the distances needed for each time point. The 
FSL-C-OMP version only needs marginally more memory 
than the FSL-C-Seq version, as it uses private variables for 
the working threads. The CUDA version differs from the 
other ones in that it not only uses system memory but also 
video card memory. For this particular dataset 79MB of 
system memory plus 146MB of video card memory were 
used. 

Scalability of Implementations 

Next, we explore the scalability of the three novel imple­
mentations. First the scalability of the sequential version, 
FSL-C-Seq, is analyzed by gradually increasing the amount 
of data and/or the number of channels. Then, the scalability 
of the two parallel versions, using CUDA (FSL-C-CUDA) 
and OpenMP (FSL-C-OMP), is characterized using FSL-C-
Seq as reference. 

The previous dataset, with 148 channels and 50,863 
samples per channel (sampling rate=254 Hz, duration=3 
min 20 sec) is denoted with as an asterisk in Figs. 4, 
5 and 6. Figures 4, 5 and 6 show the scalability of 
the sequential, OpenMP parallel and GPU parallel ver­
sion respectively, with the amount of data increasing from 
4K to 1024K and the number of channels ranging from 
4 to 1024. To calculate the speedup factor, Fig. 4 uses 
as reference the smallest dataset with 4 channels and 
4K data. The reference used in Figs. 5 and 6 is the 
sequential version with the same number of channels and 
samples. 
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Figure 4 shows how the Sequential FSL version scales as 
a function of the number of samples per channel and num­
ber of channels. The speedup factor on the y-axis is defined 
as the ratio of number of processed samples per time unit for 
a given dataset to the same quantity for the reference dataset 
with 4 channels and 4K samples per channel. The fact that 
the lines are roughly constant indicates that sequential ver­
sion scales linearly with the number of samples per channel. 
In contrast, the speedup factor decreases with increasing 
number of channels as the algorithm complexity in the sec­
ond sub-loop (Fig. 1) is quadratic with respect to the number 
of channels. 

The sequential MATLAB implementation, Orig-Matl-
Seq, scale also linearly with respect to the number of 
samples per channel. The difference is that it scales linearly 
also with respect to number of channels. This analysis 
clarifies the behaviour of the OpenMP and CUDA parallel 
versions. 

Figure 5 shows the scalabitly of the Open MP imple­
mentation. As seen in the figure, the amount of data has 
much less influence on the performance than the channel 

number, as could be expected after the results of the sequen­
tial scalability analysis. They are two different regimes. If 
the number of channels is small the maximum speedup is 
not achieved because there is not enough processing demand 
for all the cores. In this case, increasing the amount of data 
improves the speedup factor as it increases the amount of 
processing to be carried out by the underlying hardware. 
When the number of channels increases the speedup is 
limited by the number of cores. 

Figure 6 shows the scalability of the CUDA parallel FSL 
version with on GPU GeForce GTX 580 with respect to the 
sequential version. The behaviour of this version is quite dif­
ferent from that the OpenMP version, as the amount of data 
greatly influences the performance. If there are few sam­
ples per channel the speedup as the amount of processing 
assigned to each GPU core is small. For larger number of 
samples per channel the speedup factor increases especially 
for an intermediate number of channels. For a large number 
of channels the speedup decreases as the data structures that 
the algorithm uses are rather large and no longer fit into the 
small data caches of the GPUs. 
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Computation of the Partial SL 

The ability to obtain and store not only the global SL but 
also a partial SL (using the new parameter T) allows study­
ing the dynamics of the system by observing how the SL 
indices evolves over time. Figure 7 shows, for the same 
real dataset of 148 channels and 50,863 samples used in 
Fig. 2 and 3, examples of partial SL matrix for the averaging 
periods 1,16, 256 and 4096, and the global SL matrix. Each 
matrix pixel shows the averaged SL between each two chan­
nels over the period. We observe a consistent pattern that 
becomes fuzzier as the period (T) of the partial SL becomes 
bigger. 

As our implementation also computes the Synchroniza­
tion Entropy (Hs) (Stam et al. 2003), the Fig. 7 also 
shows on the background the average, standard deviation, 
maximum and minimum values of the Hs as a func­
tion of the averaging interval. As the averaging period 
becomes bigger, the averaged SL values are presum­
ably more precise, but the higher frequency information 
is lost. 

Validation of the Implementation 

We tried to keep the Fast SL algorithm as compatible as 
possible to the original algorithm. One difficulty is that 
the original publication does not specify how calculations 
should be carried out at the beginning and end of the data 
series. So our FSL implementation is not only different 
from the original one due to the introduced simplifications, 
optimizations and the parallelization of the code, but also 
because the beginning and end of the data series may be 
treated differently. 

This is the only reason why the FSL results are 
slightly different to those of the original implementa­
tion. In fact the FSL_delta "specialized" version (the one 
applied to the central segment of the data) produces 
exactly the same numerical results than the sync . sa . ra 
MATLAB script used as representative of the original 
algorithm. 

Some kind of validation is necessary to verify that the 
results of FSL remain equivalent to those of the original 
implementation. To our knowledge there is no reference 

http://sync.sa.ra
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data set to validate the Synchronization Likelihood algo­
rithm with. So we opted for reproducing analysis of a Henon 
system as in the Fig. 1 of Stam and Van Dijk (2002), as 
it is well described, easy to reproduce and summarizes a 
broad spectrum of cases since the degree of synchronization 
is changed smoothly. 

Figure 8 shows the results obtained with FSL for this 
example. Each of the two curves consists of 101 points rang­
ing from a Coupling Strength between 0 and 1. Represented 
is the average and standard deviation of the SL between 2 
time series containing 4096 samples each. The calculation 
was repeated 10 times for different realizations generated 
from different seeds. A total of 8,273,920 samples were 
processed in 66 seconds. 

This plot matches exactly the shape obtained in Stam and 
Van Dijk (2002). The number of points considered for the 
present figure is 10 times larger than for the original one. 
The difference between our results and those given by the 

original implementation can be measured as an accumulated 
relative difference8 of 0.391 % for the "Identical, B = 0.3" 
curve and 0.451 % for the "Non-Identical, B = 0.1" curve. 

In addition, in order to also validate our algorithm 
with empirical data, we applied the SL to a freely avail­
able dataset of Magnetoencephalography (MEG) record­
ings available from the Human Connectome Project. This 
dataset includes high quality MEG scans from 14 healthy 
adults (all members of monozygotic twin pairs) collected 
at rest. The sampling rate was 2034.51 Hz. The scanner 
had 248 magnetometer channels and 23 reference chan­
nels (for more details about the dataset, see "HCP MEG 
Scan Protocol Details" in the Human Connectome Project 

Accumulated Relative Difference of two curves (a and b) for values 
V i n P points: 

ARD :£Va- Vil/E (Va + V6)/2 
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Fig. 6 Scalability of the CUDA FSL implementation for different datasets 

webpage). Three of these MEG recording were employed to 
validate our algorithm. We download the raw, unprocessed 
MEG data in 4D Neuroimaging format corresponding to 
three subjects. Subsequently, and prior to functional connec­
tivity analysis (SL analysis), the three records were visually 
inspected by an experienced investigator, excluding visible 
blinks, eye movements or muscular artifacts from the data. 
For each of the three subject, 5 epochs free of artifacts of 
4096 points (of around one second in lenght) and 248 chan­
nels, of resting state activity were selected. Subsequently, 
the SL algorithm was applied to the 5 extracted artifact-free 
epochs for each of the three subject. The SL was calculated 
for each of the 5 one-second epochs with 248*247/2 chan­
nel pairs for each subject. The SL algorithm was calculated 
in two ways: a) using the FSL implementation and b) using 
the SL implementation available in the Brain Wave software 
package. For all channel pairs and epochs, the relative dif­
ferences in SL values between both methods ( a) and b) ) 
never exceeded 1 %. 

Discussion 

The novel SL algorithm implementation described in this 
paper has the following features. 1) Boundary segments 
are processed adaptively so that SL is computable from 
short time series. 2) Computations can be done with par­
tial data segments only, without the need to load the whole 
dataset into memory, which allows for data streaming and 
processing of datasets of unlimited size. 3) The Synchro­
nization Entropy (Hs) and the partial SL can be computed 
efficiently. 

In the present work we have shown that optimizing 
the implementation of the algorithm used to estimate a 
connectivity measure, the SL, can increase the processing 
speed and decrease the amount of required memory by 
orders of magnitude. The combined effect of redesigning 
the algorithm and porting it from MATLAB to C increases 
speed by a factor of approximately 300 with respect 
to the originally published implementation. If one adds 
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parallelization, the combined speedup factor is around 3,000 
with 12 cores, and around 2,000 using an inexpensive GPU, 
a GeForce GTX 580 with 512 cores (Fig. 2). Likewise the 
optimization yields a decrease of a factor of approximately 
200 in the amount of memory needed to perform the com­
putations (Fig. 3). 

The computational time for the novel sequential imple­
mentation increases linearly with the number of sam­
ples (Fig. 4). The novel parallel implementation, with an 
OpenMP architecture, speeds-up processing by a factor 
approximately equal to the number of processors (Fig. 5). 
On the other hand, if the more affordable CUDA architec­
ture is employed, the speed-up processing is also of an order 
of magnitude for the considered representative case, but the 
scaling with the number of sensor pairs is less efficient than 
with OpenMP (Fig. 6). Additionally, CUDA programming 
and maintenance is complex. 

To summarize, as shown in Figs. 2 and 3, the new FSL 
implementation is much faster and memory efficient than 
the original version and it is therefore our recommended 
option. Which type of parallelization is advantageous to use 
depends on the hardware available. 

Therefore, both the new algorithm and the paralleliza­
tion of the implementation, provide a huge increase in the 
efficiency of the computation of the SL. This should allow 
the undertaking of more ambitious connectivity analyses 
than the ones afforded by the current implementations. At 
present, the connectivity analysis is one of the most com­
putationally costly steps of electromagnetic signal analysis. 
The current work presents a new optimized implementation 
which should widen the applicability of this type of anal­
ysis. The amount of time needed to compute the SL for a 
typical single participant recording with the original imple­
mentation (Fig. 2) is approximately 10 hours. If we take 
into account that we may need to do this analysis for 10-50 
participants times 3-4 experimental conditions, and this may 
have to be repeated several times as we refine our analysis, 
we start to appreciate the computational burden imposed by 
the speed of the original implementation on the analysis. An 
increase in speed of 2 or 3 orders of magnitude is therefore 
very welcome. 

With the present developments, a connectivity mea­
sure among more channel pairs can be calculated without 
the analysis becoming computationally prohibitive. Also a 
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higher temporal and spatial resolution can be afforded. Fur­
thermore, it should be feasible to use permutation testing in 
a wider set of circumstances than previously. Also the fact 
that speed has been greatly improved makes real-time anal­
ysis of the signals, with its potential for, for example, brain 
computer interfacing, within reach. An added advantage of 
the implementation here described is that they are much 
less memory demanding. This makes previously unfeasible 
analyses of long duration datasets, like those obtained from 
some epilepsy studies, treatable. In addition, it should now 
possible to calculate the SL between a large number of time-
series, such as those corresponding to source-reconstructed 
time-courses of EEG/MEG data. 

Future work could include the application of these opti­
mization strategies to other connectivity measures where 
applicable, and the testing and adaptation of these new algo­
rithms for real-time applications such as brain computer 
interfacing. 

In conclusion, connectivity analyses represent a key 
ingredient in current neuroimaging signal processing. One 

of the most widely used indices is generalized synchro­
nization, which is one of the types of analysis which is 
more computationally costly. The current work presents 
a new optimized implementation which should widen the 
applicability of this approach. 

Information Sharing Statement 

The source code for FSL (RRID:nif-0000-00305) is avail­
able under the Lesser GNU Public License (LGPL). The 
tarball is hosted by the Center for Biomedical Technol­
ogy (CTB) under the HERMES project (RRID:nlx_l 55770, 
http://hermes.ctb.upm.es/resources/FSL/). Anonymous read 
access to the source code is enabled. 
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