
1

Experience in spacecraft on-board software
development
Juan A. de la Puente, Alejandro Alonso, Juan Zamorano, Jorge Garrido, Emilio Salazar,
Miguel A. de Miguel
Universidad Politécnica de Madrid, ETSIT, Avda. Complutense 30, E-28040 Madrid, Spain

Abstract

This paper describes some important aspects of high-
integrity software development based on the authors’
work. Current group research is oriented towards mixed-
criticality partitioned systems, development tools, real-
time kernels, and language features. The UPMSat-2
satellite software is being used as technology demonstra-
tor and a case study for the assessment of the research
results. The flight software that will run on the satellite
is based on proven technology, such as GNAT/ORK+
and LEON3. There is an experimental version that
is being built using a partitioned approach, aiming at
assessing a toolset targeting partitioned multi-core em-
bedded systems. The singularities of both approaches
are discussed, as well as some of the tools that are being
used for developing the software.

Keywords: Real-time systems, model-driven engineer-
ing, Ada.

1 Introduction
The UPM STRAST group has a long time experience in de-
veloping high-integrity real-time systems. The group research
in this domain is currently oriented towards mixed-criticality
partitioned systems, development tools, real-time kernels, and
language features. In order to validate technical achievements
in this field, the UPMSat-2 satellite software is being used
as a case study. In this paper, ongoing work and experiences
from this development are described.

UPMSat-2 is a project aimed at building a micro-satellite
that can be used as a platform for experimenting with various
technologies and acquiring long-term experience in different
aspects of space systems. The project is being carried out
by a multi-disciplinary team at UPM, with the collaboration
of several research groups and industrial companies. The
satellite is expected to be launched in the final quarter of
2015. STRAST is responsible for developing all the software
required for the mission, including on-board software for
platform and payload management. The flight software is
built as a monolithic system, running on top of an ORK+
kernel on a LEON3 [?] computer board. The software is
being developed according to the provisions in the ECCS-
E-ST-40 [?] and ECCS-Q-ST-80 [?] standards, in order to
ensure that the final software product can be validated for the
mission.

Mixed-criticality systems are raising a growing interest in
the area of embedded systems, due to their potential for im-
proving software productivity and quality. In the context of
the MultiPARTES and HI-PARTES projects, methods and
tools for mixed-criticality partitioned multi-core embedded
systems are being developed. One of the responsibilities of
the group is the development of a toolset for supporting this
approach. In this context, UPMSat-2 is being used as a case
study. In particular, a partitioned implementation running on a
XtratuM hypervisor [?] is being developed for demonstration
and validation of the project outcomes.

The methodological and architectural approaches used in this
work is described in the rest of the paper. Section ?? contains
an overview of the satellite system and the architecture of
the on-board computer. The main software subsystems and
the architectural approaches are discussed also described in
this section. Section ?? describes the development tools used.
Some details of the validation facility are presented in sec-
tion ??. Finally, a summary of the lessons learned so far and
plans for the next future is presented in section ??.

2 The UPMSat2 On-Board Software Sys-
tem

2.1 Overview of the satellite system

UPMSat-2 is a micro-satellite with a geometric envelope
of 0.5 × 0.5 × 0.6 m and an approximate mass of 50 kg
(figure ??). It will describe a low Earth noon sun-synchronous
polar orbit [?] with a period about 97 min. There are two vis-
ibility periods from the ground station every 24 hours, with
an approximate duration of 10 min each.

X+! Y+!

Z+!

Z-!

Figure 1: General view of the satellite platform.

Ada User Journa l Vo lume 35, Number 1, March 2014

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148673809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Exper ience in spacecraf t on-board sof tware deve lopment

Electrical power is provided by solar panels and batteries.
Voltage control is analog, keeping voltages for the satellite
subsystems within appropriate ranges.

The attitude of the satellite is computer-controlled, using basic
sensors and actuators. The attitude is determined by means of
magnetometers, which provide a measurement of the Earth
magnetic field vector in the satellite reference frame. Devia-
tions are corrected by means of magnetorquers, which create
a magnetic field that makes the satellite rotate accordingly.

Communications with the ground station are carried out by
means of a dual radio link in the VHF 400 MHz band, with
a raw transfer rate of 9600 bit/s. A simplified version of the
X.25 data link layer protocol is used for error control and
packet transmission.

The payload of the satellite consists of a set of experiments
focused on testing different kinds of equipment in a space en-
vironment. The experiments have been proposed by industry
and some research groups.

There is a single on-board computer (OBC) that executes all
the data handling, attitude control, and telecommunications
functions. It is based on a LEON3 processor implemented
on a radiation-hardened FPGA, with 4 MB RAM, 1 MB
EEPROM, and digital and analog interfaces. The on-board
software system runs on this hardware platform.

2.2 Software functionality

The main functions of the on-board software can be grouped
as follows:

• Platform monitoring and control (housekeeping). Plat-
form data, such as voltages and temperatures at different
points, are periodically sampled and checked in order to
assess the status of the satellite.

• On-board data handling (OBDH), including decoding
and executing telecommands (TC) received from the
ground station, and composing and sending telemetry
(TM) messages with housekeeping data, event and error
logs, or experiment results.

• Attitude determination and control (ADCS). Magne-
tometer values are read periodically, and used by the
control algorithm to compute the intensity output to the
magnetorquers in each sampling period.

Alternative ADCS devices, such as solar sensors or reac-
tion wheel actuators, as well as variations in the control
algorithm, will be tested as experiments.

• Experiment management. Most of the experiments re-
quire control actions to be executed on them, and sensor
data to be collected and sent to ground to be analysed.

Figure ?? shows the software context and the top-level func-
tional blocks.

A key concept in on-board software systems is that of op-
erating modes. The system may be in different modes, and
may perform different functions, or execute them in different
ways, according to the operating conditions of the system.

OBC!

ADC actuators!
-  magnetorquers"
-  reaction wheel"

ADC sensors!
-  magnetometres"
-  solar cells"

Radio!
-  uplink (TC)"
-  downlink (TM)"

Housekeeping
sensors!
-  temperatures"
-  voltages"
-  currents"

Experiments!

OBDH!

platform!

ADCS!

experiments!

Figure 2: Context and top-level functions.

Figure ?? shows the main operating modes of the on-board
software and the events that trigger mode transitions.

The specific functions that are executed in each mode are:

• Initialization mode: load executable code, start execu-
tion, and configure I/O devices.

• Nominal mode: housekeeping, OBDH and ADCS as
above defined.

• Safe mode: same as nominal mode, with longer periods
and reduced functionality in order to save energy power.

• Latency mode: the computer is switched off until batter-
ies are charged (signalled by a hardware timer).

• Experiment mode: one of the experiments is executed,
with changes to nominal behaviour if required by the
experiment.

Nominal!

Experiment!

TC!

Latency!

low battery | error | TC!

Initialization!

timer!

Safe!

watchdog  
timer!

critical  
battery! TC!

Figure 3: Satellite operating modes.

2.3 Architectural approaches

In order to ensure a timely implementation of the flight soft-
ware, a monolithic implementation has been designed, using
a well known architecture based on GNAT/ORK (figure ??).

On the other hand, there is growing interest on developing
satellite software on partitioned architectures, as exemplified
by recent work directed by ESA/ESTEC to develop a parti-
tioned version of the EagleEye reference mission software [?].

The MULTIPARTES project [?] is aimed at developing tools
and solutions based on mixed criticality virtualization for
multicore platforms. The virtualization kernel is based on
XtratuM, a cost-effective open source hypervisor specifically
developed for real-time embedded systems [?]. The UPMSat-
2 software is being used in MultiPARTES as a case study for

Volume 35, Number 1, March 2014 Ada User Journa l

J.A. de la Puente et a l . 3

Hardware

ORK+

Drivers

GNARL

Application software

(a) Monolithic architecture.

Hardware

 ORK+

Drivers

GNARL

ADCS

XtratuM

 ORK+

Drivers

GNARL

Platform management

Partition 1! Partition 2!

(b) Partitioned architecture.

Figure 4: Software architecture.

validating the mixed-criticality technology developed in the
project. To this purpose, a partitioned version of the software
system is being developed. The partitions run on an adapted
version of GNAT/ORK for XtratuM [?]. An example showing
the ADCS control subsystem running in one partition and the
platform manager providing access to devices in another is
shown in figure ??.

3 Development tools
The increasing complexity of high integrity embedded sys-
tems and the need to comply with demanding safety-related
standards require suitable toolsets for supporting developers.
Model Driven Engineering (MDE) is an appropriate software
development approach, that enables the abstraction level of
languages and tools used in the development process to be
raised. It also helps designers to isolate the information and
processing logic from implementation and platform aspects.
A basic objective of MDE is to put the model concept on the
critical path of software development. This notion changes
the previous situation, turning the role of models from con-
templative to productive.

The STRAST group has been working with this technology
for a long time. The ASSERT project1 explored the use
of MDE technology in space software systems, from which
different sets of tools emerged. One of them evolved un-
der the auspices of ESA, resulting in the TASTE toolset [?].
TASTE supports a wide set of modelling languages, such as
Simulink [?] and SDL [?], and uses AADL [?] as a glue for
architecture modelling. The TASTE tools generate Ravenscar
Ada code that can be compiled with GNAT/ORK, and are
being used as the primary toolset for the monolithic imple-
mentation of the UPMSat-2 software.

Another follow-up of ASSERT was the CHESS project,2

which was focused on property preservation and compos-
ability. In the context of this project, an MDE framework
for high-integrity embedded systems was originally devel-
oped [?]. In this framework, the functional part of the system
is modelled using UML [?]. Models can be enriched with

1Automated proof-based System and Software Engineering for Real-Time
systems. FP6 IST 004033.

2Composition with Guarantees for High-integrity Embedded Software
Components Assembly, ARTEMIS-2008-1-100022.

non-functional annotations, in order to integrate different as-
pects of the software in a single model. This approach has a
number of advantages, as it makes models maintenance eas-
ier, enables efficient communication within the development
team, and supports the validation and analysis of models.

The framework relies on the UML profile for Modeling and
Analysis of Real-Time and Embedded Systems (MARTE) [?]
to describe real-time requirements, properties, resource usage
information, and other non-functional properties. A response-
time analysis model is automatically generated, which can
be used to validate real-time requirements. Finally, source
code skeletons in Ravenscar Ada are generated for the main
system components.

Mixed-criticality systems are emerging as a suitable approach
for dealing with system complexity and reducing develop-
ment costs, by integrating applications with different critical-
ity levels on the same hardware platform. A separation kernel
provides isolation mechanisms in order to guarantee that ap-
plications do not interfere with each other. In this way, it is
possible to certificate or qualify applications with different
criticality levels in an independent way.

Partitioned systems are a remarkable way of providing isola-
tion to applications. In these systems, the separation kernel
can be built as a hypervisor that implements a number of
partitions as virtual machines isolated from each other in the
time and space domains. In this way, applications with dif-
ferent criticality levels can run in different partitions without
experimenting any interference from other applications. This
approach makes the system development more difficult, as
its time behaviour may get much more complex, and requires
the hypervisor to be carefully configured.

In the context of the MultiPARTES project, the original
CHESS framework is being improved in order to deal with
mixed-criticality systems [?]. The first activity accomplished
is the identification of toolset requirements, which are driven
by the inputs from industrial applications in domains such
as aerospace, automotive, video surveillance or wind power
generation. The most relevant requirements are:

• Development of mixed-criticality systems: The concept
of criticality should be central in the system.

Ada User Journa l Vo lume 35, Number 1, March 2014

4 Exper ience in spacecraf t on-board sof tware deve lopment
http://www.multipartes.eu http://twitter.com/#!/FP7MultiPARTES

Toolset'Objec,ves'
'

•  Support'for'system'par..oning'

•  Non3func.onal'requirements:'

real3.me,'security,'safety'

•  Applica.ons'&'pla;orms'reuse'

•  System'valida.on'

•  Genera.on'of'artefacts'

Applications modelPlatform model
Partitioning

restrictions model

System model

System 
partitioning Partitioning

tool

Deployment model

Neutral model

Transformation to
neutral model

Source code

Transformation to
source code

XtratuM configuration
files

Transformation to
configuration files

System building  
files

Transformation for
system building

Validation
tool

Tool input model Transfor- 
mation

Tool output
model

Transfor- 
mation

Toolset 
result model

Validation

Final 
Artifacts

Generation

Development'Steps'
'

1.  System'modelling:'

NFR'annota.ons'

2.  System'par..oning'

3.  System'Valida.on'

4.  Genera.on'of'final'artefacts'
5.  Integrate'source'code'
6.  System'execu.on'

WP7'–'aerospace'

UPMSat2:''

Satellite'by'UPM'

Toolset'Implementa,on'
'

•  Model3Driven'Engineering'

•  UML2'+'metamodels'(Ecore)'

•  Implemented'Eclipse'–'EMF'

•  UML2'GUI:'Other'tools'(RSA)'

Demo'Descrip,on'
'

•  Subsystem:'A[tude'control.''

•  Two'communicated'par..ons:'

•  Control'algorithm'

•  I/O'opera.ons'

•  Spacecra`'simulator'on'a'PC'

•  Satellite:'FGPA'with'LEON3'CPU'

•  XtratuM'&'ORK+'

HIPEAC,(Vienna,(January(2014(

FPGA'(Leon'3)'

XtratuM'

ORK+'

PlaEorm'I/O' AGtude''
Control'

PC'

Linux'

Simulink'

RSL232'

SpacecraN'Model'

ORK+'

ONLBOARD'computer' Simula,on'computer'

Demo'Descrip,on'
'

•  Show'current'state'of'the'toolset'

•  Validate'the'architecture'

•  Exercise'with'a'WP7'case'study'

•  Exercise'ORK+'por.ng'to'XtratuM''

Figure 5: Architecture of the real-time safety systems development framework.

• Support for non-functional requirements: The frame-
work has to provide mechanisms for specifying and
validating these requirements. Additionally, the inte-
gration of requirements from different components must
be supported. Currently safety, real-time, and security
requirements are being considered.

• Support for multi-core architectures: Current processor
technologies are more and more based on multicores.
Design aspects such as modelling, partition allocation,
or response time analysis, should be supported.

• System modelling: The toolset must provide means for
modelling the whole system, including the applications,
platform, and any other elements required for its descrip-
tion.

• Support for system deployment: this implies the gener-
ation of a bootable software image with the hypervisor
and the partitions code, including the operating systems
and applications allocated to them.

The current framework design is shown in figure ??. A system
model is composed of three models:

• Platform model: it describes the execution platform, in-
cluding hardware, hypervisor, operating system. The
platform model relies on UML-MARTE, with some ex-
tensions.

• Applications model: it includes the functional model
and the required non-functional properties.

• Partitioning restrictions model: it describes the restric-
tions to be fulfilled by a valid partitioning of the system.

Platform and applications models are independent of a par-
ticular system. In this way, it is possible to reuse them in

different developments. The restrictions model includes in-
formation that applies to a particular system, and any specific
criteria for partitioning. Restrictions may include statements
that must be fulfilled by a valid partitioning, such as “an appli-
cation must be allocated to a given partition”, “an application
must (not) be in the same partition as another one”, “an appli-
cation requires a particular hardware device”, or “a partition
or application must run on a given core or processor”.

The system partitioning component is in charge of generating
a valid system partitioning, i.e. a number of partitions, an
allocation of applications to partitions, and an assignment of
computational resources to partitions. This information is de-
scribed in the deployment model. A deployment model must
meet the defined restrictions, as well as the specification of
non-functional requirements. For example, if an application
has a certain criticality level, it must not be allocated to the
same partition as a non-critical application.

Some non-functional requirements may be difficult to validate.
The validation component can provide validation tools for
some of them. For example, a validation tool can support
the validation of real-time requirements by carrying out a
response time analysis of the system.

As above, inputs to validation processes can be generated au-
tomatically. Failure to validate one or more requirements can
provide feedback to add restrictions to the partitioning model,
so that an alternative deployment model can be produced.

The final step of development consists of the generation of
the following final artefacts:

• Hypervisor configuration files, for implementing a be-
haviour compliant with the deployment model.

• System building files, for automatically generating the
final executable system.

Volume 35, Number 1, March 2014 Ada User Journa l

J.A. de la Puente et a l . 5

• Source code skeletons, for the main entities.

The framework is currently under development. There are
working versions of system model, and the artifacts genera-
tion tools. With respect to the partitioning component, it is
possible to define partitions manually. The automatic parti-
tioning algorithm is under development. Finally, there is an
ongoing work on the support for response time analysis of
partitioned multi-core systems. The framework is currently
tailored for a LEON3 hardware architecture, the XtratuM
hypervisor, and the ORK+ operating system. Code skeletons
generation is targeted to Ravenscar Ada.

4 Software validation approach
The flight version of the on board computer, based on a
LEON3 processor, is still under development. For this reason,
an engineering model is currently being used for preliminary
software validation. The engineering model is based on a
GR-XC3S1500 Spartan3 development board with a LEON2
processor at 40 MHz clock frequency and 64 MB of SDRAM.
Cache memory is not used in this implementation. The main
difference between the LEON2 processor used in the engi-
neering model and the envisaged production LEON3 are that
the latter has a 7-stage pipeline instead of the 5-stage pipeline
of LEON2. The differences between these versions of the pro-
cessors are not significant as they are not central for system
behaviour.

The engineering version of the OBC is being used to test
and analyse some parts of the software that already mature
enough for preliminary validation. For example, there is a
working version of the ADCS subsystem, implementing an
elaborate attitude control algorithm that has been designed
by aerospace engineers, based on a mathematical model of
the spacecraft dynamics and the torque perturbations. Due
to the complexity of the model, a functional model has been
created with Simulink in order to design, test and validate the
structure of the control algorithm and to tune its parameters
to the most appropriate values.

As it is not possible to test the satellite software in its real
environment, a software validation facility (SVF) including
hardware-in-the-loop (HIL) simulation has been built. The
basic idea is to test the embedded system against a simulation
model instead of the real environment. The test environment
includes a simulation model that interacts with the control
module running on the real computer, as shown in figure ??.
Some additional components have been included as well, in
order to model the sensors and actuators that carry out the
interaction between the computer and the modelled environ-
ment. The tests performed so far show a correct behaviour of
the attitude control software. The SVF approach has also been
used to analyse the worst-case execution time and the maxi-
mum response time of the attitude control procedure [?, ?].

In order to validate the partitioned architecture described
in ??, a prototype has been built with the two partitions shown
in figure ??. The partitioned system runs on the on-board
computer. The platform management partition interacts with
the SVF computer. The ADCS partition executes the control

SVF

OBC!
engineering!

model
simulation!

model HMI

RS-232

analog IF

Figure 6: Architecture of the software validation facility.

algorithm, and interacts with the other partition in order to
exchange data with the SVF simulation of the spacecraft
dynamics.

The results of this exercise have been quite promising. Sys-
tem partitioning has been straightforward using the devel-
opment framework. The original application was split into
two components that were allocated to different partitions.
Communication was performed using the XtratuM mecha-
nisms for inter-partition interaction. Partitioning and resource
assignment have been done manually. The generation of the
artefacts has simplified the deployment of the final system.
The next steps include to continue the UPMSat-2 develop-
ment, and to apply this technology to a more complex system.
We are also planning to make an assessment of the response
time analysis facilities, in order to guarantee the required
timing behaviour.

5 Conclusions and future plans
Model-driven engineering has lived up to its promise to raise
abstraction level and make software development easier. Be-
ing able to reason with models in the development of the
UPMSat-2 software is a real gain over older development
methods, and lets the design team concentrate on the system
behaviour rather than implementation details.

The use of the TASTE toolset for the monolithic software ver-
sion is straightforward. We are modelling most of the system
behaviour with SDL, except for the ADCS component which
is being modelled with Simulink. Automatic code generation
from the models has enabled experimenting with the ADCS
algorithm and carry out analysis and testing procedures on
this subsystem at an early stage. The implementation of
this software version on the monolithic GNAT/ORK/LEON3
platform is also straightforward, as this is a well-known and
proven platform for space systems.

The partitioned version of the software leaves room for ex-
perimenting newer software development methods and tools.
Using a partitioned architecture allows the design engineers
to separate subsystems from each other and assigning them
different criticality levels. For example, the system manager,
the ADCS, and the communications (TTC) subsystems can be
assigned level B (as per ECSS-Q-ST-80), whereas the experi-
ments in the payload can be considered level C, as they are
not critical for the success of the mission. Even subsystems
with the same criticality level can profit from partitioning, as
they can be validated independently, thus simplifying qualifi-
cation. However, the virtualization kernel has to be qualified
at the maximum criticality level of the partitions, which may
in turn make the qualification process more complex. This

Ada User Journa l Vo lume 35, Number 1, March 2014

6 Exper ience in spacecraf t on-board sof tware deve lopment

issue is being addressed in the MultiPARTES project, where
a roadmap to the qualification of the satellite software case
study based on UPMSat-2 is being developed.

Effective use of a partitioned approach such as discussed
above requires support from a toolset that integrates parti-
tioning with modelling and code generation. The toolset that
has been described in the paper has already shown a high
potential for this development paradigm, and is also being
completed in the framework of MultiPARTES.

Other topics dealt with in the paper, such as the use of a soft-
ware validation facility with a hardware-in-the-loop configu-
ration and the way to overcome some minor inconsistencies
in the design of actuator control tasks, are directly extracted
from the authors’ experience and have also contributed to
clarifying the development process

Plans for the near future include completing the design and
implementation of the monolithic software system, and carry-
ing out the complete validation and qualification activities as

required by the ESA standards. This requires testing on the
flight computer with the actual I/O devices.

With respect to the partitioned software systems, the imme-
diate tasks are completing the toolset, finalise the software
design (note that the functional model is the same as in the
monolithic version), and complete the roadmap to ESA quali-
fication.

Acknowledgments.
The work described in this paper has been partially funded
by the Spanish Government, project HI-PARTES (TIN2011-
28567-C03-01), and by the European Commission FP7 pro-
gramme, project MultiPARTES (IST 287702).

The UPMSat-2 project is led by IDR/UPM.3 We would like to
acknowledge the collaboration of the IDR team, TECNOBIT,
as well as the MultiPARTES consortium members.

3Instituto Ignacio da Riva, www.idr.upm.es.

Volume 35, Number 1, March 2014 Ada User Journa l

