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1 Morphological Functions with Parallel Sets for the Pore Space of X-ray CT Images of Soil

2 Columns
3

4 F. SAN JOSÉ MARTÍNEZ,1 F. J. MUÑOZ,1 F. J. CANIEGO,1 and F. PEREGRINA2

5 Abstract—During the last few decades, new imaging tech-

6 niques like X-ray computed tomography have made available rich

7 and detailed information of the spatial arrangement of soil con-

8 stituents, usually referred to as soil structure. Mathematical

9 morphology provides a plethora of mathematical techniques to

10 analyze and parameterize the geometry of soil structure. They

11 provide a guide to design the process from image analysis to the

12 generation of synthetic models of soil structure in order to inves-

13 tigate key features of flow and transport phenomena in soil. In this

14 work, we explore the ability of morphological functions built over

15 Minkowski functionals with parallel sets of the pore space to

16 characterize and quantify pore space geometry of columns of intact

17 soil. These morphological functions seem to discriminate the

18 effects on soil pore space geometry of contrasting management

19 practices in a Mediterranean vineyard, and they provide the first

20 step toward identifying the statistical significance of the observed

21 differences.

22

23 1. Introduction

24 One of the most pervasive features of natural soils

25 is its structure as expressed by the size, shape, and

26 arrangement of the soil particles and voids, including

27 both the primary particles to form compound parti-

28 cles (i.e. soil aggregates) and the compound particles

29 themselves (BREWER, 1964). Soil structure plays a

30 major role in soil functioning, including its contri-

31 bution to accumulation and protection of soil organic

32 matter, to optimization of soil water and air regimes,

33 and to storage and availability of plant nutrients

34(BOSSUYT et al., 2002; VON LÜTZOW et al., 2006).

35Performance of many of these functions strongly

36depends on pore space geometry. For example, it has

37been shown that gradients of a number of soil char-

38acteristics exist inside soil. Among them are gradients

39in oxygen concentrations of the soil air (SEXSTONE

40et al., 1985), gradients in concentrations of a variety

41of elements, including Ca, Mg, K, Na, Mn, K, Al, and

42Fe (SANTOS et al., 1997; JASINSKA et al., 2006), and in

43organic matter compositions (ELLERBROCK and GERKE,

442004; URBANEK et al., 2007). These differences in turn

45influence soil structure that is of particular impor-

46tance for processes such as soil carbon sequestration

47(SIX et al., 2000; DENEF et al., 2001; CHENU and

48PLANTE, 2006).

49In this work, we propose a quantitative descrip-

50tion of geometrical characteristics of soil pore space

51as volume, surface, shape, and connectivity within

52the unified framework that provides mathematical

53morphology (SERRA, 1982). Mathematical morphol-

54ogy includes a plethora of mathematical techniques to

55analyze and parameterize the geometry of different

56features of soil structure. These techniques belong to

57well-established mathematical fields such as integral

58geometry (SANTALÓ, 1976), stochastic geometry

59(MATHERON, 1975), or digital topology and geometry

60(KLETTE and ROSENFELD 2004). They make available a

61sound mathematical background that guides the pro-

62cess from image acquisition and analysis to the

63generation of synthetic models of soil structure (ARNS

64et al., 2004) to investigate key features of flow and

65transport phenomena in soil (LEHMANN, 2005; MECKE

66and ARNS, 2005).

67X-ray computed tomography (CT) provides a

68direct and non-destructive procedure to use three-

69dimensional information to quantify geometrical

70features of soil pore space (Peyton et al. 1994; Perret
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71 et al., 1999; Pierret et al., 2002; Mees et al., 2003;

72 LEHMANN et al.2006; SAN JOSÉ MARTÍNEZ et al., 2010;

73 ZHOU et al., 2013). During the last few decades,

74 mathematical morphology has been successfully used

75 to analyze different characteristics of the rich three-

76 dimensional geometrical information gained through

77 X-ray CT (MECKE and Stoyan, 2000; Banhart, 2008).

78 Among the tools of mathematical morphology, Min-

79 kowski functionals (ARNS et al., 2002; LEHMANN

80 et al., 2006), which belong to the mathematical the-

81 ory of integral geometry (SANTALÓ, 1976), are

82 particularly worthy of consideration since they pro-

83 vide computationally efficient means to measure four

84 fundamental geometrical properties of three-dimen-

85 sional geometrical objects such as soil pore space.

86 These properties are the volume, the boundary sur-

87 face, the integral mean curvature, and the

88 connectivity of the object of interest. Hadwiger’s

89 theorem (SANTALÓ, 1976) states that any functional

90 that assigns a number to any three-dimensional object

91 and meets some self-evident and natural geometrical

92 restrictions is a linear combination of these Min-

93 kowski functionals. Then, these functionals are

94 powerful tools to describe quantitatively 3D geome-

95 try. MECKE (1998) and ROTH et al. (2005) made use of

96 Minkowski functions based on threshold variation of

97 Minkowski functionals to characterize two-dimen-

98 sional porous structures. San José Martı́nez et al.

99 (2013) used the same methodology with the pore

100 space of columns of intact soil. Also, two-dimen-

101 sional porous structures were investigated by MECKE

102 (2002) and VOGEL et al. (2005) with Minkowski

103 functions based on dilations and erosions. ARNS et al.

104 (2002, 2004) considered the evolution of Minkowski

105 functionals with dilations and erosions to characterize

106 3D images of Fontainebleau sandstone. Renard and

107 Allard (San José Martı́nez 2013) used the Euler

108 number as a function of erosion/dilation to explore

109 the role of connectivity for the characterization of

110 heterogeneous aquifers with 2D models.

111 In this work, we introduced two morphological

112 transformations, namely erosion and dilations, and

113 morphological functions built over Minkowski

114 functionals. These morphological functions take

115 account of the evolution of Minkowski functionals

116 as dilations and erosions are performed on the object

117 of interest, the pore space of soil columns imaged

118with X-ray CT. In this way, different geometrical

119objects are provided that can be seen as parallel sets

120of the pore space. Then, the Minkowski functionals

121of the new objects are computed and represented as

122a function of the radius of the ball of the structuring

123element of the corresponding dilation/erosion. We

124observed that morphological functions of dilation/

125erosion seem to discriminate between two pore

126structures in a Mediterranean vineyard subjected to

127contrasting management practices: conventional

128tillage and permanent cover crop of resident

129vegetation.

1302. Morphology of Pore Space Volume

131Morphological analysis mimics other scientific

132procedures, and in some instances it can be seen as a

133two-step process. To illustrate this point, let us con-

134sider, for instance, the procedure to determine

135particle size distributions by sieving. This technique

136first generates a series of subsets of primary mineral

137particles, the oversize sets corresponding to each

138sieve size; then, these oversize sets are weighted. In

139morphological analysis, first, geometrical transfor-

140mations are applied to the object of interest in an

141image, and then measurements are carried out. When

142the granulometry of an image of grains of different

143sizes shall be determined, successive morphological

144operations are performed on the image. These oper-

145ations consist on the elimination of grains smaller

146than a certain size with a suitable morphological

147transformation (Fig. 1). Each one of these operations

148is followed by the measurement of the area for 2D

149images or the volume for 3D images, of the grains left

150(SERRA, 1982). Figure 1 illustrates this procedure in a

151CT image of a packing of sand particles. Now we are

152going to describe the basic morphological operations,

153i.e. dilations and erosions. Finally, the notions of

154Minkowski functionals and morphological functions

155will be presented.

1563. Morphological Operations

157Grains or pore space in a 3D CT image of soil will

158be idealized as sets of points in three-dimensional
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159 space. These types of geometrical objects will be the

160 mathematical objects of interest. In this work we will

161 focus on soil pore space as the geometrical object of

162 interest. Mathematically, an object is a closed and

163 bounded set. A ball is a closed set if it contains the

164 points of the spherical surface that defines its

165 boundary. And it is a bounded set because it is con-

166 tained in a sphere of finite radius. Dilation of an

167 object expands it. This new object can be thought of

168 as being the union of all balls with a given radius r

169 centered at points of the original object. If the ori-

170 ginal object is a ball of radius r0 , the dilated object

171 by balls of radius r will be a new ball of radius r0 þ r.

172 We consider a generic object K and a ball B of

173 radius 1 whose center is located at the origin of

174 coordinates. Both K and B are objects, closed and

175 bounded sets, but K is the object of interest or simply

176 an object that we scrutinize with the object B that is

177 called the structuring element. A ball of radius r

178 centered at the origin, rB, is obtained by multiplying

179 the coordinates of the points of B by r. In a ball of

180 radius 1, centered at point x, Bx, is obtained adding x

181 to every point of B. Scalar multiplication by a posi-

182 tive number r produces an expansion with scaling

183 factor r when r[ 1, and a contraction with scaling

184 factor r when r\1. Addition with a vector x

185produces a translation in the direction of the vector x

186at a distance equal to the ‘‘length’’ of this vector, its

187modulus. Then, we have the following mathematical

188expressions that define the sets rB and Bx (OSHER and

189MÜCKLICH 2000):

rB ¼ fry : y 2 Bg and Bx ¼ fyþ x : y 2 Bg

ð1Þ

190191That is to say, rB is the set of points ry when y

192belongs to B , and Bx is the set of points yþ x when y

193belongs to B. In these expressions, ry stands for the

194scalar multiplication of the scalar r and the vector y;

195and yþ x represents the sum of two vectors, y and x.

196Thus, the dilation (Fig. 2) of the object K by balls of

197radius r, that is the union of all balls rBx of radius r

198centered at points x of K, will be another object Kr

199defined as

Kr ¼
[

x2K

rBx: ð2Þ

200201The set Kr is also called the parallel body of K at a

202distance r or r-parallel body to K. This is the set of all

203points within a distance smaller than r from the

204object K. In this work, the structuring element will be

205a ball centered at the origin. Then, the dilation of an

206object by a ball of radius r is equivalent to the r-

Figure 1
Granulometric analysis of a section of a CT image of 15.4 mm side of a packing of sand particles by successive morphological operations
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207 parallel body to K. Roughly speaking, it is like a

208 ‘‘skin’’ of thickness r is added to K.

209 We will analyze binary (black and white) images

210 of soil. They contain two complementary phases: the

211 phase of voids (pores) and the phase of soil matrix

212 (mineral particles). As we said previously, in this

213 study, the pore space is the object of interest and it

214 will be white, while the mineral matrix will form the

215 background and it will be black, as is customary in

216 image analysis. Then, the erosion of one phase is

217 equivalent to the dilation of the complementary

218 phase. Erosion of the pore space is dilation of the soil

219 matrix, and erosion of the soil matrix is dilation of

220 pore space. For an object K , the erosion by a ball of

221 radius r is defined as (ARNS et al., 2002).

K�r ¼ fx : rBx � Kg ð3Þ

222223 Consequently, the erosion of an object K by a ball

224 rB corresponds to the set of all positions of their

225 centers within K where the structuring element rB fits

226 completely into K (Fig. 2). Roughly speaking, it is

227 like a ‘‘layer’’ of thickness r is removed from K.

228 Therefore, we may generalize the notion of r-parallel

229 body so that Kr will be a dilation for r[ 0, and

230 erosion for r\0 and the original object K for r ¼ 0

231 (ARNS et al., 2002).

232 4. Measurements: Minkowski Functionals

233 What is the area of a two-dimensional object or

234 the volume of a three-dimensional one when the

235 object is dilated? Let us consider a simple object like

236 a square or a cube with edges of size a and a disk or a

237ball of radius r as a structuring element. In the plane,

238the area of the dilated object Kr of a square K by a

239disk rB can easily be computed as (Fig. 3).

AðKrÞ ¼ A drBðKÞð Þ ¼ a2 þ 4a r þ p r2

¼ AðKÞ þ LðKÞr þ AðBÞr2: ð4Þ

240241In this expression, A stands for the area and L

242stands for the length of the perimeter of the square K.

243Here, B is the disk centered at the origin with radius

2441. In the space, we get

VðKrÞ ¼ V drBðKÞð Þ ¼ a3 þ 6a2 r þ 3par2 þ
4

3
p r3

¼ VðKÞ þ SðKÞr þMðKÞr2 þ VðBÞr3

ð5Þ

245246Here, V stands for the volume, S for the area of

247the boundary, and M for the mean breadth multiplied

248by 2p (it can be shown that the mean breadth of a

Figure 2
Effect of dilation Kr ¼ drBðKÞ (grey plus black) and erosion K�r ¼ erBðKÞ (black) of object K by the structuring element rB

Figure 3
Dilation of a square with a disk as structuring element
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249 cube of edge a is 3a=2 (SANTALÓ, 1976). Here, B is

250 the ball centered at the origin with radius 1.

251 Now, let us consider a general convex object in d-

252 dimensional linear space; then one has the Steiner

253 formula (OSHER and MÜCKLICH, 2000).

VðKrÞ ¼
X

d

i¼0

d

i

� �

W
ðdÞ
i ðKÞ: ð6Þ

254255 In this expression, W
dð Þ

i ðKÞ are the Minkowski

256 functionals. There are d þ 1 Minkowski functionals

257 in dimension d.

258 Minkowski functionals are a complete set of

259 geometrical features as established by Hadwiger’s

260 theorem (SANTALÓ, 1976). In simple terms, this the-

261 orem states that any functional that assigns a number

262 to any object of interest and fulfills some very natural

263 geometrical restrictions is a linear combination of the

264 Minkowski functionals with numbers as scalars of

265 this linear combination.

266 There are three Minkowski functionals in the

267 plane and four in space. In the plane (the two-

268 dimensional linear space), one has

W
2ð Þ

0 Kð Þ ¼ AðKÞ; W
2ð Þ

1 Kð Þ ¼ LðKÞ and

W
2ð Þ

2 Kð Þ ¼ AðBÞvðKÞ:
ð7Þ

269270 In this expression, A stands for the area, L stands

271 for the length of the perimeter of K , and vðKÞ for its

272 Euler-Poincaré characteristic. Here, B is the disk

273 centered at the origin with radius 1. In space (the

274 three-dimensional, linear space), one has

W
3ð Þ

0 Kð Þ ¼ VðKÞ; W
3ð Þ

1 Kð Þ ¼ 1=3ð ÞSðKÞ;

W
3ð Þ

2 Kð Þ ¼ 1=3ð ÞMðKÞ and

W
3ð Þ

3 Kð Þ ¼ VðBÞvðKÞ:

ð8Þ

275276 Here, B is the ball centered at the origin with

277 radius one, V stands for the volume, S for the area of

278 the boundary, and M for the mean breadth multiplied

279 by 2p (it can be shown that the mean breadth of a

280 cube of edge a is 3a=2 (SANTALÓ, 1976). As before,

281 vðKÞ is the Euler-Poincaré characteristic of the spa-

282 tial object K. See Appendix 2 for more details on

283 interpretation of these functionals.

284 Another important feature of Minkowski func-

285 tionals is that they are easy to compute (MICHIELSEN

286 2001). For computational purposes, points of

287geometrical objects are considered a voxel of a digital

288image (i.e. the elements of regular lattice). Taking

289into account the C-additivity property (see Appendix

2901) and the fact that digital images are sets of cubes (or

291voxels), their computation reduces to the computation

292of the Minkowski functionals on cubes and their

293intersections (vertices, edges, and faces) (LIKOS et al.,

2941995).

2955. Morphological Functions

296Mathematical morphology offers a powerful

297description of objects in terms of functions. This

298technique is similar to the process that provides

299particle size distributions by morphological analysis

300of soil images (SERRA, 1982; SOILLE, 2002; VOGEL,

3012002).

302Consider a 3D binary image of soil where the void

303phase K is the object of interest. Let Kr be, as before,

304the dilation of K by balls of radius r when r[ 0 and

305the erosion of K by balls of radius r when r\0. Then,

306consider any Minkowski functional, say M, and the

307function

f rð Þ ¼ MðKrÞ ð9Þ

308309This family of functions built over the Minkowski

310functionals provides a way to investigate the mor-

311phology of the pore space K as it is dilated and

312eroded with balls of increasing radius r. VOGEL et al.

313(2005) used this approach on 2D images to describe

314crack dynamics in clay soil. ROTH et al. (2005) make

315use of opening (i.e. erosion followed by dilation) to

316build Minkowski functions to quantifying permafrost

317patterns with aerial photographs. These functions add

318new information to that provided by Minkowski

319functionals as they yield the pore size distribution of

320the porous structure. ARNS et al. (2004) characterized

321disordered systems and matched model reconstruc-

322tions to 3D images of Fontainebleau sandstone with

323Minkowski functions based on dilations and erosions.

324VOGEL et al. (2010) took advantage of Minkowski

325functions based on openings to quantify soil structure

326of arable soil and of repacked sand using 3D images

327from X-ray tomography of samples of different sizes

328recorded at different resolutions.
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329 MECKE (1996) considered a different type of

330 Minkowski function. In this case, the original 2D

331 image is a grayscale image before segmentation. A

332 series of binary images were obtained when the

333 threshold varied from the minimum value of the

334 grayscale to its maximum. Minkowski functionals

335 were evaluated on each binarized image of the series,

336 and four Minkowski functions were defined when the

337 Minkowski functionals evolved as a function of

338 threshold. ROTH et al. (2005) also made use of this

339 type of functions to quantify permafrost patterns

340 obtained from aerial 2D photographs.

341 In this work, we will investigate, in a three-

342 dimensional setting, how Minkowski functions based

343 on parallel sets of binary 3D X-ray CT images of soil

344 columns can be used to characterize soil pore struc-

345 ture of cultivated soil.

346 6. Materials and Methods

347 6.1. Soil Columns: Sample Collection

348 The columns were collected at the experimental

349 farm ‘‘Finca La Grajera’’, a property of La Rioja

350 region government, northern Spain, Latitude,

351 42�26034 1800N; longitude 2�30053 0700W, in Decem-

352 ber 2010. The field slope was about 10.2 % with

353 west-east orientation. The soil was classified as fine-

354 loamy, mixed, thermic Typic Haploxerepts according

355 to the USDA soil classification (Soil Survey Staff,

356 2006), and contained 230 g kg-1 clay, 433 g kg-1

357 silt, 337 g kg-1 sand, 9.3 g kg-1 organic matter, and

358 149 g kg-1 carbonates, with pH 8.62 and electrical

359 conductivity 0.17 dS m-1 at the Ap horizon

360 (0–20 cm). Climate in the area is semiarid according

361 to the UNESCO aridity index (UNESCO, 1979), with

362 heavy winter rains and summer drought conditions.

363 For the period 2005–2009, the average annual

364 precipitation was 470 mm, average annual tempera-

365 ture was 13 �C, and average annual potential

366 evapotranspiration (FAO-Penman) was 1,132 mm.

367 In this study, we considered four columns

368 collected between rows of the vineyard that was

369 established in 1996 with Vitis vinifera L. ‘‘Tempran-

370 illo’’, grafted onto 110-R rootstock. Two types of soil

371 cover management in between rows were undertaken:

372(T) conventional tillage management between rows,

373which consisted of a soil tillage of 15-cm depth by

374cultivator once every 4–6 weeks, as required for

375weed control during the grapevine growth cycle;

376(C) permanent cover crop of resident vegetation,

377which was dominated by annual grass and forbs

378common to La Rioja vineyards (see PEREGRINA et al.,

3792010, for more details). Columns were extracted

380vertically by percussion drilling between rows, within

381PVC cylinders of 7.5 cm interior diameter and 30 cm

382height from the upmost part of soil profile. As a

383consequence, only the upper half of the column was

384affected by tillage that was undertaken 3 months

385before the collection of samples.

3866.2. Image Acquisition, Filtering, and Segmentation

387Soil columns were scanned at Fraunhofer ITWM

388facilities (Germany) with a PerkinElmer amorphous

389silicon (a-Si) detector with 2,048 9 2,048 pixels and

390a Feinfocus FXE 225.51 microfocus beam source

391tube. It was operated at 190 kV (53 lA) acceleration

392voltage and 20 W target power. The tube had a

393tungsten target installed. In addition, a collimator to

394reduce stray radiation and a 200-lm steel filter in

395front of the target was used. Only the upper half of

396the column was scanned to image the tilled part of the

397columns from tilled soil, and the region between 6.5

398and 15 cm was selected to have a resolution of

39950 lm. In this way, soil macro-pore structure impor-

400tant for intense renewal of air and serving to transport

401and distribute water in soil (BREWER, 1964) was

402imaged.

403Raw data from tomography correspond to a stack

404of 1;706 two-dimensional, 16-bit grayscale images

405with a pixel size of 50 lm. These horizontal sections

406are disks of 7.5 cm diameter, 50 lm apart from one

407another. Thus, the 3D image is made up of voxels of

40850 lm. Light values of the grayscale designate voxels

409corresponding to low densities of the soil column,

410whereas high values indicate voxels of high density

411parts of the column. The original 2D projections were

412filtered by a 3 9 3 median filter before reconstruction

413in order to reduce random noise from the detector. It

414is a nonlinear smoothing method used to reduce

415isolated noise without blurring sharp edges (WANG

416and LAI, 2009).
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417 The segmentation process provides a way to

418 separate the object of interest from the background, in

419 this case, the pore space from the soil matrix. This

420 process produces binary images when a threshold is

421 selected, and every voxel with a grayscale value

422 lower than the selected threshold is considered part of

423 the pore space and set to 1 (white), while every voxel

424 with a grayscale value higher than the selected

425 threshold is considered part of the soil matrix and set

426 to 0 (black). ImageJ version 1.47v, a public domain

427 program developed at the National Institutes of

428 Health, was used for image processing. We selected

429 a global method as we focused primarily on the

430 analysis of geometrical features evolutions. The

431 modes method of thresholding was chosen to gener-

432 ate binary images (SONKA et al., 1998) for its

433 performance (IASSANOV et al., 2009). In this proce-

434 dure, the histogram is iteratively smoothed until there

435 are only two local maxima. Then, the threshold is

436 chosen at the midpoint between these local maxima.

437 Figure 4 illustrates image binarization, and Fig. 5

438 shows the view of 3D reconstruction of pore space in

439 a binary image. The plot of histograms with loga-

440 rithmic scale on the vertical axis is displayed (Fig. 4)

441 to show the two maxima. Notice the different pore

442 structures that display a typical sample from soil

443 under cover crop of resident vegetation and from soil

444 under conventional tillage (Fig. 5). The homogeneity

445 of the pore space produced by tillage is obvious (T

446 samples) as compared to the much more heteroge-

447 neous result of the cover resident vegetation crop (C

448 samples).

449 6.3. Computing Minkowski Functions for Parallel

450 Sets

451 We will consider binary images segmented with the

452 modes method procedure. In these images, the pore

453 space will be the object of interest while the soil matrix

454 will be the background. Now, to study pore structure,

455 we will investigate the evolution of Minkowski func-

456 tionals as successive erosions, and dilations with balls

457 of increasing radius are performed on the binary images

458 (ARNS et al., 2002; VOGEL et al. 2005).

459 We follow the procedure developed by MECKE

460 (1996) and the code published by MICHIELSEN (2001)

461 to compute Minkowski functionals. For the sake of

Figure 4
Segmentation process on a horizontal section of 960 9 960 pixels of

column C1: a gray-scale image, b histogram with (black) and without

(grey) logarithmic scales, and the resulting threshold marked with a

vertical red line, and c segmented image (white voids, black solid)
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462 clarity, let us illustrate this procedure in 2D images

463 made up of pixels that geometrically are squares. The

464 object of interest, K, is a finite union of squares

465 (compact and convex object). Each square is consid-

466 ered to be decomposed into the four points of its four

467 vertices, the four open segments of its four edges, and

468 the rest of the square, i.e. its interior. Then, the square

469 of each pixel is the union of nine disjoint sets: four

470 points, four open segments, and the interior of the

471 square. As a consequence, we only need to know the

472 Minkowski functional of these three types of sets (a

473 point, an open segment, and an open square), and

474 then use C-additivity extended to the union of an

475 arbitrary amount of sets. If ns is the number of

476 squares of the object, ne the number of edges, and nv

477 the number of vertices of the pixels of the object of

478 interest are counted once, it is easy to verify that

479 (MICHIELSEN 2001).

AðKÞ ¼ ns; LðKÞ ¼ �4ns þ 2ne and

vðKÞ ¼ ns � ne þ nv:
ð10Þ

480481 For three-dimensional objects, a similar argument

482 shows that (MICHIELSEN 2001).

VðKÞ ¼ nc; SðKÞ ¼ �6nc þ 2nf ;

p�1MðKÞ ¼ 3nc � 2nf þ ne and

v Kð Þ ¼ �nc þ nf � ne þ nv

ð11Þ

483484In this expression, nc is the number of cubes and

485nf is the number of faces of the voxels of the object

486K, counted once.

487The Euler-Poincaré characteristic—Euler number,

488for short—describes the connectivity of an object. In

489order to reconcile this global topological point of

490view with the local counterpart that displays the

491computation of this number in terms of numbers of

492cubes, faces, edges, and vertices, it is necessary to

493define when voxels are connected, or equivalently,

494when are they neighbors. In the plane, a common

495choice is to consider that two black pixels are

496connected when they have an edge or a vertex in

497common. In the three-dimensional space, it is

498customary to consider two black voxels connected

499when they have a face, an edge, or a vertex in

500common. This implies that any voxel is connected to

50126 voxels or it has 26 neighbors (MICHIELSEN and DE

502RAEDT, 2001).

Figure 5
3D reconstructions of the pore geometry (white) in each soil column in a box that is 8.5 cm high (z axis) and 1.7 cm long (x axis) and wide (y

axis)
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503 7. Results and Discussion

504 To evaluate Minkowski functionals, each column

505 was divided into five consecutive cubes that shared a

506 face, from top to bottom. The cubes had 340 voxels

507 per edge and they were centered on the axes of the

508 column in order to avoid voxels belonging to the

509 container or voxels representing soil near the sam-

510 pling tube that might have been damaged during

511 sampling. The pore space in each cube was eroded/

512 dilated to yield parallel sets. Diameters of balls took

513 19 different values for erosions and 19 for dilation, as

514 well; it was incremented from 0 in steps of the voxel

515 size (i.e. 50 lm). As Minkowski functionals are

516 additive, their values for each column were obtained

517 by simply adding the corresponding values of the

518 cubes of the column. We considered densities of

519 Minkowski functionals. Thus, we had volume frac-

520 tion or image porosity, specific boundary surface

521 area, specific integral of mean curvature, and specific

522 Euler number of the pore space.

523 Figures 6, 7, 8, 9 display the evolution of these

524 geometrical densities as functions of erosion/dilation

525 diameter (R). As stated above, dilations of pore space

526 produce an increase of its volume. Let us remark that

527this effect is more pronounced when there are tunnels

528of soil materials through voids because dilations

529reduce them, even if it also depends on the com-

530plexity of the pore-solid interface as measured by

531surface area and integral of mean curvature. Roughly

532speaking, dilations turn some voxels of the soil

533matrix into voxels of its pore space. Hence, this

534morphological operation expands the void part of the

535sample. Erosion produces the inverse process. Dif-

536ferences between soil samples under natural resident

537vegetation cover (C) and samples under conventional

538tillage (T) are noticeable even if samples T2 and C2

539have a similar evolution for dilations. Nevertheless,

540the evolution of image porosity (Fig. 6) and specific

541boundary surface (Fig. 7) with erosions diverges.

542This suggests that geometrical features of sample T2

543are smaller than three voxels as they vanish with

544erosions of diameter smaller than that size. The

545opposite behavior is observed on sample C1. The

546erosion with the larger ball still left an important

547amount of porosity in this sample. Overall, samples

548with natural resident vegetation cover (C) store a

549greater amount of volume fraction and specific sur-

550face at any diameter of the balls used to erode/dilate

551as compared to samples from tilled soil (T). This is

Figure 6
Image porosity as a function of diameter of erosion/dilatation
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552 consistent with results reported by PEREGRINA et al.

553 (2010).

554 Figures 8 and 9 depict the evolution of the specific

555 integral of mean curvature—mean curvature, for

556 short—and connectivity. Let us remember that the

557 connectivity is evaluated as the number of connected

558 components of the object of interest minus its tunnels

559 plus its cavities (see Appendix 2). Tunnels are

560 redundant loops or handles, as torus-like holes

561 through the object of interest. As we are dealing with

562 images of a natural soil, we may assume that there are

563 no soil materials completely surrounded by voids and,

564 as a consequence, the Euler number corresponds to the

565 number of connected components of the pores space

566 minus the number of tunnels of solid materials

567 through the pore space. The morphological functions

568 of the specific mean curvature (Fig. 8) and connec-

569 tivity (Fig. 9) seem to indicate that conventional

570 tillage and resident vegetation cover produces two

571 different pore structures; this difference is especially

572 apparent when comparing samples C1 and T1. Sample

573 C1 yields more specific mean curvature than sample

574 T1 when dilated with balls smaller than nine voxels.

575 In this range of diameters, mostly small voids con-

576 necting soil matrix should populate sample C1 as

577compared to sample T1, as is apparent from Fig. 5.

578High Euler numbers of sample C1 at small diameters

579seem to suggest this behavior. But large diameters

580decrease specific mean curvature and Euler number of

581sample C1, producing negative values. Nevertheless,

582in the case of T1, these geometrical measurements

583have lower growth. In the case of connectivity, it is

584negative for the largest diameter of dilations. This

585suggests that the pore structure of sample C1 contains

586a great amount of small features as the number of

587small voids (i.e. connected components) exceeds the

588number of tunnels of solid materials through them;

589therefore, high values of the specific mean curvature

590from these small features of the C1 pore space might

591be explained by the regularity of the surface that

592enclosed them, and they are also compatible with their

593small size. Moreover, C1 seems to display a rich

594structure as compared to sample T1. Between diam-

595eters 8 and 9, the graphs of both samples intersect at a

596positive specific mean curvature, but sample C1 has

597negative Euler characteristic. Therefore, it suggests

598that geometrical features similar in size should dom-

599inate sample T1, while the dilations of sample C1

600show a more complex structure highly connected with

601tunnels through it, as it seems to indicate negative

Figure 7
Specific surface area (voxel-edges-1) as a function of diameter of erosion/dilatation
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602 Euler numbers. The low variation of specific mean

603 curvature and Euler numbers of sample T1 is com-

604 patible with a pore structure made up with irregular

605geometrical features of similar sizes that collapse as

606diameter of dilation increases and do not generate a

607complex and highly connected structure.

Figure 8
Specific curvature (voxel-faces-1) as a function of diameter of erosion/dilatation

Figure 9
Specific Euler number (voxel-1) as a function of diameter of erosion/dilatation
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608 These results open the door to new investigations

609 to identify statistically significant differences in soil

610 structure due to contrasting management practices. It

611 was the necessary first step towards further research

612 that should include a richer sample. Then, the trends

613 that suggest this study would be the hypothesis of

614 those new investigations. Therefore, this might pro-

615 vide the basis for new projects that are likely to be

616 lengthy and costly, as there is the need for a greater

617 amount of 3D tomograms of large soil columns.

618 It has been reported that different land use and

619 management practices significantly affect directions

620 and magnitudes of the soil processes by contributing

621 different quantities and qualities of biomass inputs,

622 generating different levels of soil disturbance, influ-

623 encing soil temperature and moisture regimes. These

624 differences generate notable changes in soil physical

625 and hydraulic properties, including changes in soil

626 organic matter content, soil porosity, hydraulic con-

627 ductivity, and water retention (WANG et al., 2012;

628 Zhou et al., 2013). Our results suggest that the evo-

629 lution of morphological features with dilation/erosion

630 is a suitable indicator of soil structure for cultivated

631 soil, and it seems to describe the influence of two

632 different soil management practices (i.e. conventional

633 tillage and natural cover crop) on soil structure in a

634 Spanish Mediterranean vineyard. It is worth noting

635 here how these results reflect the different pore

636 structures as depicted by Fig. 5. The homogeneity of

637 the pore space produced by tillage is obvious as

638 compared to the heterogeneity of samples under

639 resident vegetation cover. Similar geometrical fea-

640 tures seem to dominate samples T2 and C2, but big

641 structures discriminate between them and explain the

642 behavior of the morphological functions of image

643 porosity and specific boundary surface when sample

644 T2 is eroded. These results are consistent with pre-

645 vious studies on the impact of land use on soil

646 structure (KRAVCHENKO et al., 2011; WANG et al.,

647 2012) when they remarked on the homogeneity of the

648 pore structure of conventional tillage as compared

649 with no-till.

650 Soil structure is regarded as one of the main

651 providers of physical protection of soil organic matter

652 and carbon sequestration by soils (SIX et al., 1998).

653 One of the mechanisms of such protection is a

654 reduced access of organic material inside soil voids to

655decomposing microorganisms. The differences that

656we are observing in the porosity patterns between C

657and T samples hint at their potentially different

658effectiveness for protecting carbon. Clearly, T sam-

659ples with their network of bigger voids will be

660offering greater microbial access, thus poorer pro-

661tection than the C samples that have more porosity

662connected with smaller features. Observations of

663ANANYEVA et al. (2013) support this hypothesis.

6648. Conclusions

665In this work, we have introduced the essential

666tools of mathematical morphology in order to quan-

667tify the geometrical morphology of soil structure. We

668made use of 3D images from X-ray CT of soil col-

669umns collected at the experimental farm ‘‘Finca La

670Grajera’’, property of the La Rioja region govern-

671ment, northern Spain. In this study, we considered

672four columns collected between rows of the vineyard

673that was established in 1996 with Vitis vinifera L.

674‘‘Tempranillo’’. Two types of soil management in

675between rows were undertaken: (T) conventional

676tillage management between rows, which consists of

677a soil tillage of 15-cm depth by cultivator once every

6784–6 weeks, as required for weed control during the

679grapevine growth cycle; (C) permanent cover crop of

680resident vegetation, which was dominated by annual

681grass and forbs common to La Rioja.

682We have presented the building blocks of math-

683ematical morphology, the morphological operations

684of dilation, erosion. We have dealt with the Min-

685kowski functionals (i.e. volume, boundary surface,

686curvature, and connectivity) and the Minkowski

687functions that take account of the evolution of the

688Minkowski functionals as morphological operations

689are performed on the 3D object of interest with balls

690of increasing diameter.

691Our results suggest that the evolution of mor-

692phological features with dilation/erosion is a suitable

693indicator of soil structure for cultivated soil and it

694seems to describe the influence of two different soil

695management practices (i.e. conventional tillage and

696natural cover crop) on soil structure in a Spanish

697Mediterranean vineyard. It is worth noting here how

698these results reflect the different pore structures as

F. Martı́nez et al. Pure Appl. Geophys.

Journal : Small 24 Dispatch : 4-9-2014 Pages : 15

Article No. : 928 h LE h TYPESET

MS Code : PAAG-D-14-00114 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

699 depicted by Fig. 5. The homogeneity of the pore

700 space produced by tillage is obvious as compared to

701 the heterogeneity of samples under resident vegeta-

702 tion crop. Similar geometrical features seem to

703 dominate samples T2 and C2, but big structures dis-

704 criminate between them and explain the behavior of

705 specific image porosity and boundary surface when

706 sample T2 is eroded.

707 These geometrical descriptors that seem to dis-

708 criminate between these two types of samples could

709 be used as inputs for morphological models of natural

710 soil structures. But further investigations are needed

711 to establish quantitatively the statistical significance

712 of the observed impact of contrasting management

713 practices on soil structure.
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724 Appendix 1

725 Let us be more precise and specify the objects of

726 interest and the geometrical conditions of Hadwiger’s

727 theorem. A class of objects to which this theorem

728 applies is the class of sets that can be viewed as the

729 union of a finite number of convex objects. An object

730 K is convex when it contains any point of the seg-

731 ment that joins two of its points. The class of objects

732 made up of finite unions of convex sets is worth

733 considering as any three-dimensional binary image

734 can be considered an element of this class. Binary

735 images are sets of voxels which may be thought of as

736 being cubes, and then any geometrical structure of

737 interest in a binary image is a finite union of convex

738 objects, which are the voxels.

739There are three geometrical conditions that a

740functional to which Hadwiger’s theorem applies must

741fulfill. The first one is motion invariance: the number

742assigned by a functional must be independent of the

743position of the object in space when the object is

744translated or rotated. The second one is C-additivity:

F K1 [K2ð Þ ¼ F K1ð Þ þ F K2ð Þ � F K1 \K2ð Þ ð12Þ

745746That is to say, the number assigned by a func-

747tional F to the union of two objects K1 and K2 equals

748the value of the functionals over those two objects

749minus parts counted twice. And the third condition is

750continuity. Consider a sequence of objects Knf g that

751approaches the object K as n tends to infinity. An

752example of this is the sequence of r-parallel bodies of

753an object K; it is clear that the sequence of r-parallel

754bodies Knf g with r ¼ 1=n, approaches K as n goes to

755infinity or, equivalently, as r goes to zero. Then, the

756continuity condition is fulfilled if FðKnÞ tends to

757FðKÞ as n goes to infinity. Under these conditions

758there are d þ 1 numbers ci such that

F Kð Þ ¼
X

d

i¼0

ciW
dð Þ
i ðKÞ ð13Þ

760760where W
dð Þ

i ðKÞ are the Minkowski functionals that

761assign to any object a number and K belongs to the d-

762dimensional linear space.

763Appendix 2

764When the boundary surface of a three-dimensional

765object is smooth, the third functional, the surface integral

766of the mean curvature,MðKÞ, may be interpreted as the

767mean breadth of the object (OSHER and MÜCKLICH,

7682000). This functional might also be an indicator of the

769surface boundary shape. Points on the boundary sur-

770face of an object with positive curvatures settle on

771convex parts (protrusions) while points with negative

772curvatures belong to concave parts (hollows). Hence,

773the mean curvature of convex points will be positive

774while it will be negative for concave points. Taking

775into account that the surface integral of the mean cur-

776vature over a certain boundary region of K may be

777interpreted as the average of the mean curvature over

778this surface region, the third functional,MðKÞ, should
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779 be positive for convex parts of the boundary surface

780 while it should be negative for concave parts.

781 When the object of interest K corresponds to the

782 pore space P, the Euler-Poincaré characteristic vðPÞ

783 is an index of the topology of the pore phase and it

784 quantifies pore connectivity (VOGEL and KRETZSCH-

785 MAR, 1996). In the plane, Euler-Poincaré can be

786 computed subtracting the number of holes of the

787 object, HðKÞ, from the number of connected com-

788 ponents, CCðKÞ (MECKE, 1998):

v Kð Þ ¼ CC Kð Þ � HðKÞ ð14Þ

789790 In this context, a connected component of an object

791 is any part of it whose points are connected to one

792 another by curves of points contained in the object.

793 Then, a disk has Euler-Poincaré characteristic equal to 1

794 because it has one connected component and no holes. A

795 punctured disk has Euler-Poincaré number equal to 0, a

796 disk punctured twice, -1, and so on. If the object is just

797 the union of n separated grains on an image, the Euler-

798 Poincaré characteristic equals n. This object has n

799 connected components. Similar definitions and rela-

800 tions hold in space though distinction between two

801 kinds of holes must be made. In space, the Euler-

802 Poincaré characteristic can be computed as the sum of

803 the number of connected components, CCðKÞ, and the

804 number of cavities of the object, C ðKÞ, subtracted by

805 the number of tunnels, TðKÞ (MECKE, 1998):

v Kð Þ ¼ CC Kð Þ � T Kð Þ þ CðKÞ ð15Þ

806807 Cavities are holes completely surrounded by the

808 object, while tunnels are handles or redundant loops as

809 torus-like holes through the object connected with the

810 exterior or background. If the object is just a separate

811 union of n grains of an image, the Euler-Poincaré

812 characteristic equals n. Then, a solid ball has Euler-

813 Poincaré characteristic equal to 1, a ball with a cavity

814 in it, 2, a ball with two cavities, 3, and so on. But, if

815 the ball has a tunnel that goes through it, the Euler-

816 Poincaré characteristic is 0, two tunnels gives a

817 Euler-Poincaré characteristic equal to -1, and so on.

818
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