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Objectives: Arecently introduced pragmatic scheme promises to be a useful catalog of interneuron names. 
We sought to automatically classify digitally reconstructed interneuronal morphologies according to 
this scheme. Simultaneously, we sought to discover possible subtypes of these types that might emerge 
during automatic classification (clustering). We also investigated which morphometric properties were 
most relevant for this classification. 
Materials and methods: A set of 118 digitally reconstructed interneuronal morphologies classified into the 
common basket (CB), horse-tail (HT), large basket (LB), and Martinotti (MA) interneuron types by 42 of the 
world's leading neuroscientists, quantified by five simple morphometric properties of the axon and four 
of the dendrites. We labeled each neuron with the type most commonly assigned to it by the experts. We 
then removed this class information for each type separately, and applied semi-supervised clustering to 
those cells (keeping the others' cluster membership fixed), to assess separation from other types and look 
for the formation of new groups (subtypes). We performed this same experiment unlabeling the cells of 
two types at a time, and of half the cells of a single type at a time. The clustering model is a finite mixture 
of Gaussians which we adapted for the estimation of local (per-cluster) feature relevance. We performed 
the described experiments on three different subsets of the data, formed according to how many experts 
agreed on type membership: at least 18 experts (the full data set), at least 21 (73 neurons), and at least 
26(47 neurons). 

Results: Interneurons with more reliable type labels were classified more accurately. We classified HT 
cells with 100% accuracy, MA cells with 73% accuracy, and CB and LB cells with 56% and 58% accuracy, 
respectively. We identified three subtypes of the MA type, one subtype of CB and LB types each, and 
no subtypes of HT (it was a single, homogeneous type). We got maximum (adapted) Silhouette width 
and ARI values of 1, 0.83, 0.79, and 0.42, when unlabeling the HT, CB, LB, and MA types, respectively, 
confirming the quality of the formed cluster solutions. The subtypes identified when unlabeling a single 
type also emerged when unlabeling two types at a time, confirming their validity. Axonal morphometric 
properties were more relevant that dendritic ones, with the axonal polar histogram length in the [it, 2ir) 
angle interval being particularly useful. 

Conclusions: The applied semi-supervised clustering method can accurately discriminate among CB, HT, 
LB, and MA interneuron types while discovering potential subtypes, and is therefore useful for neuronal 
classification. The discovery of potential subtypes suggests that some of these types are more heteroge­
neous that previously thought. Finally, axonal variables seem to be more relevant than dendritic ones for 
distinguishing among the CB, HT, LB, and MA interneuron types. 

1. Introduction 

* Corresponding author. Tel.: +34 91 3363675: fax: +34 91 3524819. 
E-mail addresses: bmihaljevic@ri.upm.es (B. Mihaljevic), rbp@cajal.csic.es 

(R. Benavides-Piccione), luispelayo84@gmail.com (L. Guerra), defelipe@cajal.csic.es 
(j. DeFelipe), mcbielza@fi.upm.es (C. Bielza). 

GABAergic interneurons of the cerebral cortex are key elements 
in many aspects of cortical function in both health and disease. 
Nevertheless, the classification of GABAergic interneurons is a dif­
ficult task and has been a topic of debate for a long time, since the 
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pioneering work of Santiago Ramon y Cajal on the characterization 
and identification of interneurons [ 1 ]. The difficulty stems from the 
high variability of these cells according to morphological, electro­
physiological and molecular features [2]. The scientific community 
lacks an accepted catalog of neuron names [3] which makes it 
difficult to organize and share knowledge [2]. There is some agree­
ment on the set of morphological, molecular, and physiological 
features that can be used to distinguish among types of GABAergic 
interneurons [2]. However, a comprehensive classification accord­
ing to those features is difficult to perform in practice [3]. A recent 
experiment enabled 42 expert neuroscientists from all around the 
world to classify interneurons by visual inspection and according 
to pre-selected neuron names [3]. It showed that the experts agree 
on the morphological definitions of some of the pre-selected types 
while disagreeing on the definitions of others. In particular, some 
types seemed to overlap in terms of the cells that were assigned to 
them by the experts. In [3], the authors also showed that supervised 
classification models can automatically categorize interneurons in 
accordance with the opinion of the majority of the experts. 

Automatic classification of interneurons has mainly been done 
with (unsupervised) clustering; see, e.g., [4-8]. However, super­
vised approaches can be more accurate when there is prior 
knowledge about neuronal types [9]. In this study, such knowl­
edge comes from the experts who participated in the experiment 
described in [3]. We can use this knowledge to guide classifica­
tion and simultaneously discover subtypes using semi-supervised 
clustering, an approach that lies between the supervised and unsu­
pervised approaches. In doing this, we follow the cluster assumption 
[10], i.e., we consider that the instances within a cluster are likely to 
belong to the same class whereas a class may consist of several clus­
ters. In semi-supervised learning [10,11], some data instances are 
labeled whereas others are not. Since all our neurons were labeled 
by the experts, we fitted the semi-supervised scenario by remov­
ing the labels of (a) one type at a time; (b) two types at a time; 
and (c) half the instances of each type, simultaneously. By doing 
this we sought to discover possible subtypes and see if the types 
could be automatically discriminated. We used an adaptation of 
the semi-supervised projected model-based clustering algorithm 
(SeSProc) introduced in [12]. This is a probabilistic clustering algo­
rithm which estimates the number of clusters and the relevance of 
each predictive feature for each of the clusters. The estimation of 
feature relevance within model-based clustering was introduced in 
[13]. 

We quantified the neurons with nine simple axonal and den­
dritic morphological variables, such as the axonal length close to the 
soma, and labeled them according to the choices of the expert neu­
roscientists. In [3] each instance was given up to 42 labels—coming 
from the 42 experts that concluded the study. Following a common 
practice in supervised learning [14], we reduced this vector of 42 
labels to its mode (i.e., the most common value), thus obtaining 
a single label per neuron. However, since experts frequently dis­
agreed, such labels were often not reliable, i.e., they were backed 
by few experts. To cope with the label noise [15,16] that expert dis­
agreements may be introducing, we analyzed three subsets of our 
neuron population, each with a different minimum of 'label reli­
ability', i.e., such that the label of each neuron in the subset was 
agreed upon by at least th experts, with th being a 'label reliability 
threshold'. 

This paper is an extension of [17] and is the result of close collab­
oration between experts in neuroanatomy and machine learning.1 

We extend the mentioned paper by refining some of the predic­
tor variables, adapting the SeSProC algorithm, and considering two 

Table 1 
Distribution of interneuron types with respect to label reliability threshold. Lower­
most row shows total number of cells per dataset. 
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additional experimental settings. The remainder of this paper is 
organized as follows: Section 2 describes the materials and meth­
ods we used; Section3 reports and discusses the obtained results; 
while Section 4 provides conclusions. 

2. Materials and methods 

2.1. Data 

See the affiliations of the two institutions involved. 

We used 237 three-dimensional (3D) reconstructions of 
interneurons from several areas and layers of the cerebral cortex 
of the mouse, rat, and monkey. These neurons were used in [3], 
and were originally extracted from NeuroMorpho.Org [18]. From 
this population of neurons, we formed subsets by imposing min-
imums on the number of experts that agreed on the label of an 
included cell (i.e., a 'label reliability threshold'), considering that 
a higher threshold yields more confidence in the cells' labels. We 
used thresholds 18, 22 (half plus one out of the 42 experts), and 26 
to build three databases: thl8, th22, and th26, respectively. These 
data sets contained interneurons of four different types (classes): 
common basket (CB), horse-tail (HT), large basket (LB), and Mar-
tinotti (MA). Table 1 shows the distribution of different types at the 
three label reliability thresholds. 

We characterized each neuron using nine features of axonal and 
dendritic morphology. While one may compute many morpholog­
ical features (e.g., [3] used over 2000 features for classification), 
none are known, so far, as good predictors of interneuron type. 
Since detailed morphometric information on 3D reconstructed cor­
tical interneurons is relatively scarce (a few hundred reconstructed 
neurons are available, comprising different types), it might be coun­
terproductive to use many predictor variables. Therefore, we kept 
the number of variables low by defining variables which capture 
how, in our opinion, an expert classifies an interneuron upon visual 
examination. 

We consider that an expert classifies an interneuron by esti­
mating the distribution and the orientation of axonal and dendritic 
arborizations. We therefore measured the axonal and dendritic 
length according to the Sholl (5 features) and polar histogram 
(4 features) analyses from NeuroExplorer, the data analysis com­
panion to Neurolucida [19]. Sholl analysis computes axonal and 
dendritic length at different distances from the soma whereas the 
polar histogram [20] describes the overall direction of dendritic 
growth; we only distinguished between two halves of the his­
togram, namely, the bifurcation angles falling in the [0,7r) interval 
and those falling in the [TT, 2TC) interval. See Table 2 and Fig. 1 and 
for further details on predictor variables. We standardized all vari­
ables (transformed them so to have zero mean and unit standard 
deviation) prior to classification. 

While an expert who classifies using a similar rationale can only 
roughly estimate these features, our classifier used exact values, 
thus possibly being more objective. This is important as some of 
the features that we use, such as the length of the axonal arbor at 
a certain distance from the soma, are rather hard for an expert to 
estimate. 
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Fig. 1. A schematic representation of the nine morphological features of axonal and dendritic morphology that we used as predictor variables. (A) An example of a 3D 
reconstructed interneuron classified by expert neuroscientists in [3], showing its axonal (displayed in blue) and dendritic (red) arborizations. The gray vertical shadow 
indicates the extent of the cortical column (assumed to be 300 ixm wide) whereas the dimensions of the squares are 100 ixm x 100 ixm. (B) Schematic representation of the 
overall direction of dendritic growth (polar histogram) for the dendrites (above; red) and the axon (below; blue). Features Xi and X2 encode axonal growth length in the 
angle intervals [0, jr) and [jr, 2jr), respectively, whereas features X6 and X7 capture the dendritic growth length in the same angle intervals. (C) Schematic representation of 
the features encoding axonal and dendritic arborization lengths at different distances from the soma (Sholl analysis): features X3, X4, and X5 encode, respectively, axonal 
lengths at 0-150 ixm (marked with a dark blue circle), 150-300 ixm (blue circle), and over 300 ixm (outside of the blue circle) from the soma. Features X8 andX9 measure 
dendritic arborization at 0-90 ixm (pink circle) and over 90 ixm (outside of the pink circle) from the soma, respectively. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of the article.) 

2.2. Semi-supervised projected model-based clustering 

We used the semi-supervised projected model-based clustering 
(SeSProC) algorithm, introduced in [ 12]. This algorithm allows clus­
ters to exist in different feature subspaces, estimating the relevance 
of each feature for every cluster. We modified SeSProc's definition 
of feature relevance and its heuristic for initializing new clusters 
(see below for details on both modifications). SeSProC handles par­
tially labeled data (i.e., some instances are labeled whereas others 
are not) by assigning unlabeled instances into either the a priori 
known clusters (given by the class labels) or to new clusters that it 
may have discovered. 

Table 2 
Predictor variables used in the present study. Predictors X1-X5 correspond to the 
axon whereas X6-X9 correspond to the dendrites. 

Variable Arbor type Description 

X, 

X2 

x3 

x 4 

x5 

x6 

x7 

x8 

Xg 

Axon 

Dendrites 

Polar histogram length (ixm) for the [0, jr) 
radians interval 
Polar histogram length (ixm) for the [jr, 
2jr) radians interval 
Sholl analysis length (ixm) at less than 
150 ixm from the soma 
Sholl analysis length (ixm) at more 
than 150 and less than 300 ixm from 
soma 
Sholl analysis length (ixm) at more 
than 300 ixm from the soma 

Polar histogram length (ixm) for the [0, jr) 
radians interval 
Polar histogram length (ixm) for the [jr, 
2jr) radians interval 
Sholl analysis length (ixm) at less than 
90 ixm from the soma 
Sholl analysis length (ixm) at more 
than 90 ixm from the soma 

2.2.2. A finite mixture model with local feature selection 
Let X= {Xi,.. .,XJV} be observed data, with x , s R f , V i s 

{1 , . . . , N], where F denotes the number of features. In model-based 
clustering, we assume that the data are generated from a finite 
mixture of K components. The density function for an instance x,- is 

/ ( x i | @ ) = ^ 7 T m / ( x i | ^ m ) ! 

with7Tm e [0,1] and J^m-i71™ = '• a nd#m being the parameters of 
component m, with 0 = {©i 0K, TC\ TIR}. 

SeSProC encodes the clustering solution with a latent K-
dimensional binary variable Z, with z,m = 1 if x,- is assigned to 
component m, and z,m = 0 otherwise. In a semi-supervised set­
ting, we observe the class labels q, c,e{l Q, of some 
instances ie{ l L}, L<N. We use the class labels to set the 
minimum number of components in the mixture, with one com­
ponent per class label (i.e., K=C). We also use the labels to fix 
zim = l(c,- = m), where I( •) returns 1 if (•) is true and 0 other­
wise, for i<L. This means that the algorithm does not change 
z,m for the labeled x,—they always belong to clusters specified 
by their labels; the goal is to cluster the unlabeled instances x,-, 
L<i<N. 

Localized feature selection. Not all predictor variables are nec­
essarily relevant for clustering. Following [13], we assume that 
a feature j is irrelevant if its distribution is independent on the 
components.2 Such a feature then follows some distribution^-1 kj), 
independent of any particular component, instead of following a 
distribution/(• \9mj), dependent on a component m. SeSProc then 
models the distribution of a feature X,- as a mixture of/(• | kj) and 

2 This differs from the original SeSProC method which follows the notion of irrel­
evance given in [21]. Also, our model differs from the one used in [13] in that it 
considers the per-component relevance of each feature. 



f[-\9mj)- Assuming that the features are independent given the 
(hidden) mixture component, this transforms the density function 
into 

K F 

/(x,-1 ©) = ^V m ^Q(p m j / (Xy i emj) + (i - PmjYiXfj i kj)), 
m=\ j=\ 

where pmj- is the probability of feature j being relevant for compo­
nent m. p is encoded with an additional latent variable V, with t»mj = 
1 if feature j is relevant for component m and t»mj = 0 otherwise, 
and pmj = p(vmj = 1). The full parameter set of the finite mixture of 
K components is then 0 = {9mj, Xj, pmj, Ttm}m=l K..-=1 f . 

E i l l E m = l 5 / f e m ) ( l " Y(Vmj))(Xij ~ V-Xjf 

EfciELiKtem)(l-K(fmj)) 

form = l K;j = \ F. 

2.2.3. Estimating the number of components 
Assuming that we have C classes in the data, the initial mixture 

contains C components. Its parameters are estimated with the EM 
procedure and its quality evaluated (see below) and recorded. Then, 
in the next iteration of SeSProC, this mixture is augmented with an 
additional component (see below), its parameters again estimated 
with EM and its quality computed and recorded. The process is 
repeated until a mixture MK with K components is better than a 
mixture MK+1, and yields MK as the final model. We evaluate the 
quality of a model with the AIC score [23], 

3 The first addend in the formula for R corresponds to 6's, second to X's, third to 
jr's and fourth to p's. 

2.2.2. EM for mixture learning 
If Z and V were observed, the log-likelihood function would be 

JV K 

AIC = -2logC + 2R, 

\ogC(& | X, Z, V) = J2Y1 zim log7Tm + ^ ( z i m [ v m j ( l o g p m j + \0gf(Xy | 6mj)) + (1 - vmj)(log(l - pmj) + l0g/(Xy | Xj))]) 

J=i 

However, they are not observed, and we cannot maximize the 
log-likelihood function analytically. Instead, we approximate the 
solution with the iterative expectation-maximization (EM) algo­
rithm [22]. The EM produces a sequence of parameter estimates 
by alternating an E-step—'filling in' the missing observations with 
their expected values given the current parameters, and an M-
step —using the completed data to compute maximum likelihood 
estimates of the parameters. At a given iteration t of the EM pro­
cedure, the expectation of the log-likelihood function is given 

by 

where R, the number of parameters in a model, is a function of the 
number of components K and the number of features F:3 

R = 2KF + 2F + (K - 1) + KF. 

Additionally, we halt mixture augmentation if MK contains a 
component m with less than two instances (i.e., such that m is 
the most likely component for less than two instances), returning 
MK~1, unless K = C, in which case MK is returned. 

E z,v\x,et-'1 [log^©^1 \X,Z,V)] = J2J2YiZim)l0g7Tm + 

i=l m=\ 

N K F 

i=l m=\ j= l 

Y(ZimMVmj)(\0gPmj + log/(x # | 6mj)) 

N K F 

i=l m=l j= l 

)(1 " y(t>mj))(log(l " Pmj) + log/ (Xg I Xj)), 

where 0 t _ 1 are the parameters from iteration t- 1 and y() is the 
expectation function. 

Assuming that both/(-|0mj) and f(-\Xj) are Gaussian distribu­
tions, the parameters are updated in the M-step by maximum 
likelihood, as follows: 

Eti% : + Ef= £+ xYiZim) 

Pmj • 

llem 

N 

Ef=iKfe M"m>) 

Etl^r :+Ef= 
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)Y{Vmj)Xy 
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E,=iK(z m)Y(l mj) 

Y(Zim )Y(Vmj)(Xij - M e ) 2 

' umj ' 

Ef= lYiZin i)Y(Vmj) 

Z^i=l 
yK 

xYiZir, , ) ( ! - Y(Vmj))Xij 

Ef= IZ^m =iY(z m)( l - Y(Vmj)) 

When starting the EM procedure for a model MK, we use the 
class labels to initialize the 6 parameters for the classes, i.e., we 
estimate 6m = {6m\ 9mp), form <C, from instances belonging to 
class m. If K> C+1 (i.e., if there are already newly found components 
in the mixture), then we use the 6m, C<m<K, from MK~1 as their 
initial values in MK, since there are no labels that could guide the 
estimation of their initial values. The initial ffK for the new compo­
nent K are estimated from a number of unlabeled data points; the 
following paragraph describes how these data points are selected. 

Initializing a new component K. We have modified SeSProC to use 
the following heuristic for initializing new components. Starting 
from the previous mixture, MK~1, we consider the neighborhood of 
each unlabeled point as (a part of) a potential new cluster. Thus, we 
take the ct nearest unlabeled neighbors (according to the Euclidean 
distance in full dimensionality), where ct is a parameter of the 
algorithm, to a point x,- and assign them to a new cluster, by set­
ting ZjK= 1 and Zjm = 0, m j= K for all x,- in the neighborhood of x,-; 
we then update all parameters (this includes the OK) by maximum 
likelihood (i.e., with an M-step) and compute the likelihood of the 
thereby obtained model. The neighborhood that yields the most 
likely model is then used to initialize OR in the new model MK. 
All assignments to Z here described are then undone after OR is 
initialized (i.e., these assignments were only temporary). 



2.3. Empirical setup 

We tested SeSProC's capacity to discriminate among interneu­
ron classes and explored the existence of their subtypes in three 
experimental settings, corresponding to three rules for hiding class 
labels. First, we unlabeled all the cells of a single class and then ran 
the algorithm once for each class. Here, there was initially a cluster 
for each of the other (labeled) types and the desired result was to 
assign unlabeled instances to a (one of) newly formed cluster(s), 
allowing us to explore the potential subtypes of each class sepa­
rately. Second, we simultaneously unlabeled all cells of each pair 
of classes, yielding six clustering scenarios; this allowed to assess 
whether cells of different classes would be clustered together and 
whether, and to what extent, would the subtypes identified in the 
previous setting re-appear. Finally, we simultaneously unlabeled 
a portion of cells of each of the four classes. This allowed unla­
beled cells to be placed in their 'true' cluster, other classes (i.e., be 
misclassified), or assigned to a new cluster, providing insight into 
the homogeneity of each interneuron class. Here we unlabeled half 
the instances of each class (rounding down when necessary). We 
selected unlabeled cells by random sampling at each label reliabil­
ity threshold (thus a cell might have been unlabeled at th26 but not 
at thl8, for example), and repeated the sampling ten times. We used 
these three unlabeling settings for each label reliability threshold, 
i.e., for thl8, th22, and th26. 

For the first two settings, we defined per-class discrimination 
accuracy as acct = ct/ut, where ut is the number of cells of the unla­
beled class t and ct the cardinality of the subset of ut assigned 
to a (one of) newly formed cluster(s) (and therefore not assigned 
to one of the other classes). In the second setting, we averaged 
acct across the three 'scenarios' in which t was unlabeled (e.g., 
HT was unlabeled together with CB, LB, and MA). For the third set­
ting, we defined two measures —'error' and 'accuracy'—as follows: 
errt = ^2 , a^/ut, where atti is the number of unlabeled cells of 
class t assigned to class t' and ut the number of unlabeled cells of 
class r, and acct = attlut. 'Accuracy' considers the proportion of unla­
beled cells of class t classified as t whereas 'error' does not penalize 
assignments to newly formed clusters. 

When starting the EM procedure for a mixture model MK, 
one has to choose how to initialize the parameters. Furthermore, 
when K>C one can keep or adapt the parameters from the previ­
ous model, MK~1. We initialize the parameters with the following 
heuristics: 

• For m<C, estimate 6m from cells labeled as belonging to class m. 
• Keep the 6 and p parameters from MK~1 for C<m<K. That is, 

°m = °lml> Pm = Pm"1. C<m<K where pm = (pm l pmF). 
• Estimate OR from the instances selected as described in paragraph 

'Initializing a new component' in Section 2.2.3. 
• For components m e{l Qu{K}, i.e., those of fixed classes and 

the newly introduced one, make all features equally relevant and 
irrelevant: pm j = 0.5, Vm e {1 Q U {/<}, Vj s {1 F}. 

• Adapt 7T from MK~1 to give more weight to newly discov­
ered components m>C than to class components m' <C: TC% = 
27r^7\Vm> Cim' <C. 

• Estimate k as if pmj- = 0.5, Vm, Vj, i.e., as if each feature was equally 
relevant and irrelevant for every component, in order to fully 
'reset' the k estimates. 

The EM procedure iterates until log-likelihood converges or 
up to 25 iterations. We set ct = 5 for initializing new components, 
because this value produced the best results in preliminary exper­
iments. 

Extreme probabilities due to maximum likelihood. Estimating the 
parameters of a Gaussian distribution by maximum likelihood can 

result in zero variance, driving an instance's density to infinity. To 
avoid this, we use 0.1 as a minimum variance for all Gaussian dis­
tributions, i.e., for all such distributions we set a1 = max{0.1, a2}, 
where a1 is the estimated variance. 

3. Results and discussion 

3.1. Discriminating among classes 

3.1.1. Unlabeling a single class 
When unlabeling a single class, HT and MA cells were better dis­

tinguished from other classes when label reliability increased; the 
opposite happened for LB, while the discrimination accuracy for CB 
cells was rather unaffected (see Fig. 2a). At th26, HT and MA cells 
were identified with rather high accuracy. 

HT was the most easily identified class: with perfect accuracy at 
th22 and th26, and high accuracy (0.89) at thl8. 

Although accurately identified at th22 and th26, MA cells were 
confused with all the other classes, particularly with HT at th 18 and 
th22, and CB at th26. In this respect, the MA seemed to be the most 
heterogeneous interneuron type with respect to the used variables. 

LB and CB cell types were often confused with each other but 
easily distinguished from other types (with the exception of CB at 
thl8, where it was heavily confused with HT; see Table 3). This 
confusion is not surprising, as even expert neuroscientists often 
struggle to discern these two classes [3]. 

3.1.2. Unlabeling two classes 
When hiding two classes at a time, discrimination accuracy 

generally increased with label reliability (see Fig. 3a). CB cells 
were better discriminated than when hiding a single class, HT cells 
equally well, whereas LB and MA cells better on some label reliability 
thresholds and worse on others. 

At th26, which contained the most reliably labeled cells, all 
classes were identified more accurately than when unlabeling a 
single class (see Figs. 2a and 3a). Furthermore, the classes were 
well separated in the formed clusters: only six out of the 20 clusters 
formed at th26 (columns 'A, 'B', etc., in Table 4a-f) were 'mixed', i.e., 
contained instances of more than one class (shown in black). Thus, 
even though MA cells were misclassified as CB at th26 (when unla­
beling the MA type), these two types were neatly separated when 
unlabeled simultaneously (see Table 4a). HT cells were almost never 
placed in clusters containing other cell types (only a single CB cell 
was assigned to a HT cluster; see Table 4b). LB cells were least sep­
arated in the formed clusters: they were mixed with both CB and 
MA cells in two clusters (see Table 4e and f). 

3.1.3. Partially unlabeling all classes 
In this setting, discrimination accuracy generally improved with 

label reliability (see Fig. 4a), except for MA and CB at th22, where 
it decreased due to more instances being assigned to new clusters 
(indicated by their low error at th22; Fig 4). Likewise, discrimination 
error generally decreased, except for MA and LB at th26. 

At th26, the most accurately classified and most homogeneous 
types were HT and CB, as they had lowest error and highest accu­
racy, MA and LB, on the other hand, displayed low accuracies but 
relatively low errors, suggesting they were more heterogeneous 
than HT and CB at th26. 

3.1.4. Summary 
Summarizing the previous three sections, we can note that, 

despite some fluctuations—possibly due to small data samples-
discrimination accuracy tended to increase with label reliabil­
ity in all three experimental settings (e.g., accuracy was almost 
universally higher and error lower at th26 than thl8, see, e.g., 
Figs. 2a, 3a, 4a and b). This might suggest that the degree of label 
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Fig. 2. Per-class discrimination accuracy and number of subtypes when unlabeling a single class, versus label reliability threshold. 
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Fig. 3. Average per-class discrimination accuracy and number of subtypes when unlabeling two classes, versus label reliability threshold. The averages are taken across the 
three different settings in which a class is hidden, e.g., the averages for HT come from the settings: HT and LB hidden; HT and CB hidden; and HT and MA hidden. 

noise decreased with label reliability threshold, and that therefore, 
the most reliable results were obtained at th26. 

3.2. Potential subtypes 

The number of subtypes generally decreased with label reliabil­
ity (see Figs. 2b and 3b). This may indicate that there was more 

heterogeneity among less reliably labeled cells; nonetheless, this 
heterogeneity may simply be due to the higher number of instances 
at lower thresholds (especially for the CB, LB, and HT types), HT 
appeared as the most compact class as all of its cells were clustered 
together (in a single cluster) at th22 and th26, in both the first and 
the second labeling scenario (see Figs. 2b and 3b and Table 4b-d). 
MA, on the other hand, seemed to be the most heterogeneous —at 

Table 3 
Clustering of unlabeled instances when hiding a single class. Each row corresponds to one 'labeling scenario', e.g., CB is the hidden class in the first row, whereas columns 
represent the classes to which the unlabeled cells were assigned. The cells assigned to newly formed clusters are considered as correctly classified and are thus displayed in 
blue color on the diagonal whereas the cells assigned to other classes are shown in red, outside the diagonal. Thus, for example, 16 MA cells were correctly classified, four 
were misclassified as CB, one as HT, and one as LB at th26 (row four, rightmost table). Note that the number of formed subtypes is not shown—the 16 MA cells were placed in 
three clusters; the formed clusters are discussed in Section3.2. Zeros were omitted. 

(a) thl8 (b) th22 (c) th.26 

CB HT LB MA CB HT LB MA CB HT LB MA 

CB 29 7 11 2 CB 14 9 1 CB 5 3 1 
HT 8 1 HT 5 HT 4 

LB 3 22 2 LB 6 12 1 LB 4 7 1 
MA 1 13 8 11 MA 5 2 18 MA 4 1 1 16 

Table 4 
Clustering of unlabeled instances when hiding two classes a time at th26. Rows represent the hidden classes whereas columns denote the clusters the instances were ascribed 
to. 'A', 'B', etc., denote newly formed clusters. Misclassified instances are shown in red, instances in 'pure' (not-mixed) clusters are shown in blue, and instances in mixed 
clusters in black. Zeros were omitted. 

(a) Unlabeling MA and CB (b) CB and HT (c) HT and LB 

HT LB A B C D E LB MA A B MA CB A B 

MA 2 6 5 5 4 CB 1 8 HT 4 

CB 3 1 

(d) HT and MA 

5 HT 4 

(e) LB and MA 

LB 4 8 

(f) CB and LB 

CB LB A B C D 

5 

CB HT A B C HT MA A B C D 

HT 4 LB 6 5 1 CB 2 4 2 1 

MA 2 5 6 4 5 MA 8 1 5 2 6 LB 1 6 2 3 



>, 0.9' 
o 
co 

3 0.6' 
o 
< 

0.3 ' 

, 1 k 

A [—**""*"""^ 

A. 
; > ^ 

A. 
i 1 

Class 

20 22 24 

Threshold 

(a) 

26 

CB 

HT 

LB 

MA 

0.4-
O 

LU 0.2-

0.4-
O 

LU 0.2- ^ &. 

0.4-
O 

LU 0.2-

^ 
^ ^ 

r -

Class 

20 22 24 

Threshold 

(b) 

26 

CB 

HT 

LB 

MA 

Fig. 4. Per-class discrimination accuracy (acct) and error (errt) when unlabeling half the instances of each class, versus label reliability threshold. 

th26 MA cells were clustered into at least three subtypes (see Fig. 2b 
and Tables 4a, d and e). Thus, we focused on th26 for analyzing the 
formed subtypes as it contained the most reliably labeled interneu-
rons. 

3.2.2. With a single hidden class 
MA cells were clustered in three groups (see Fig. 5 for represen­

tative examples), with six, five, and five cells each, whereas a single 
distinct subtype was identified for the CB and LB classes, count­
ing five and seven cells each, respectively. Since all HT cells were 
placed in a single cluster (see Fig. 2b), no potential subtypes of HT 
were identified. 

Overall, MA subtypes showed relatively sparse axonal arbors, 
as indicated by their low or medium values for Xj and X2 (see 
Figs. 5a-c), with MA-A cells being less sparse than MA-B and MA-
c ones, MA-A cells had plenty of axonal arborization far from soma 
(highXs values in Fig. 5a) and dendritic polar histogram length in 
the [TT, 2TC) interval (X7). MA-B cells exhibited medium values for 
all variables (Fig. 5b) whereas MA-C had the sparsest axons (low 
values for Xi and X2 in Fig. 5c) and, like MA-A, plenty of axon far 
from soma (X5) and dendrites in the [TT, 2TT) polar histogram inter­
val (X7). CB-A cells displayed relatively sparse axons (medium Xi 
and I0WX2 values in Fig. 5d), with little axon far from the soma (low 
X5 values) and little dendritic arborization far from soma and in the 
[TT, 2TT) polar histogram interval (I0WX7 andXg values), LB-A cells 
exhibited the most dense axonal and dendritic arbors, with high or 
medium values forX1.X2.X6 andX?; theX4 values (axonal length 
at medium distance from soma), was especially high (see Fig. 5e). 

Validating the produced clusters. While the discovered subtypes 
are relatively small—their sizes ranging from five to seven cells, 
they may nonetheless be relevant in the domain of neuronal classi­
fication, where 3D neuronal reconstructions, and reliably classified 
reconstructions in particular, are scarce. Cluster quality indices 
[24,25] may thus help assess the goodness of the clustering solu­
tion. 

One type of indices compares the obtained (crisp) clustering par­
tition with the original one, given by class labels. We performed 
such an analysis in Section3.1 when we computed accuracy, and 
now we report a measure more commonly used for this end, the 
Adjusted Rand index (ARI; [26,27]), 

EL 

ARI = 

m, EL ?' EL 

where Ncn is the number of instances of class c assigned to clus­
ter m. ARI rewards two types of agreements: (a) clustering a pair 

of instances together (i.e., as members of a same cluster) in both 
partitions; and (b) clustering a pair of instances separately (i.e., 
as members of different clusters) in both partitions. It reaches 
its maximum value, 1, when the two partitions agree perfectly, 
and this occurs when unlabeling HT cells (see Table 5). We also 
achieved high ARI values when unlabeling CB and LB cells whereas 
we obtained a low one when unlabeling MA cells; this is due to 
the discovery of three MA subtypes in the setting, which was not 
favored by ARI because it increased the difference among the two 
partitions. 

We cannot easily compute a second type of clustering quality 
indices, based on assessing properties such intra-cluster com­
pactness and inter-cluster separation, because that would require 
computing distances among data points, something which is 
unclear how to do when points are located in different feature sub-
spaces. When then assessed our clustering in terms of probabilistic 
concordance, considering that a clustering is good if cluster mem­
bership probabilities, p(z,-), are similar among the members of a 
same cluster and different among members of different clusters. 
We measured the similarities among cluster membership proba­
bilities of two data instances with Jensen-Shannon divergence, 

d/s(P(Zi). P(Zj)) = o (dKL(p(Zi), r) + dKL(p(Zj), r)), 

where l(P(Zi) + P(Zj)) and d/a(p(z,), p(z,)) is the 
Kullback-Leibler divergence [28] between p(z,) and p(Zj), 

di<dp{Zi), P(Zj)) = ^ p ( z l m ) log 
P(Zjm) 

Pfcrn) 

Note that p{Zjm) is simply y(z,m) computed in the final 
step of the EM algorithm. Unlike Kullback-Leibler divergence, 
Jensen-Shannon divergence is symmetric, does not require abso­
lute continuity (i.e., that p(z,m) = 0=>p(zjm) = 0), its square root is a 
metric, and it is bounded: 0 < dp < 1 [29]. 

Using Jensen-Shannon divergence as the measure of distance 
among data instances, we computed the Silhouette width [30] 
clustering index, thus measuring intra-cluster compactness and 

Table 5 
Cluster validation indices when hiding a single class at th26. Columns denote the 
unlabeled class whereas rows correspond to different metrics. 

Adjusted Rand index 
Silhouette 

1.00 
1.00 

0.42 
1.00 

0.83 
1.00 

0.79 
1.00 
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Fig. 5. Representative members of potential subtypes identified at th26. The heatmaps show the subtypes' mean values for all variables. Due to standardization, values are 
not comparable among different variables. Thus, for example, although Xi >X2 in the case of CB-A, it does not necessarily mean that CB-A cells have (on average) more axonal 
length in the [0, jr) than in the [71, 2jr) polar histogram interval; it means that they have more of the former relative to the values of the remaining (i.e., non-CB-A) cells at 
th26. The five depicted subtypes contain 28 out of the 47 cells at tfi26; HT cells and misclassified MA, CB, and LB cells are not represented. (For interpretation of the references 
to color in the text, the reader is referred to the web version of the article.) 

inter-cluster separation in terms of this distance. The Silhouette 
width is given by 

SW: h-
N 

ly , 
JV^-^max(b,-, a,) 

1=1 

where a,- is the average distance between x,- and other points in 
its cluster, while £>,• is its average distance to the points in the 

closest cluster (defined as that yielding the lowest £>,). We achieved 
maximum Silhouette values (its values range from - 1 to 1) for all 
labeling scenarios (see Table 5), showing that the cluster member­
ship probabilities had converged reasonably. 

A partial cause for high Silhouette widths was that we only unla­
beled a subset of instances in each setting, and it was only those 
instances' p(z,) that were estimated by our algorithm, while the rest 
instances' p(z,) were fixed to degenerate distributions (probability 
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Fig. 6. Relevance (/>) of features (X]-X9) for the HT, LB, CB, and MA subtypes identified at th26 when hiding a single type. Each row corresponds to one subtype, e.g., the last 
three rows correspond to the three subtypes of MA. The displayed subtypes do not contain all the cells contained at th26, as some were misclassified (e.g., besides CB-A, CB 
cells at th26 were also assigned to the LB and MA classes; the latter cells are not contained in any subtype represented in this graph). (For interpretation of the references to 
color in the text, the reader is referred to the web version of the article.) 

Table 6 
Average per-cluster Silhouette width. Rows correspond to the hidden (unlabeled) 
classes whereas the columns denote clusters, ' -A' , ' -B ' , and ' - c ' denote newly formed 
clusters; for example, the intersection of the first row and fifth column (-A) corre­
sponds to the HT-A cluster, whose average Silhouette width was 1.000. 

CB 1.000 1.000 0.996 1.000 
HT 1.000 1.000 1.000 1.000 
LB 0.994 1.000 0.996 0.985 
MA 0.990 1.000 1.000 0.997 0.999 1.000 

1 for the class labels' cluster; 0 for all other clusters) which were dif­
ferent among the clusters. Thus, e.g., when unlabeling the HT cells, 
we estimated the p(z,) of only four instances, the overall Silhouette 
width therefore necessarily being high, due to the inter-cluster dif­
ferences among the fixed p(z,). Yet, as Table 6 shows, Silhouette 
widths were also high for the newly discovered clusters, not only 
for those corresponding to the known types (and thus containing 
many cells with fixed degenerate p(z,)). 

Finally, in the next section we validated the discovered subtypes 
with a different experimental setting—the hiding of two classes, 
thus evaluating their 'stability', i.e., their robustness to different 
labeling scenarios. 

3.2.2. With two hidden classes 
The validity of the above-described subtypes of the MA, CB, and 

LB types, identified when hiding a single class, was confirmed when 
hiding two classes simultaneously. That is, in almost every labeling 
scenario in the second setting (i.e., for every pair of hidden classes), 
there was a cluster that greatly resembled the corresponding sub­
types. So, for example, when hiding CB and MA, cluster E (Table 4a) 
was identical to subtype CB-A. Furthermore, four cells from the CB-
A subtype were clustered together in every labeling scenario, that 
is, the intersection of CB-A and cluster E in Table 4a, cluster B in 
Table 4b, and cluster B in Table 4f consisted of four cells. This sub­
set of CB-A cells emerged as its 'core' of highly similar instances, 
showing the robustness of this subtype (which totalled five cells). 

A 'core' of the MA-C subtype (i.e., the MA-C cells that were always 
clustered together) emerged, consisting of four cells which formed 
the intersection of the pure MA clusters C, A, and C in Table 4a, d, and 
e, respectively (the latter two clusters being identical). Regarding 
MA-A, a 'core' of three cells emerged, defined by the intersection 
of clusters A, C and A in Table 4a, d, and e, respectively (the latter 
being a mixed cluster). Finally, clusters C and D in Table 4a and d 
contained four and three MA-B cells, respectively. 

A LB-A core of five cells emerged, contained in clusters A, B, and 
A in Table 4c, e and f, respectively. The latter two contained a larger 
LB-A core of six cells. 

3.2.3. Feature relevance 
We focused on the first setting (i.e., hiding a single class) and 

th26 to analyze the estimated relevance of predictor variables. 
Overall, all predictor variables seemed useful, as each one was 
very likely relevant (around 100% chance of being relevant; dark 
green boxes in Fig. 6) for at least two subtypes/classes identified at 
th26. Feature Xj—axonal polar histogram in the [TC, 2TC) interval-
appeared to be the most useful as it was very likely relevant for 
all the subtypes/classes (see Fig. 6). While its relevance for the HT 
class and MA subtypes is clear—an MA'S axon grows predominantly 
upwards from the soma whereas the opposite holds for HT—it is 
interesting that it was relevant for the CB and LB subtypes as well. 
Features X4 andXs, which capture the length of axonal arboriza­
tion at 150-300 |jim and over 300 |jim from soma, were relevant for 
five (out of six) subtypes. On the other hand, feature Xg—length of 
dendritic arborization at over 90 |jim from soma—appeared as least 
useful as it was very likely relevant for only two subtypes (CB-A and 
MA-B). In general, axonal features (Xi toXs) were more likely to be 
relevant than dendritic ones (X6 toXg). For example, an axonal fea­
ture was, on average, very likely relevant for 4.6 subtypes/classes 
in Fig. 6 whereas a dendritic one was for 2.5. Likewise, a dendritic 
feature was, on average, probably irrelevant (below 50% chance of 
being relevant; red and brown boxes in Fig. 6) for more subtypes 
than an axonal feature. 

Moreover, as shown by Fig. 6, the relevance of axonal features 
differed among the subtypes/classes. All axonal features were very 
likely relevant for all MA subtypes (exceptXi for MA-A: MA-A, unlike 
MA-B and MA-C, did not stand out regardingXj —note the olive green 
box forXi in Fig. 5) and for the HT class. This suggests that the axonal 
arborizations of the MA subtypes and the HT class were distinct 
among themselves and from the CB-A and LB-A subtypes accord­
ing to all axonal features. On the other hand, two and three (out 
of five) axonal features were relevant for the CB-A and LB-A sub­
types, respectively, and, in particular, polar histogram in the [0, TC) 
interval and close to soma axonal arborization length (Xj andX3, 
respectively) were relevant with only 50% chance for both of those 
subtypes. This suggests that CB-A and LB-A were not particularly 
distinct according to those variables. 

In summary, the results clearly show that the length of axonal 
polar histogram in the [TC, 2TC) interval (X2) is particularly rele­
vant, followed by axonal length relatively near to the cell body 
(X4) and the extent of the axon far from the cell body (X5). In 
addition, the dendritic arborization was highly relevant for the 



characterization of CB cells and MA cells. These findings may be 
useful for generating an accurate automatic classifier of 3D recon­
structed interneurons. 

4. Conclusions 

Automatic classification of interneurons is a hard prob­
lem because data are scarce, the cells are morphologically, 
molecularly, and physiologically variable, and experts disagree 
on the definitions of features that distinguish them. Thus, we 
introduced a semi-supervised approach to this problem. Besides 
discriminating between types, this approach leads to the discovery 
of new types of neurons. It uses the available knowledge—in the 
shape of class labels—and also attempts to identify the relevance of 
each feature for each type and subtype. 

We presented results on the classification of common basket, 
large basket, horse-tail, and Martinotti cells. We quantified the 
neurons with simple morphological features which describe the 
distribution and the orientation of axonal and dendritic arbors, 
seeking to mimic the way in which an expert visually classifies 
a neuron. The algorithm accurately discriminated among the dif­
ferent types when one and two types were unlabeled at a time 
and when half the instances of all types were unlabeled. Impor­
tantly, it identified potential subtypes of common basket, large 
basket, and Martinotti cells, suggesting that these types are more 
heterogeneous than previously thought. Although the identified 
subtypes are small, they may be indicative of the characteris­
tics that differentiate cells belonging to the same interneuron 
type. 

The defined morphological variables seemed useful for discrim­
inating among the types. Axonal features seemed more useful than 
dendritic ones, with the axonal polar histogram length in the [n, 
2TC) interval appearing to be the most useful feature. The defined 
variables might then be considered in future studies of interneuron 
classification. Still, it is possible that more complex variables, such 
as those considering both the distance and position with respect to 
the soma (e.g., over 300 |jim from soma and above it) could further 
improve discrimination accuracy. 

Overall, the results suggest that a semi-supervised approach 
may be helpful in neuronal classification and characterization. 
Further studies, with different morphological features and more 
neurons, would be needed in order to obtain more conclusive 
results. Although we focused on a subpopulation of GABAergic 
interneurons, the presented methodology could be applied to other 
types of cells as well. 

The used algorithm, SeSProC, is open to further improvements, 
like the inclusion of uncertainty into labels. Instead of a single 
label—the class most voted by the experts—per data instance, a 
probability distribution could be learned from the experts' votes, 
thus taking all votes into account. Alternatively, an approach similar 
to [31 ] might be applied: a separate model could be learned for each 
set of experts with similar opinions, and these models then com­
bined into a final, consensus model. Regarding the data, although it 
is generally thought that the same morphological types of neurons 
are found in all species, we cannot discard the possibility of inter­
species variability. Thus, we plan to further analyze the data taking 
into account the different species in order to find types of neurons 
that may be representative of particular species. 

Finally, it has been shown that GABAergic interneurons are 
affected in several brain diseases but not all of these interneurons 
are equally affected. For example, alterations of chandelier cells 
expressing the calcium binding protein parvalbumin have been 
associated with certain forms of epilepsy and schizophrenia. In 
addition, possible alterations of interneurons expressing somato­
statin, neuropeptide Y and vasoactive intestinal peptide, probably 

including Martinotti and horse-tail (or double bouquet) interneu­
rons, have been reported in schizophrenia (e.g., [32-35]). Since 
the algorithm used in the present study accurately discriminated 
between different interneuron types and new groups can be dis­
covered, its application to study brain diseases may shed light on 
interneuron pathology in these diseases, providing a tool to more 
accurately determine which subtypes may be affected. 

Acknowledgements 

The authors thank anonymous reviewers whose comments have 
greatly helped to improve this paper. This work was supported by 
grants from the following entities: the Spanish Ministry of Economy 
and Competitiveness (grants TIN2013-41592-P to B.M., P.L, and 
CB; BFU2012-34963 toJ.DF.), CIBERNED CB06/05/0066 toJ.DF., the 
Cajal Blue Brain Project (Spanish partner of the Blue Brain Project 
initiative from EPFL) to B.M., J.DF., P.L. and C.B.; by the Regional 
Government of Madrid through the S2013/ICE-2845-CASI-CAM-
CM project to B.M., P.L, and CB; and the European Union's Seventh 
Framework Programme (FP7/2007-2013) under grant agreement 
no. 604102 (Human Brain Project) to J.DF, P.L. and CB. R.B.-P. was 
supported by the Spanish Ministry of Economy and Competitive­
ness (CSIC). 

References 

DeFelipe J. Cortical interneurons: from Cajal to 2001. Prog Brain Res 
2002:136:215-38. 
Ascoli GA, Alonso-Nanclares L, Anderson S, Barrionuevo G, Benavides-Piccione 
R, Burkhalter A, et al. Petilla terminology: nomenclature of features of GABAer­
gic interneurons of the cerebral cortex. Nat Rev Neurosci 2008;9(7):557-68. 
DeFelipe J, Lopez-Cruz PL, Benavides-Piccione R, Bielza C, Larranaga P, Ander­
son S, et al. New insights into the classification and nomenclature of cortical 
GABAergic interneurons. Nat Rev Neurosci 2013:14(3):202-16. 
Tsiola A, Hamzei-Sichani F, Peterlin Z, Yuste R. Quantitative morphologic clas­
sification of layer 5 neurons from mouse primary visual cortex. J Comp Neurol 
2003;461(4):415-28. 
Benavides-Piccione R, Hamzei-Sichani F, Ballesteros-Yanez I, DeFelipe J, Yuste 
R. Dendritic size of pyramidal neurons differs among mouse cortical regions. 
Cereb Cortex 2006;16(7):990-1001. 
Cauli B, Porter JT, Tsuzuki K, Lambolez B, Rossier J, Quenet B, et al. Classification 
of fusiform neocortical interneurons based on unsupervised clustering. Proc 
Natl Acad Sci 2000:97( 11 ):6144-9. 
Karagiannis A, Gallopin T, David C, Battaglia D, Geoffroy H, Rossier J, 
et al. Classification of NPY-expressing neocortical interneurons. J Neurosci 
2009:29(ll):3642-59. 
McGarry LM, Packer AM, Fino E, Nikolenko V, Sippy T, Yuste R. Quantitative 
classiflcationofsomatostatin-positive neocortical interneurons identifies three 
interneuron subtypes. Front Neural Circuits 2010:4(12). 
Guerra L, McGarry LM, Robles V, Bielza C, Larranaga P, Yuste R. Comparison 
between supervised and unsupervised classifications of neuronal cell types: a 
case study. DevNeurobiol 2011:71(l):71-82. 
Chapelle O, Scholkopf B, Zien A, editors. Semi-supervised learning. Cambridge, 
MA: The MIT Press: 2006. 
Zhu X, Goldberg AB. Introduction to semi-supervised learning. Synth Lect Artif 
Intell Mach Learn 2009:3(1):1-130. 
Guerra L, Bielza C, Robles V, Larranaga P. Semi-supervised projected model-
based clustering. Data Min Knowl Discov 2013:28(4):l-36. 
Law MH, Figueiredo MA, Jain AK. Simultaneous feature selection and 
clustering using mixture models. IEEE Trans Pattern Anal Mach Intell 
2004:26(9):1154-66. 
Raykar VC, Yu S, Zhao LH, Valadez GH, Florin C, Bogoni L, et al. Learning from 
crowds. J Mach Learn Res 2010:11:1297-322. 
Li Y, Wessels LF, de Ridder D, Reinders MJ. Classification in the presence 
of class noise using a probabilistic Kernel Fisher method. Pattern Recognit 
2007:40(12):3349-57. 
Angluin D, Laird P. Learning from noisy examples. Mach Learn 
1988:2(4):343-70. 
Guerra L, Benavides-Piccione R, Bielza C, Robles V, DeFelipe J, Larranaga P. 
Semi-supervised projected clustering for classifying GABAergic interneurons. 
In: Peek N, Marin Morales R, Peleg M, editors. Artificial intelligence in medicine; 
vol. 7885 of lecture notes in computer science. Berlin: Springer; 2013. p. 
156-65. 
Ascoli GA, Donohue DE, Halavi M. Neuromorpho.org: A central resource for 
neuronal morphologies. J Neurosci 2007;27(35):9247-51. 
Glaser JR, Glaser EM. Neuron imaging with Neurolucida - a PC-based 
system for image combining microscopy. Comput Med Imaging Graph 
1990;14(5):307-17. 

1 

http://Neuromorpho.org


[20] McMullen NT, Glaser EM, Tagamets M. Morphometry of spine-free non-
pyramidal neurons in rabbit auditory cortex. J Comp Neurol 1984;222(3): 
383-95. 

[21] LiY, DongM, Hua J. Simultaneous localized feature selection and model detec­
tion for Gaussian mixtures. IEEE Trans Pattern Anal Mach Intell 2009;31(5): 
953. 

[22] Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data 
via the EM algorithm. J R Stat Soc Ser B (Methodol) 1977;39(l):l-38. 

[23] Akaike H. A new look at the statistical model identification. IEEE Trans Autom 
Control 1974;19(6):716-23. 

[24] Halkidi M, Batistakis Y, Vazirgiannis M. On clustering validation techniques. J 
Intell Inf Syst 2001;17(2-3):107-45. 

[25] Handl J, Knowles J, Kell DB. Computational cluster validation in post-genomic 
data analysis. Bioinformatics 2005;21(15):3201-12. 

[26] Rand WM. Objective criteria forthe evaluation of clustering methods.J Am Stat 
Assoc 1971;66(336):846-50. 

[27[ Hubert L, Arabie P. Comparing partitions.J Classif 1985;2(1):193-218. 

[28] Kullback S, Leibler RA. On information and sufficiency. Ann Math Stat 
1951;22(l):79-86. 

[29] LinJ. Divergence measures based on the Shannon entropy. lEEETranslnfTheory 
1991;37(1):145-51. 

[30] Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation 
of cluster analysis. J Comput Appl Math 1987;20:53-65. 

[31 ] Lopez-Cruz PL, Larranaga P, DeFelipe J, Bielza C. Bayesian network modeling of 
the consensus between experts: an application to neuron classification. IntJ 
Approx Reason 2014;55(l):3-22. 

[32[ DeFelipe J. Chandelier cells and epilepsy. Brain 1999;122(10):1807-22. 
[33] Lewis DA. The chandelier neuron in schizophrenia. Dev Neurobiol 

2011;71(l):118-27. 
[34] Inan M, Petros TJ, Anderson SA. Losing your inhibition: linking cortical GABAer-

gic interneurons to schizophrenia. Neurobiol Dis 2013;53:36-48. 
[35] Joshi D, Fullerton JM, Weickert CS. Elevated ErbB4 mRNA is related to 

interneuron deficit in prefrontal cortex in schizophrenia. J Psychiatr Res 
2014;53:125-32. 


