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ABSTRACT 
The impact of the Parkinson's disease and its treatment on the patients' health-related quality of life can be estimated 
either by means of generic measures such as the european quality of Life-5 Dimensions (EQ-5D) or speci¯c measures 
such as the 8-item Parkinson's disease questionnaire (PDQ-8). In clinical studies, PDQ-8 could be used in detriment of 
EQ-5D due to the lack of resources, time or clinical interest in generic measures. Nevertheless, PDQ-8 cannot be applied 
in cost-e®ectiveness analyses which require generic measures and quantitative utility scores, such as EQ-5D. To deal 
with this problem, a commonly used solution is the prediction of EQ-5D from PDQ-8. In this paper, we propose a new 
probabilistic method to predict EQ-5D from PDQ-8 using multi-dimensional Bayesian network classi¯ers. Our ap­
proach is evaluated using ¯ve-fold cross-validation experiments carried out on a Parkinson's data set containing 488 
patients, and is compared with two additional Bayesian network-based approaches, two commonly used mapping 
methods namely, ordinary least squares and censored least absolute deviations, and a deterministic model. Experi­
mental results are promising in terms of predictive performance as well as the identi¯cation of dependence relationships 
among EQ-5D and PDQ-8 items that the mapping approaches are unable to detect. 
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I N T R O D U C T I O N 
Parkinson's Disease (PD) is a neurodegenerative disor­
der characterized by motor manifestations (bradykine-
sia, rest tremor and balance impairment) and nonmotor 
symptoms (depression, psychosis and sleep distur­
bance).1 Health-related quality of life (HRQoL) is a 
patient-reported outcome re°ecting the PD impact on 
the physical, mental, functional and social aspects of life 
which are important for the individual.2 

HRQoL measures can be categorized into generic and 
speci¯c. Generic measures are usable in general popu­
lations and in any disorder. The European Quality of 
Life-5 Dimensions (EQ-5D) is considered a valid generic 
preference-based HRQoL instrument and is recom­
mended for evaluation of HRQoL in PD.3~5 EQ-5D 
contains ¯ve items: mobility, self-care, usual ac­
tivities, pain/discomfort and anxiety/depres­
sion, each has three options of response: no problems, 
some problems and severe problems. Hence, the number 
of all possible EQ-5D item value combinations is 243. 
Each possible combination corresponds to a health state, 
which can be then quanti¯ed using a utility score, a.k.a. 
utility index. Based on the UK scoring system,6 this 
utility score may range from —0.594 (i.e. worse health 
state where all EQ-5D items report severe problems) to 
1 (i.e. best health state where all EQ-5D items report no 
problems).7,8 

On the contrary, speci¯c measures are usable only in 
the population for which they were designed and cover 
the most important areas of interest in that setting. The 
8-item Parkinson's disease questionnaire (PDQ-8) is 
de¯ned as the short version of the PDQ-39 and is 
recommended for use in PD patients.9 It includes 8 items 
represented in Table 1. Each item represents a domain of 
the PDQ-39 (i.e. mobility, activities of daily living, 
emotional well-being, social support, cognition, com­
munication, bodily discomfort and stigma), and scores 
on a ¯ve-point scale: never, occasionally, sometimes, 
often and always.10 

In clinical studies, PDQ-8 could be used in detriment 
of EQ-5D due to the excessive burden for the respon­
dents to assess two questionnaires simultaneously, or the 
lack of resources and time. This also may be due to the 
lack of the clinical interest in generic measures, and the 
relative di±culty for the calculation of EQ-5D utility 
index and the interpretation of its outcomes. Neverthe­
less, PDQ-8 cannot be directly applied in cost-e®ec­
tiveness analyses which require generic measures and 
quantitative utility scores, such as EQ-5D. To deal with 
this problem, a commonly used solution is the prediction 
of EQ-5D from disease-speci¯c measures. For instance, 

several studies have been proposed to map the EQ-5D 
utility score from the Health Surveys SF-128,11–13 and 
SF-36.14 Moreover, in a more related work, Cheung 
et al.15 developed several functions for generating the 
EQ-5D utility index from PDQ-8. 

Most of these studies were mainly based on ordinary 
least squares (OLS) or censored least absolute deviation 
(CLAD) regression methods. However, Le and Doctor8 

recently discussed certain limitations of these regression 
methods (such as predictive values outside the range of 
the EQ-5D utility scores and ceiling/°oor e®ects) and 
proposed a probabilistic mapping of Health Surveys 
SF-12 into EQ-5D using Bayesian networks. Speci¯cally, 
Le and Doctor proved that Bayesian networks consis­
tently outperformed the commonly used regression 
methods and pointed out the merits of the Bayesian 
network graphical component, which may be useful for 
researchers in further investigating the correlational 
relationships among generic and speci¯c measures. 

In this study, we propose a new probabilistic ap­
proach to predict EQ-5D from PDQ-8 using multi-di­
mensional Bayesian network classi¯ers (MBCs). 
Contrary to Le and Doctor's method8 that learns an 
independent Bayesian network for each EQ-5D item, our 
approach builds a single MBC identifying interactions 
among all variables involved in EQ-5D and PDQ-8. In 
fact, taking into account the dependence relationships 
among EQ-5D items is crucial for both better prediction 
performance and graphical structure interpretation. 

We evaluate our approach on a PD data set con­
taining 488 patients, and compare it against two dif­
ferent Bayesian network-based approaches, namely 
class-bridge decomposable MBC (CB-MBC) and inde­
pendent Markov blankets (IndepMBs), as well as against 
the models proposed by Cheung et al.,15 i.e. OLS-1, OLS-
2, CLAD and the Deterministic model. Experimental 
results are promising in terms of the predictive perfor­
mance and the identi¯cation of probabilistic dependence 
relationships between EQ-5D and PDQ-8 items that 
other mapping approaches are unable to detect. 

MATERIALS A N D METHODS 

Materials 

Bayesian networks 

A Bayesian network16,17 over a set of discrete variables 
U = {X1,... ,Xn}, n > 1, is a probabilistic graphical 
model. Its ¯rst component Q is a directed acyclic graph 
(DAG) where nodes correspond to variables in U and 
arcs represent probabilistic conditional dependencies 



among these variables. Its second component is the 

parameters tha t de¯ne the set of conditional probability 

distributions of each variable Xt given the set of its 

parents Pa(Xj) in Q, i.e. those nodes directly directed to 

Xt. A Bayesian network de¯nes a joint probability dis­

tribution factorized according to its structure Q: 

p{X1;... ;Xn) = p(Xt |Pa(Xj))- (1 ) 

Example 1 . Figure 1 shows an example of a Bayesian 

network including ¯ve binary variables. For instance, 

node B has only node A as parent, and thus its probability 

distribution is conditioned only on the values of A. The 

joint probabil i ty distr ibution corresponding to this 

Bayesian network can be then computed as: p(A; B; C; 
D; E) = p{A) • p{B \A) • p(C \A) • p{D \B; C) • p{E \C). 

Moreover, an important notion of Bayesian networks 

is the Markov blanket. The Markov blanket for a variable 

X, denoted MB(X) , is the minimal set of variables 

conditioned by which X is conditionally independent of 

all the remaining variables. Graphically, MB(X) con­

sists of the union of the set of parents, children and 

parents of children (i.e. spouses) of X in Q.18 For in­

stance, in Fig. 1, the Markov blanket of variable B 

includes its parent A, its child D and its spouse C; tha t 

is, MB(B) = {^4; D; C} tha t renders every other variable 

irrelevant to B. 

Multi-dimensional Bayesian network 
classi¯ers 

In our study, the prediction of EQ-5D values from 

PDQ-8 is modeled as a multi-dimensional classi¯cation 

problem where each instance given by an input vector of 

8 features x = ( x 1 ; . . . ; x8) (i.e. PDQ-8) has to be asso­

ciated with a predicted vector of 5 class values c = 

(c 1 ; . . . ; c5) (i.e. EQ-5D). To deal with this problem, we 

use MBCs. 

An MBC1 9 ,2 0 is a Bayesian network where the 

structure Q has a restricted topology. The set of n 

nodes is partitioned into two subsets: d class variables 

(in our case, the EQ-5D items to be predicted), d > 1, 

and m feature variables (in our case, the PDQ-8 

items), m > 1 and d + m = n. The structure Q is par­

titioned into three di®erent subgraphs: class subgraph 

representing the dependence relationships between 

class variables, bridge subgraph representing the de­

pendence relationships between class and feature 

variables and feature subgraph representing the de­

pendence relationships between feature variables. 

Similar to general Bayesian networks, the parameters 

of an MBC consist of the conditional probability dis­

tribution of each variable given the set of its parents in 

the structure Q. 

Classi¯cation with an MBC under a 0-1 loss function 

is equivalent to solving the most probable explanation 

(MPE) problem which consists in ¯nding the most likely 

instantiation of the vector of class variables c* = 

[c\;...; c*i) given an evidence about the input vector of 

feature variables x = ( x 1 ; . . . ; xm). More formally, for a 

given observed evidence x, we have to determine 

c*=(cl;...;c2) 
= arg max p{C1 = C1;...; C^ = cd |x) • 

c1;...;cd 

(2) 

Example 2. An example of an MBC structure with its 

di®erent subgraphs is shown in Fig. 2. It contains three 

class variables {01;02;03}, and ¯ve features variables 
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Fig. 2 An example of an MBC structure with its class, bridge and feature subgraphs. 

{X1,X2,X3,X4,X5}. Using Eq. (1), we have 

maxp(C1 = c1, C2 = c2, C3 = c3 |x) 
c1,c2,c3 

= max [p(c1 |c 2 , c3)p(c2)p(c3) 
C 1 ,C 2 ,C 3 

•p(x1 | c 2 , x 4 )p (x 2 | c 1 , c 2 ) 

• p ( x3 | c3 , x 2 ) p ( x 4 | C 1 ) p ( x 5 | c3 , x 2 ) ] -

The MB-MBC algorithm 

Let 2? be a da ta set of N instances containing a value 

assignment for each variable X1,..., Xm, C1,..., C^, 

tha t is, T> = { ( x 1 , c 1 ) , . . . , ( x ^ , c ' ^ ) } . Our ap­

proach, named Markov blanket MBC (MB-MBC), aims to 

¯nd an MBC tha t best describes the dependence rela­

tionships in the available da ta set. It ¯rstly consists of 

determining the Markov blanket around each class 

variable using the HITON algorithm and then specifying 

the directionality over the MBC subgraphs. 

The HITON algorithm has been proposed by Aliferis 

et al.21,22 Brie°y, it identi¯es the Markov blanket of a 

variable X, based on statistical independence tests, in a 

two-phase scheme: 

• HITON-PC: determines the parents and children of 

X, denoted PC(X) . 
• HITON-MB: initializes the Markov blanket set of X, 

denoted MB(X) , with PC(X) ; then identi¯es and 

includes in MB(X) the rest of the parents of the 

children of X (i.e. the spouses of X). 

In our case, with more than one class variable, the 

¯rst step in MB-MBC is to apply the HITON algorithm to 

each class variable C to determine its Markov blanket 

MB(Cj). Then, the second step is to induce the MBC 

graphical structure based on the results of the HITON 

algorithm as follows: 

• Class subgraph: we ¯rstly insert an edge between each 

class variable Cj and any class variable belonging to its 

parents-children set PC(C) . Then, we direct all these 

edges using the P C algorithm's edge orientation rules.23 

This allows to identify the set of class parents and class 

children belonging to the Markov blanket of C . 

• Bridge subgraph: this is built by inserting an arc 

from each class variable C to every feature variable 

belonging to PC(Cj), and speci¯es thereby the set 

of feature children belonging to the Markov blanket 

of C j . 

• Feature subgraph: this consists of determining the set 

of spouses of Cj. In fact, for every feature X in the set 

MB(Cj) \PC(Cj ) , i.e. for every spouse X of Cj, we 

insert an arc from X to the corresponding common 

child given by PC(X) n PC(Cj). 

Example 3. Let us assume tha t we apply HITON 

algorithm to a data set coming out of the MBC structure 

of Fig. 2. By the end of HITON-PC and HITON-MB 

algori thms, we identify, respectively, the parents-

children and the Markov blanket sets of each class 

variable: 

PC(C1) = {C2,C3,X2,X4}; MB(d ) 
PC(C2) = {C1 ,X1 ,X2} ; 
MB(C2) = {C1,C3,X1,X2,X4} 
PG(C3) = {C1,X3,X5}; 
MB(C3) = {C1,C2,X2,X3,X5} 

PC(d) 

Next, we specify the three MBC subgraphs as follows: 

• Class subgraph: edges are inserted between the class 

variables C1, C2 and C3 . Then, using the P C algo­

ri thm's edge orientation rules, these edges are directed 

from C2 and C3 to C1. 

• Bridge subgraph: arcs are inserted from C1 to X2 and 

X4; from C2 to X1 and X2; and from C3 to X3 and X5. 

• Feature subgraph: given that MB(C 2 ) \PC(C 2 ) = 

{X 4 } , an arc is inserted from spouse X4 to the com­

mon child X1 determined by PC(X4) n PC(C2) = 

{X1}. Similarly, given tha t MB(C 3 ) \PC(C 3 ) = {X2} 

and PC(X2) nPC(C 3 ) = {X3,X5}, arcs are inserted 

from X2 to X3 and X5. 



Exper iments 

Data 

The used Parkinson's da ta set was obtained from an 

international multipurpose database collected by the 

National Center of Epidemiology, Carlos III Insti tute of 

Health, Madrid. Pat ients with diagnosis of P D by neu­

rologists with expertise in movement disorders, and 

according to internationally recognized diagnostic cri­

teria,1 were followed up in movement disorder clinics. 

Pat ients in all stages of P D (Hoehn and Yahr 1 to 5) 

were included. 

In total , the analyzed data set contains N = 488 

patients, where 59.43% are male and 40.57% are female, 

and the average age for all patients is 65 years old 

(minimum = 30, maximum = 89). For each patient, we 

have information about the PDQ-8 items represented in 

Table 1 (i.e. 8 feature variables) with values ranging 

from 0 (never) to 4 (always); and the corresponding EQ-

5D (i.e. 5 class variables) with values ranging from 1 (no 

problems) to 3 (severe problems). 

Our objective is to simultaneously predict the 5 class 

values of EQ-5D from PDQ-8 using MB-MBC algorithm. 

Given the EQ-5D values, to complement them, the cor­

responding utility index could also be induced using the 

UK general scoring system.6 For instance, let us assume 

that we obtain an EQ-5D equal to c = (1 ,1 , 2, 2, 3) 
indicating tha t the considered patient has no problems 

with mobility and self-care; some problems with 

usual activities and pain/discomfort; and severe 
problems with anxiety/depression. Based on UK 

scoring system,6 EQ-5D utility index is 1 — 0.081 — 
0.036 — 0.123 — 0.236 — 0.269 = 0.255. 

Comparing methods 

We compared MB-MBC against the following methods: 

• Class-bridge decomposable MBC (CB-MBC)24: learns 

MBCs based on a greedy forward selection wrapper 

approach optimizing the accuracy of the model given 

the training da ta set. 

• Independent Markov blankets algorithm (IndepMBs): 

learns independently a Bayesian network classi¯er for 

each class variable using the same HITON algo­

rithm2 1 ,2 2 (sometimes called binary relevance in the 

literature). Therefore, there are no arcs between class 

variables; the classi¯cation is independently per­

formed for each class variable, and the individual 

results are then aggregated to form the predicted class 

vector of dimension 5. 

• OLS: is one of the mostly used methods for mapping 

speci¯c HRQoL instruments such as Health Surveys 

SF-12 and PDQ-8 into a generic utility index.8,11,12,15 

In the OLS model, the EQ-5D utility index is directly 

regressed on the PDQ-8 items. In other words, OLS 

does not provide the 5 estimated class values of EQ-

5D, but only returns the estimated EQ-5D utility 

index. 

For comparison, we adopt the two OLS mapping 

functions proposed by Cheung et al.15 In the ¯rst one 

(OLS-1), the EQ-5D utility index is estimated by: 

[U t i l i t y = 1 if at least seven responses are \never", 

1 — 0.135 — 0.052 x pdq1 — 0.034 x pdq2 

0.031 x pdq3 — 0.030 x pdq7, 

otherwise. 

I Ut i l i ty 

Table 1. The PDQ-8 Items. 

Item 
Domain of the 

PDQ-39 

pdq1. Had problems getting around in 
public 

pdq2. Had di±culty dressing yourself 

pdq3. Felt depressed 
pdq4. Had problems with close personal 

relationships 
pdq5. Had problems with concentration 
pdq6. Felt unable to communicate with 

people properly 
pdq7. Had painful muscle cramps or 

spasms 
pdq8. Felt embarrassed in public due to 

having PD 

Mobility 

Activities of daily 
living 

Emotional well-being 
Social support 

Cognition 
Communications 

Bodily discomfort 

Stigma 

In their second OLS function (OLS-2), Cheung et al.15 

considered the item pdq3 as a categorical binary vari­

able with value 0 if the response is equal to \never" and 

1 for all other responses. The mapping function is then: 

fU t i l i t y = 1 if at least seven responses are \never", 

I Ut i l i ty = 1 — 0.105 — 0.052 x pdq1 — 0.037 x pdq2 

I — 0.031 x [pdq3 > 0] — 0.026 x pdq7, 

[ otherwise. 

CLAD25: is a generalization of the least absolute 

deviations method. Similar to OLS, CLAD is widely used 

to convert speci¯c HRQoL instruments into a generic 

utility index,8,13,15 and it only estimates EQ-5D utility 

index without predicting the 5 class values of EQ-5D. 

Here as well, we use the CLAD model de¯ned by 



Cheung et a l . 1 5 as follows: 

U t i l i t y = 1 i f at least seven responses are \never" , 

Uti l i ty = 1 — 0.208 — 0.037 x pdq1 — 0.028 x pdq2 

— 0.023 x pdq3 — 0.023 x pdq5, 

otherwise. 

• Deterministic model (Deterministic): is a pre-de-

termined algorithm introduced by Cheung et al.15 for 

predicting EQ-5D from PDQ-8. EQ-5D mobility, 

self-care, pain/discomfort and anxiety/de­

pression items are predicted using PDQ-8 mobility, 
activities of daily living, bodily discomfort and emo­

tional well-being items, respectively, while the EQ-5D 

usual activities item is predicted using PDQ-8 

social support, cognition, communications and stigma 

items (see Table 1 in Ref. 15). 

Figure 3 summarizes the approaches used in this 

paper for predicting EQ-5D from PDQ-8. 

It is important to emphasize here that it is also pos­

sible to perform OLS and CLAD directly on the da ta set 

and /or test di®erent mapping functions, however, our 

main objective is to compare MB-MBC against the existing 

mapping functions de¯ned by Cheung et al.15 

Note ¯nally that , we applied MB-MBC and IndepMBs 

with a restriction of the Markov blanket set of each 

class variable MB(Cj) to the set of its parents-children 

PC(Cj). This restriction was introduced based upon the 

theoretical discussion introduced by Aliferis et al. in 

Ref. 22 and the empirical observation tha t including 

more spouses leads to a less accurate MBC classi¯er. In 

fact, Aliferis et al.22 discussed in (see Sec. 4.6) ¯ve 

plausible scenarios explaining the better performance of 

substituting the P C set in place of the MB set. The 

third scenario applies in our case, where the spouses 

have connecting paths to the class variables that cannot 

be blocked due to the small sample size, i.e. the con­

ditional independencies between the spouses and the 

8 Featu re variables PDQ-8 

OLS-1 
OLS-2 
CLAD 

i 
Utility index 

5 Class variables EQ-5D 

i 
Utility index 

Fig. 3 Used approaches for predicting EQ-5D from PDQ-8. 

class variables could not be established due to the small 

number of instances in our da ta set (including only 488 

instances). 

All methods were run in Mat lab R2010b. For CB-MBC, 

we used the Mat lab implementation from Ref. 24, and 

for both MB-MBC and IndepMBs approaches, the HITON 

algorithm was run using Causal Explorer Toolkit 

provided as compiled Mat lab functions. The G2 statis­

tical test was used to evaluate the conditional inde­

pendencies between variables with a signi¯cance level 

a = 0.01. 

Evaluation metrics 

We used the following metrics to assess the predictive 

performance of the considered approaches: 

• The mean accuracy over the d class variables: 

Accm = — y — y fi(cu, en), (3) 
d ^—S N *—? 

where N is the size of the test set, ĉ  is the Gj class 

value predicted by the model for sample I, and cti 

denotes its corresponding true value. <5(6;J,CK) = 1 if 

the predicted and true class values are equal, i.e. 

hi = cU, and <5(2;J, cu) = 0 otherwise. 

The global accuracy over the rf-dimensional class 

variable: 

Acc f l 

1 

iV 
<5(c;,c;)- (4) 

i=1 

In this more strict case, the (rf-dim) vector of pre­

dicted classes c ; is compared to the vector of true 

classes c ; , so tha t we have <5(c;, c{) = 1 if both vectors 

are equal in all their components, i.e. c; = c ;, and 

<5(c;, c;) = 0 otherwise. 

Moreover, we considered the following metrics, 

commonly used in comparison with OLS and CLAD8,15: 

• The mean, the ¯rst quartile, the median and the third 

quartile of the predicted EQ-5D utility scores. Obvi­

ously, the closer to the corresponding values of the 

true EQ-5D utility scores, the better. 

• The mean squared error (MSE) between the true and 

predicted EQ-5D utility scores. 

• The mean absolute error (MAE) between the true and 

predicted EQ-5D utility scores. 

• The square of the Pearson product-moment correla­

tion (i?2) between the true and predicted EQ-5D 

utility scores. 

A* 



. The absolute di®erence (AbsDi®) between the mean 
of all true EQ-5D utility scores and the mean of all 
predicted EQ-5D utility scores. 

For MSE, MAE and AbsDi®, the lower the values, 
the better. However, for R2, the higher, the better. 

RESULTS 

Table 2 shows the estimated classi¯cation results over 
¯ve-fold cross-validation experiments performed on ¯ve 
di®erent data sets randomly generated without re­
placement from the original PD data set. The mean 
values and standard deviations for each metric and each 
method over all ¯ve-fold cross-validation experiments 
are reported, and the best result for each metric is 
written in bold. Recall that QLS and CLAD only return the 
utility index; thus, in order to compute the mean and 
global accuracies for QLS and CLAD mapping functions, 
we proceeded by retrieving the EQ-5D 5 class values as 
follows: ¯rst, we look for the utility index from the UK 
scoring list6 closest to the one returned by QLS-1, QLS-2 
and CLAD, then we determine the EQ-5D vector corre­
sponding to that index. 

In Table 2, MB-MBC presented the best global accu­
racy, while IndepMBs presented the best mean accuracy. 
QLS-1, QLS-2 and CLAD performed poorly for both mean 
and global accuracies. In addition, Deterministic had 
the lowest mean and global accuracies compared to all 

Table 2. Estimated Accuracies (Mean ± Standard 
Deviation). 

Learning Method Mean Accuracy Global Accuracy 

MB-MBC 

CB-MBC 

IndepMBs 

OLS-1 

DLS-2 

CLAD 

Deterministic 

0.684 ± 0.003 
0.661 ± 0.013 

0.687 ± 0.007 
0.435 ± 0.022 
0.434 ± 0.011 
0.429 ± 0.008 
0.428 ± 0.052 

0.188 ± 0.005 
0.176 ± 0.014 
0.184 ± 0.009 
0.071 ± 0.018 
0.075 ± 0.020 
0.088 ± 0.026 
0.033 ± 0.018 

other approaches. We performed a multiple comparison 
of all algorithm performances using the Friedman test 
followed by the Tukey–Kramer post-hoc test with a 
signi¯cance level equal to 0:05. It turns out that (1) for 
mean accuracy, IndepMBs is signi¯cantly better than 
OLS-1, OLS-2 and CLAD, while MB-MBC is only signi¯-
cantly better than OLS-1; and (2) for global accuracy, 
both MB-MBC and IndepMBs are signi¯cantly better than 
OLS-1 and Deterministic. For all remaining algo­
rithms, the di®erences in predictive performance are not 
statistically signi¯cant. 

In addition, Table 3 shows the values of the mean, the 
¯rst quartile, the median and the third quartile of the 
observed (¯rst line) and the predicted utility scores by 
the di®erent evaluated approaches (rest of the lines). We 
can see that MB-MBC was the best to predict the mean 
with 0.634 followed by IndepMBs with 0.637. Deter­
ministic resulted in the best estimated ¯rst quartile 
value equal to 0.516, IndepMBs predicted better the 
median, whereas MB-MBC predicted better the third 
quartile. As previously, we ran a multiple comparison 
using the Friedman test followed by the Tukey–Kramer 
post-hoc test with a signi¯cance level equal to 0:05. We 
conclude that (1) for the mean, MB-MBC and IndepMBs 
turn out to be only signi¯cantly better than OLS-2; (2) 
for the ¯rst quartile, Deterministic, IndepMBs and MB-
MBC are also signi¯cantly better than OLS-2; (3) for the 
median, IndepMBs is signi¯cantly better than OLS-2 and 
Deterministic; and (4) for the third quartile, MB-MBC is 
only signi¯cantly better than CLAD. For all other algo­
rithms, the di®erences in performance results are not 
statistically signi¯cant. 

Finally, Table 4 presents the obtained average results 
for MSE, MAE, R2 and AbsDi® metrics over the ¯ve-
fold cross-validation performed experiments. The best 
result for each metric is written in bold. MB-MBC out­
performed other predictive approaches in terms of MSE 
and MAE. OLS-1 presented the best R2 and IndepMBs 
produced the best AbsDi®. Using the Friedman test 
followed by the Tukey–Kramer post-hoc test with a 

Table 3. Mean, 1st Quartile, Median and 3rd Quartile Over Five-Fold Cross-
Validation Estimation of the Ut i l i ty Scores (Mean ± Standard Deviation). 

Observed 
MB-MBC 

CB-MBC 

IndepMBs 

DLS-1 

DLS-2 

CLAD 

Deterministic 

Mean 

0.565 ± 0.000 
0.634 ± 0.004 
0.658 ± 0.015 
0.637 ± 0.012 
0.683 ± 0.000 
0.733 ± 0.000 
0.668 ± 0.000 
0.640 ± 0.000 

1st Quarti le 

0.402 ± 0.037 
0.524 ± 0.011 
0.537 ± 0.017 
0.522 ± 0.008 
0.567 ± 0.002 
0.630 ± 0.005 
0.566 ± 0.005 

0.516 ± 0.037 

Median 

0.672 ± 0.004 
0.675 ± 0.008 
0.684 ± 0.015 

0.674 ± 0.017 
0.678 ± 0.003 
0.730 ± 0.002 
0.653 ± 0.005 
0.725 ± 0.004 

3rd Quarti le 

0.796 ± 0.003 
0.804 ± 0.011 
0.827 ± 0.019 
0.826 ± 0.012 
0.781 ± 0.001 
0.824 ± 0.002 
0.731 ± 0.001 
0.852 ± 0.008 



Table 4. MSE, M A E , R2 and AbsDi® Over Five-fold Cross-Validation Estima­
tion of the Ut i l i ty Scores (Mean ± Standard Deviation). 

Method 

MB-MBC 

CB-MBC 

IndepMBs 

OLS-1 

OLS-2 

CLAD 

Deterministic 

M S E 

0.074 ± 0.003 
0.094 ± 0.008 
0.075 ± 0.003 
0.080 ± 0.000 
0.100 ± 0.000 
0.084 ± 0.000 
0.081 ± 0.000 

M A E 

0.186 ± 0.004 
0.205 ± 0.009 
0.191 ± 0.004 
0.195 ± 0.000 
0.215 ± 0.000 
0.201 ± 0.000 
0.202 ± 0.000 

R2 

0.444 ± 0.025 
0.348 ± 0.045 
0.458 ± 0.025 

0.486 ± 0.005 
0.454 ± 0.005 
0.425 ± 0.006 
0.451 ± 0.009 

AbsDi® 

0.068 ± 0.004 
0.092 ± 0.015 

0.072 ± 0.010 
0.117 ± 0.000 
0.168 ± 0.000 
0.103 ± 0.000 
0.075 ± 0.000 

signi¯cance level equal to 0.05, it turns out that (1) for 
MSE, MB-MBC and IndepMBs are signi¯cantly better than 
CB-MBC and OLS-2; (2) for MAE, MB-MBC is signi¯cantly 
better than CB-MBC, OLS-2 and Deterministic, whereas 
IndepMBs is only signi¯cantly better than OLS-2; (3) for 
i?2, OLS-1, OLS-2 and IndepMBs are signi¯cantly better 
than CB-MBC; and (4) for AbsDi®, MB-MBC and IndepMBs 
are only signi¯cantly better than OLS-2. For all 
remaining methods, the di®erences are not statistically 
signi¯cant. 

DISCUSSION 

As shown in Tables 2 to 4, OLS-1, OLS-2 and CLAD 
methods performed worse than MB-MBC for almost all the 
considered evaluation metrics. In particular, they pre­
sented worse results for MSE, MAE and AbsDi®, even 
having being designed for optimizing those criteria. As 
pointed out by Le and Doctor,8 this may be due to 
certain limitations of these regression methods such as 
predictive values of EQ-5D utility scores that are not 
de¯ned in the UK scoring list, which correspond as well 
to unde¯ned health states. Previous studies testing OLS 
and CLAD for predicting the EQ-5D utility index from 
the Health Surveys SF-128,13 proved that OLS and CLAD 
methods induce very similar results with a possible 
better performance of the simple OLS over the more 
theoretically justi¯able CLAD. In our case, OLS-1 map­
ping function resulted in a better MSE, MAE, R2 than 
CLAD, but for the absolute di®erence between the true 
and the predicted EQ-5D mean scores, CLAD performed 
better. OLS-2 performed better than CLAD only for R2. 

Moreover, contrary to OLS-1, OLS-2, CLAD and De­
terministic, Bayesian network-based approaches 
present also the merit of representing the relationships 
between all variables through their graphical structure 
component. In our study, in order to investigate the 
dependence relationships among EQ-5D and PDQ-8 
variables, we ¯rst examine in Fig. 4 the graphical 
structure of the MBC network learnt by the MB-MBC 
algorithm, then compare it to the graphical structures 

learnt by CB-MBC and IndepMBs. The interpretation and 
the medical signi¯cance of the obtained MBCs have been 
ensured by the neurologist specialist in PD Pablo Mar­
tínez-Martín. 

Firstly, the class subgraph in Fig. 4 (red arcs) shows 
associations between the three class variables mobility, 
self-care and usual activities which may reveal the 
strong relevance between these classes. Pain/discom­
fort is not directly related to any other class variable, 
but its Markov blanket includes the class variables 
usual activities and self-care which proves as well 
the strong relevance between these class variables. 
Anxiety/depression has no direct connections with 
the remaining classes. This can be explained by the fact 
that anxiety/depression is more related to emotional 
problems rather than physical health problems (i.e. 
mobility, self-care, usual activities and pain/ 

discomfort). 

Secondly, the bridge subgraph (blue arcs) reveals di­
rect probabilistic dependence relationships between EQ-
5D classes and PDQ-8 features, the latter listed in 
Table 1. We have the following dependence relationships 
from EQ-5D to PDQ-8: 

. Mobility is directly associated with pdq1. 

. Self-care is directly associated with pdq2. 

. Usual activities is directly associated with pdq2. 

. Pain/discomfort is directly associated with pdq2 
and pdq7. 

. Anxiety/depression is directly associated with 
pdq3. 

Fig. 4 MBC graphical structure learnt by MB-MBC. 



Note that the detected associations are very appro­
priate and a direct connection can be clearly observed 
between the domains of both instruments PDQ-8 and 
EQ-5D. In fact, the item pdq1 (having problems getting 
around public), pertaining to mobility domain, is asso­
ciated with the class variable mobility. The item pdq2 
(having di±culty dressing yourself), pertaining to ac­
tivities of daily living domain, is simultaneously associ­
ated with self-care, usual activities and pain/ 
discomfort. The item pdq3 (felt depressed), pertaining 
to emotional well-being domain, is directly associated 
with anxiety/depression, and ¯nally the item pdq7 
(having painful muscle cramps and spasms), pertaining 
to bodily discomfort domain, is related to pain/dis­
comfort. Moreover, we may notice that the selected pdq 
items here (i.e. pdq1, pdq2, pdq3 and pdq7) are exactly 
the same kept by the OLS-1 and OLS-2 mapping func­
tions proposed by Cheung et al.15 The remaining fea­
tures (pdq4, pdq5, pdq6 and pdq8) are absent in Fig. 4 
since no associations were detected between them and 
the EQ-5D class variables. 

These ¯ndings have sense from a clinical point of view. 
In fact, PD is a complex disorder with many aspects to be 
considered: motor impairment, disability, motor compli­
cations (dyskinesia and °uctuations) and a wide array of 
nonmotor symptoms (depression, hallucinations, cogni­
tive decline, dribbling saliva, for example). For the huge 
majority of PD patients, from earliest to most advanced 
stages, the common perceived health problems are 
re°ected as limitations for mobility (pdq1) and activities 
of daily life (pdq2), whereas the most prevalent nonmotor 
symptoms are associated with the impact on patients' 
health perception, namely depression (pdq3) and pain 

(pdq7). As a matter of fact, disability, depression and pain 
are between commonest determinants of HRQoL in gen­
eral population27 and also in PD.28,29 Additional motor 
complications and nonmotor symptoms (for instance 
those related to pdq4, pdq5, pdq6 and pdq8) are also 
relevant in PD, however, they usually present a problem 
only in moderate/advanced phases of the disease but not 
in early/mild disease, and are not constant (neither in 
presence nor severity) in all patients. 

Taking the previous arguments into account, we may 
conclude that, from a clinical point of view, the selected 
variables in the network are relevant and cover the most 
important areas of PD including both motor and non-
motor symptoms. 

Finally, the feature subgraph is obviously empty with 
no direct dependence relationships between the di®erent 
PDQ-8 items, because the third step in the MB-MBC al­
gorithm has no e®ect at all. This is re°ected as well 
through the construction process of the PDQ-8 ques­
tionnaire. In fact, as shown in Table 1, each item in the 
PDQ-8 represents a single domain of the PDQ-39, and 
therefore no inter-domain relationships were taken into 
account for the construction of the PDQ-8. 

For structural comparison, we depict in Figs. 5 and 6 
the graphical structures learnt by CB-MBC and IndepMBs, 
respectively. 

As shown in Fig. 5, CB-MBC only detects a direct de­
pendence relationship among the EQ-5D class variables 
self-care and usual activities. All remaining clas­
ses are kept independent. For the bridge subgraph, and 
similar to MB-MBC, the following dependence relation­
ships are detected: mobility is associated with pdq1, 
self-care with pdq2, usual activities with pdq2, 

Fig. 5 MBC graphical structure learnt by CB-MBC. 

Fig. 6 Graphical structures learnt by IndepMBs. 



pain/discomfort with pdq7, and anxiety/depres­
sion with pdq3. Moreover, additional arcs are discov­
ered in the bridge subgraph between the EQ-5D class 
variables and pdq5, pdq6 and pdq8. As before, the fea­
ture subgraph is empty. 

Figure 6 shows the ¯ve Markov blanket-based 
Bayesian network classi¯ers learnt independently for 
each EQ-5D class variable by IndepMBs. Being based on 
the same HITON algorithm,21,22 IndepMBs discovered 
similar dependence relationships between the EQ-5D 
and the pdq items, as MB-MBC does. However, as it can 
be observed, the main drawback of IndepMBs is its in­
ability to detect the dependence relationships between 
the di®erent EQ-5D class variables and their simulta­
neous interactions with the pdq items. As shown in 
Table 3, this also leads to a lower predictive performance 
comparing to MB-MBC. 

CONCLUSIONS 

This paper proposed MB-MBC learning algorithm to pre­
dict EuroQol EQ-5D health states from the disease-
speci¯c HRQoL measure PDQ-8. Experimental results 
on a PD data set including 488 patients were promising 
in comparison with two Bayesian network-based 
approaches, CB-MBC and IndepMBs, as well as three 
state-of-the-art mapping approaches OLS-1, OLS-2 and 
CLAD and a deterministic model. The learned MBC 
graphical structure allowed also the identi¯cation of the 
dependence relationships among EQ-5D and PDQ-8 
items, and proved, as expected, the strong relevance 
between EQ-5D class variables and selected PDQ-8 
feature variables. Note ¯nally that, a limitation of our 
study is that the considered PD data set contained only 
few patients with severe problems. In the future, it will 
be interesting to consider a larger and diverse PD data 
set to perform more analyses and additionally prove the 
merits of our approach. Another possibility as well is to 
use a bootstrap resampling method to deal with the 
small number of instances and obtain more robust 
Bayesian network classi¯ers.30 Moreover, another di­
rection for future research is to apply our approach to 
di®erent medical or biological multi-dimensional classi-
¯cation problems, where an instance has to be assigned 
to more than one class variable. 
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