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Abstract We present a compact formula for the deriva-
tive of a 3-D rotation matrix with respect to its expo-

nential coordinates. A geometric interpretation of the

resulting expression is provided, as well as its agreement

with other less-compact but better-known formulas. To
the best of our knowledge, this simpler formula does

not appear anywhere in the literature. We hope by pro-

viding this more compact expression to alleviate the

common pressure to reluctantly resort to alternative

representations in various computational applications
simply as a means to avoid the complexity of differen-

tial analysis in exponential coordinates.
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1 Introduction

Three-dimensional rotations have numerous applications
in many scientific areas, from quantum mechanics to

stellar and planetary rotation, including the kinemat-

ics of rigid bodies. In particular, they are widespread

in computer vision and robotics to describe the orien-
tation of cameras and objects in the scene, as well as

to describe the kinematics of wrists and other parts of

a robot or a mobile computing device.

Space rotations have three degrees of freedom, and
admit several ways to represent and operate with them.

Each representation has advantages and disadvantages.

Among the most common representations of rotations

are Euler angles, axis-angle representation, exponential

coordinates, unit quaternions, and rotation matrices.
Euler angles [15, p. 31], axis-angle and exponential co-

ordinates [15, p. 30] are very easy to visualize because

they are directly related to world models; they are also

compact representations, consisting of 3-4 real numbers.
These representations are used as parametrizations of

3 × 3 rotation matrices [15, p. 23], which are easier to

work with but require nine real numbers. Unit quater-

nions (also known as Euler-Rodrigues parameters) [2,

15, p. 33] are a less intuitive representation, but never-
theless more compact (4 real numbers) than 3× 3 ma-

trices, and are also easy to work with. Historical notes

as well as additional references on the representations

of rotations can be found in [14, p. 43], [3].

In many applications, it is not only necessary to

know how to represent rotations and carry out sim-

ple group operations but also to be able to perform

some differential analysis. This often requires the cal-
culation of derivatives of the rotation matrix, for exam-

ple, to find optimal rotations that control some process

or that minimize some cost function (in cases where

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148673491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1312.0788v2
http://dx.doi.org/10.1007/s10851-014-0528-x


2 Guillermo Gallego, Anthony Yezzi

a closed form solution does not exist) [7,12]. Such is

the case for the optimal pose estimation problem long

studied within the computer vision and photogramme-

try communities [16,9,6], as well as for other related

problems [20,5,13,18].

Here we consider rotations parametrized by expo-

nential coordinates using the well-known Euler-Rodrigues

formula, and compute a compact expression, in matrix
form, for the derivative of the parametrized rotation

matrix. We also give a geometric interpretation of the

formula in terms of the spatial decomposition given by

the rotation axis. To the authors’ knowledge, the result
presented here has not been shown before and it fills a

gap in the literature, at an intermediate point between

numerical differentiation, the derivative at the identity

for incremental rotations and general formulas for Lie

groups. By providing this simpler, compact formula for
the derivative of the rotation matrix we hope to allevi-

ate the common pressure to reluctantly resort to alter-

native representations or the framework of incremental

rotations (i.e., local charts) in various computational
applications simply as a means to avoid the complexity

of differential analysis in exponential coordinates.

The paper is organized as follows: Section 2 reviews
the theory of 3-D rotations parametrized by exponential

coordinates. Section 3 presents the main contributions

of this paper, where proofs and secondary results have

been moved to appendices for readers interested in tech-

nical details. Finally, conclusions are given in Section 4.

2 Parametrization of a rotation

In this section, we review the parametrization of space

rotations using exponential coordinates, before proceed-
ing to calculating derivatives.

A three-dimensional rotation is a circular movement

of an object around an imaginary line called the ro-
tation axis. The rotation angle measures the amount

of circular displacement. Rotations preserve Euclidean

distance and orientation. Algebraically, the rotation of

a point X = (X,Y, Z)⊤ to a point X
′ = (X ′, Y ′, Z ′)⊤

can be expressed as X
′ = RX, where the rotation ma-

trix R is a 3 × 3 orthogonal matrix (R⊤R = RR
⊤ = Id,

the identity matrix) with determinant det(R) = 1.

The space of 3-D rotations is known as the ma-
trix Lie group SO(3) (special orthogonal group of order

three) [15, p. 24], and it is not isomorphic to R
3 [19].

It has the structure of both a non-commutative group

(under the composition of rotations) and a manifold for
which the group operations are smooth. Since SO(3)

is a differentiable manifold, each of its points (i.e., ro-

tations) has a tangent space, and the corresponding

vector space Skew3 consists of all (real) 3 × 3 skew-

symmetric matrices, which can be thought of as in-

finitesimal rotations [14, p. 25]. Moreover, the expo-

nential map exp : so(3) → SO(3) can be defined, which

allows one to recapture the local group structure of
SO(3) from the Lie algebra so(3), the latter consist-

ing of Skew3 together with the binary operation (Lie

bracket or commutator) [A,B] = AB−BA, with A,B ∈

Skew3.
The Euler-Rodrigues formula [4][15, p. 28] states

that the rotation matrix representing a circular move-

ment of angle θ (in radians) around a specified axis

v̄ ∈ R
3 is given by

R = Id + sin θ [v̄]× + (1− cos θ) [v̄]
2

× , (1)

where v̄ is a unit vector, and

[a]× :=





0 −a3 a2
a3 0 −a1
−a2 a1 0



 ∈ Skew3 (2)

is the cross product (skew-symmetric) matrix such that

[a]× b = a× b, for all a = (a1, a2, a3)
⊤,b ∈ R

3.

An alternative formula for (1) is

R = cos θ Id + sin θ [v̄]× + (1− cos θ)v̄v̄⊤ (3)

because any unit vector v̄ satisfies

[v̄]
2

× = v̄v̄
⊤ − Id. (4)

The exponential coordinates [15, p. 30] given by the

rotation vector v := θv̄ are a natural and compact
representation of the rotation in terms of its geomet-

ric building blocks. They are also called the canonical

coordinates of the rotation group. The Euler-Rodrigues

rotation formula (1) is a closed form expression of the

aforementioned exponential map [15, p. 29]

R = exp([v]×) :=

∞
∑

k=0

1

k!
[v]

k

× =

∞
∑

k=0

θk

k!
[v̄]

k

× . (5)

Moreover, since the exponential map considered is
surjective, every rotation matrix can be written as (5)

for some coordinates v, specifically, those with ‖v‖ ≤ π,

i.e., in the closed ball of radius π in R
3. Hence, expo-

nential coordinates can be used either locally (to repre-
sent incremental rotations between two nearby config-

urations) or globally (to represent total rotations with

respect to a reference one) [17]. More observations of

this parametrization can be found in [10, p. 624].

To retrieve the exponential coordinates or the axis-
angle representation of a rotation matrix, we use the

log map, log : SO(3) → so(3), given in [14, p. 27] by

θ = ‖v‖ = arccos

(

trace(R)− 1

2

)
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and, if θ 6= 0 and Rij are the entries of R,

v̄ =
v

‖v‖
=

1

2 sin θ

(

R32 − R23, R13 − R31, R21 − R12

)⊤
.

Without loss of generality, if θ is the principal value of

the inverse cosine function then v lies within the ball of

radius π, as assumed from now on. In the identity case,

R = Id, then θ = 0 and v̄ can be chosen arbitrarily.

3 Derivative of a rotation

Given the exponential coordinate parametrization (5),

we consider the calculation of the derivative of the Ro-
tation matrix, which is a relevant topic on its own as

well as due to its broad range of applications. Although

formulas exist to express the derivative of the expo-

nential map in general Lie groups [11, p. 95][8, p. 70],
they are not computationally friendly. Instead, for the

rotation group, researchers commonly resort to one of

the following alternatives: numerical differentiation, us-

ing a complicated analytical formula for the derivative

(see (7)) or reformulating the problem using incremen-
tal rotations so that formulas for the simplified case

(linearization around the identity element) are used.

Here, we bridge the gap between the aforementioned

general formulas and alternatives for the rotation group

by providing a simple, analytical and computationally

friendly formula to calculate the derivative of a rota-
tion. We also give the geometric interpretation in terms

of the spatial decomposition according to the rotation

axis. After many false starts, we report the path that

lead to the formula using well-known matrix identities.
We conjecture that there is a way to obtain such for-

mula from the general one for Lie groups, but so far we

have not found it.

The incremental rotation approach has the following

explanation. The Lie group framework allows SO(3) to

be locally replaced by its linearized version, i.e., the Lie

algebra so(3), whose vector space is the tangent space of
SO(3) at the identity element [14, p. 26]. This element

plays a key role in differential analysis with the expo-

nential map: it shows that rotations may be linearly ap-

proximated using three so-called group generators (the
standard basis for Skew3)

Gi :=
∂

∂vi
exp([v]×)

∣

∣

∣

v=0

= [ei]× , (6)

where v = (v1, v2, v3)
⊤ and ei is the i-th vector of the

standard basis in R
3. And it also provides a means to

calculate derivatives of rotations as long as they are

written in an incremental way, e.g., R = exp([v]×)R0,

so that derivatives are evaluated at v = 0, as in (6).

Next, let us show a formula for the derivative of

a rotation at an arbitrary element, not necessarily the

simplified case of the identity element of the rotation

group. First we show a well-known but complicated one

and then our contribution.
Stemming from the Euler-Rodrigues formula (1),

the derivative of a rotation R(v) = exp([v]×) with re-

spect to its exponential coordinates v is given by

∂R

∂vi
= cos θ v̄i [v̄]× + sin θ v̄i [v̄]

2

× +
sin θ

θ
[ei − v̄iv̄]×

+
1− cos θ

θ

(

eiv̄
⊤ + v̄e

⊤
i − 2v̄iv̄v̄

⊤
)

, (7)

where θ = ‖v‖ and v̄ = (v̄1, v̄2, v̄3)
⊤ = v/‖v‖. For-

mula (7) is used, for example, in the OpenCV library [1]

(having more than 50 thousand people of user commu-

nity and estimated number of downloads exceeding 7
million) if the rotation vector v is passed as argument

to the appropriate function (cvRodrigues). The proof

of (7) is given in Appendix E.

Here, however we follow a different approach and
first compute the derivative of the product Ru where u

is independent of the exponential coordinates v. Once

obtained a compact formula, it is used to compute the

derivatives of the rotation matrix itself.

Result 1 The derivative of R(v)u = exp([v]×)u with

respect to the exponential coordinates v, where u is in-

dependent of v, is

∂R(v)u

∂v
= −R [u]×

vv
⊤ + (R⊤ − Id) [v]×

‖v‖2
. (8)

The proof is given in Appendix B.

3.1 Geometric interpretation

Let the decomposition of a vector b onto the subspaces

parallel and perpendicular components to the rotation

axis v̄ be b = b‖ +b⊥ , where b‖ ∝ v̄ is parallel to the

rotation axis and b⊥ ⊥ v̄ lies in the plane orthogonal to
the rotation axis. Then, observe that formula (8) pro-

vides insight about the action of ∂(Ru)/∂v on a vector

b. Such operation has two components according to the

aforementioned decomposition along/orthogonal to the

rotation axis,

∂Ru

∂v
b = −R [u]×

(

(b‖ · v̄)v̄ +
(R⊤ − Id) [v̄]× b⊥

‖v‖

)

,

and notice that both components scale differently: the

first term (b‖ · v̄)v̄ depends solely on b‖, whereas the
second term involves [v̄]× b⊥/‖v‖, which depends on

both b⊥ and ‖v‖. This information is difficult to extract

by using a formula like (7).
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Another way to look at the geometric interpretation

of our formula is through sensitivity analysis. The first

order Taylor series approximation of the rotated point

u
′ = R(v)u around v is

u
′(v + δv) ≈ u

′(v) +
∂Ru

∂v
δv

= u
′(v) − R [u]×

(

(δv‖ · v̄)v̄ +
(R⊤ − Id) [v̄]× δv⊥

‖v‖

)

,

where δv = δv‖ + δv⊥. As the rotation R(v) is per-
turbed, there are two different types of changes:

– If the perturbation δv is such that only the amount

of rotation changes, but not the direction of ro-

tation (rotation axis), i.e., δv⊥ = 0, the rotated

point becomes u
′(v + δv) ≈ u

′(v) − ‖δv‖ R(u× v̄),
where the change is proportional to the rotation of

u× v̄. Equivalently, using property (16) with G = R,

R(u× v̄) = (Ru)× (Rv̄) = Ru× v̄, the change is per-

pendicular to both Ru and the rotation axis v̄, which

is easy to visualize geometrically since the change is
represented by the tangent vector to the circumfer-

ence traced out by point u as it rotates around the

fixed axis v̄, (u′(v + δv) − u
′(v))/‖δv‖.

– If the perturbation δv is such that only the direc-
tion of the rotation changes, but not the amount of

rotation, i.e., δv‖ = 0, the rotated point becomes

u
′(v+ δv) ≈ u

′(v)−‖v‖−1
R [u]× (R⊤ − Id) [v̄]× δv.

The scaling is different from previous case, since now

the change in u
′ depends on both δv⊥ and ‖v‖.

For an arbitrary perturbation, the change on the ro-
tated point has two components: one due to the part of

the perturbation that modifies the amount of rotation,

and another one due to the part of the perturbation

that modifies the direction of the rotation.

3.2 Compact formula for the derivative of the rotation
matrix

Next, we use Result 1 to compute the derivatives of the

rotation matrix itself with respect to the exponential

coordinates (5), without re-doing all calculations.

Result 2 The derivative of R(v) = exp([v]×) with re-

spect to its exponential coordinates v = (v1, v2, v3)
⊤ is

∂R

∂vi
=

vi [v]× + [v × (Id − R)ei]×
‖v‖2

R, (9)

where ei is the i-th vector of the standard basis in R
3.

The proof is given in Appendix C. To conclude, we

also need to show that the compact formula (9) is con-

sistent with (7). This is demonstrated in Appendix D.

3.3 Derivative at the identity.

Our result, evaluated at the identity element, agrees

with the well-known result about the so-called genera-

tors Gi of the group (6). This can be shown by comput-

ing the limit as v → 0 of (9), and using the facts that
limv→0 R = Id and limv→0(Id − R)/‖v‖ = − [v̄]×,

lim
v→0

∂R

∂vi

(9)
= lim

v→0

(

(

v̄i [v̄]× +
[v̄ × (Id − R)ei]×

‖v‖

)

R

)

= v̄i [v̄]× −
[

v̄ × ([v̄]× ei)
]

×

=
[

v̄iv̄ − [v̄]
2

× ei

]

×

(4)
= [ei]× .

4 Conclusion

We have provided a compact formula for the derivative

of a rotation matrix in exponential coordinates. The

formula is not only simpler than existing ones but it
also has an intuitive interpretation according to the ge-

ometric decomposition that it provides in terms of the

amount of rotation and the direction of rotation. This,

together with the Euler-Rodrigues formula and the fact
that exponential coordinates provide a global chart of

the rotation group are supporting arguments in favor

of using such parametrization for the search of optimal

rotations in first-order finite-dimensional optimization

techniques. In addition, the formula can also provide a
simple fix for numerical implementations that are based

on the derivative of a linearization of the rotation ma-

trix in exponential coordinates.

A Some cross product relations

Let us use the dot notation for the Euclidean inner product a·b =
a
⊤
b. Also, let G be a 3 × 3 matrix, invertible when required so

that it represents a change of coordinates in R3.

[a]
×
a = 0 (10)

[a]
×
b = − [b]

×
a (11)

[a]
×
[b]

×
= ba

⊤ − (a · b)Id (12)

a × (b× c)
(12)
= (a · c)b − (a · b)c (13)

[a× b]
×

= ba
⊤ − ab

⊤ (14)

[a× b]
×

= [a]
×
[b]

×
− [b]

×
[a]

×
(15)

[(Ga)× (Gb)]
×

= G [a× b]
×
G
⊤

(Ga)× (Gb) = det(G)G−⊤(a× b) (16)

[a]
×
G+ G

⊤ [a]
×

= trace(G) [a]
×

− [Ga]
×

(17)

[Ga]
×

= det(G)G−⊤ [a]
×
G
−1
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B Proof of Result 1

Proof Four terms result from applying the chain rule to (1) acting

on vector u. Let us use θ = ‖v‖ and v̄ = v/‖v‖, then

∂Ru

∂v
= sin θ

∂ [v̄]
×
u

∂v
+ [v̄]

×
u

∂ sin θ

∂v

+(1− cos θ)
∂ [v̄]2

×
u

∂v
+ [v̄]2

×
u

∂(1− cos θ)

∂v
.

The previous derivatives are computed next, using some of the
cross product properties listed in Appendix A:

∂ [v̄]
×
u

∂v

(11)
=

∂(− [u]
×
v̄)

∂v̄

∂v̄

∂v
= − [u]

×

∂v̄

∂v
,

with derivative of the unit rotation axis vector

∂v̄

∂v
=

∂

∂v

(

v

‖v‖

)

=
1

θ
(Id − v̄v̄

⊤)
(4)
= −

1

θ
[v̄]2

×
. (18)

Also by the chain rule,

∂ sin θ

∂v
=

∂ sin θ

∂θ

∂θ

∂v
= cos θ v̄⊤,

∂(1− cos θ)

∂v
= −

∂ cos θ

∂θ

∂θ

∂v
= sin θ v̄⊤,

and, applying the product rule twice,

∂ [v̄]2
×
u

∂v

(4)
=

∂v̄(v̄⊤u)

∂v
=

∂v̄

∂v
(v̄⊤

u) + v̄
∂(v̄⊤u)

∂v

=
(

(v̄⊤
u)Id + v̄u

⊤
)∂v̄

∂v
(18)
= −

1

θ

(

(v̄⊤
u)Id + v̄u

⊤
)

[v̄]2
×
,

which can be rewritten as a sum of cross product matrix multi-
plications since

(

(v̄⊤
u)Id + v̄u

⊤
)

[v̄]2
×

(10)
=

(

(v̄⊤
u)Id − uv̄

⊤ + v̄u
⊤ − uv̄

⊤
)

[v̄]2
×

(12) (14)
= − [v̄]

×
[u]

×
[v̄]2

×
+ [u× v̄]

×
[v̄]2

×

(15) (4)
= −2 [v̄]

×
[u]

×
[v̄]2

×
− [u]

×
[v̄]

×
.

Hence, so far the derivative of the rotated vector is

∂Ru

∂v
= (cos θ [v̄]

×
+ sin θ [v̄]2

×
)uv̄⊤ +

sin θ

θ
[u]

×
[v̄]2

×

+
1 − cos θ

θ
(2 [v̄]

×
[u]

×
[v̄]2

×
+ [u]

×
[v̄]

×
).

Next, multiply on the left by R
⊤ and use

R
⊤ [v̄]

×

(3) (10)
= cos θ [v̄]

×
− sin θ [v̄]2

×
(19)

to simplify the first term of R⊤∂(Ru)/∂v,

R
⊤(cos θ [v̄]

×
+ sin θ [v̄]2

×
)uv̄⊤

(19)
= (cos2 θ [v̄]

×
− sin2 θ [v̄]3

×
)uv̄⊤

(4)
= (cos2 θ + sin2 θ) [v̄]

×
uv̄

⊤

(11)
= − [u]

×
v̄v̄

⊤.

(20)

For the remaining term of R
⊤∂(Ru)/∂v, we use the transpose

of (1) and apply [v̄]
×
[u]

×
[v̄]

×

(12)
= −(u⊤

v̄) [v̄]
×

to simplify

(

Id − sin θ [v̄]
×
+ (1 − cos θ) [v̄]2

×

)

·
(

sin θ [u]
×
[v̄]2

×

+ (1− cos θ)(2 [v̄]
×
[u]

×
[v̄]2

×
+ [u]

×
[v̄]

×
)
)

= sin θ [u]
×
[v̄]2

×
+ (1 − cos θ) [u]

×
[v̄]

×

+ (u⊤
v̄)

(

−2(1 − cos θ) + sin2 θ + (1− cos θ)2
)

[v̄]
×

= [u]
×

(

sin θ [v̄]2
×

− (1 − cos θ) [v̄]3
×

)

= − [u]
×
(R⊤ − Id) [v̄]

×
,

where the term in (u⊤
v̄) vanished since sin2 θ − 2(1 − cos θ) +

(1− cos θ)2 = 0. Collecting terms,

R
⊤
∂Ru

∂v
= − [u]

×

(

v̄v̄
⊤ +

1

θ
(R⊤ − Id) [v̄]

×

)

. (21)

Finally, multiply (21) on the left by R and use RR
⊤ = Id, θ = ‖v‖,

v̄ = v/‖v‖ to obtain (8).

C Proof of Result 2

Proof Stemming from (8), we show that it is possible to write

∂R

∂vi
u = Au (22)

for some matrix A and for all vector u independent of v. Thus
in this operator form, A is indeed the representation of ∂R/∂vi.
First, observe that

∂R

∂vi
u =

∂

∂vi
(Ru) =

∂

∂v
(Ru) ei,

then substitute (8) and simplify using the cross-product proper-
ties to arrive at (22):

∂R

∂vi
u = −‖v‖−2

R [u]
×

(

vv
⊤ + (R⊤ − Id) [v]

×

)

ei

= −‖v‖−2
R [u]

×

(

vv
⊤ + [v]

×
(R⊤ − Id)

)

ei

= −‖v‖−2
R [u]

×

(

vvi +
(

v × (R⊤ − Id)ei
))

(11)
= ‖v‖−2

R

[

viv+
(

v × (R⊤ − Id)ei
)]

×
u. (23)

After some manipulations,

R

[

viv+
(

v× (R⊤ − Id)ei
)]

×
=

[

viv+
(

v × (Id − R)ei
)]

×
R,

and so, substituting in (23) and using the linearity of the cross-
product matrix (2), the desired formula (9) is obtained.

D Agreement between derivative formulas

Here we show the agreement between (7) and (9). First, use θ =
‖v‖ and the definition of the unit vector v̄ = v/θ, to write (9) as

∂R

∂vi
= v̄i [v̄]× R+

1

θ
[v̄ × (Id − R)ei]× R. (24)

Using (3) and [v̄]
×
v̄ = 0, it follows that

[v̄]
×
R = cos θ [v̄]

×
+ sin θ [v̄]2

×
.
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Also, since [v̄ × b]
×

= bv̄⊤ − v̄b⊤ and R
⊤v̄ = v̄, it yields

[v̄ × (Id − R)ei]× R = (Id − R)eiv̄
⊤
R− v̄e

⊤
i (Id − R

⊤)R

= (Id − R)eiv̄
⊤ − v̄e

⊤
i (R− Id)

= eiv̄
⊤ + v̄e

⊤
i − (Reiv̄

⊤ + v̄e
⊤
i R),

and expanding Rei and e⊤i R in the previous formula by means
of (3), we obtain

[v̄ × (Id − R)ei]× R

= eiv̄
⊤ + v̄e

⊤
i

−
(

cos θ eiv̄
⊤ + sin θ [v̄]

×
eiv̄

⊤ + (1 − cos θ)v̄iv̄v̄
⊤
)

−
(

cos θ v̄e⊤i + sin θ v̄e⊤i [v̄]
×
+ (1− cos θ)v̄iv̄v̄

⊤
)

= (1 − cos θ)(eiv̄
⊤ + v̄e

⊤
i − 2v̄iv̄v̄

⊤)

− sin θ ([v̄]
×
eiv̄

⊤ + v̄e
⊤
i [v̄]

×
).

Using property (17) with a = v̄, G = eiv̄
⊤ we have that

[v̄]
×
eiv̄

⊤ + v̄e
⊤
i [v̄]

×
= trace(eiv̄

⊤) [v̄]
×

−
[

eiv̄
⊤
v̄
]

×
,

= trace(v̄⊤
ei) [v̄]× −

[

ei‖v̄‖
2
]

×

= v̄i [v̄]× − [ei]×
= [v̄iv̄ − ei]× .

Finally, substituting previous results in (24), the desired result (7)
is obtained.

E Derivative formula with sines and cosines

Here, we show how to obtain formula (7). First, differentiate the
Euler-Rodrigues rotation formula (3) with respect to the i-th
component of the parametrizing vector v = θv̄ and take into
account that

θ2 = ‖v‖2 =⇒
∂θ

∂vi
=

vi

θ
=: v̄i.

Applying the chain rule to (3), gives

∂R

∂vi
= − sin θ v̄iId + cos θ v̄i [v̄]× + sin θ v̄iv̄v̄

⊤

+sin θ
∂ [v̄]

×

∂vi
+ (1− cos θ)

∂(v̄v̄⊤)

∂vi
. (25)

Next, we use

∂

∂vi

(

vj

‖v‖

)

=

{

− 1

θ
v̄iv̄j i 6= j

1

θ
(1 − v̄2i ) i = j

, (26)

to simplify one of the terms in (25),

∂ [v̄]
×

∂vi
=

∂

∂vi

[

v

‖v‖

]

×

(26)
=

1

θ
[ei − v̄iv̄]× .

Applying the product rule to the last term in (25) and using

∂v̄

∂vi
=

∂

∂vi

(

v

‖v‖

)

=
1

θ
(Id − v̄v̄

⊤)ei, (27)

gives

∂(v̄v̄⊤)

∂vi

(27)
=

1

θ

(

eiv̄
⊤ + v̄e

⊤
i − 2v̄iv̄v̄

⊤
)

.

Finally, substituting the previous expressions in (25), yields (7).
A similar proof is outlined in [13] using Einstein summation index
notation.
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