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Abstract 

There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute 
to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine 
methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree 
of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural 
Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A 
high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of 
epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea 
contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this 
manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations 
while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population 
levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive 
MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the 
analyzed trees. 
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Introduction 

DNA Cytosine methylation has been shown to play a 
determinant role in a variety of molecular processes such as 
regulation of plant gene expression during development [1], 
imprinting [2] or genome stability including mobile elements 
control [3,4] and polyploidization events [5,6]. 

These functions have important implications not only in fields 
like developmental biology [1] but also in ecology and evolution. 
Epigenetic mechanisms have been proposed to contribute to 
adaptation in plants [7-9]. Several recent studies have identified 
correlations between epigenetic variability and adaptive popula
tion difFerentiation of plants in response to environmental stresses 
such as drought [10,11], salinity [12,13], or damage by herbivores 
[14,15]. 

Environmentally-induced epigenetic changes have been shown 
to mediate phenotypic plasticity by regulation of specific gene 
expression as well as plant development after a change in 
environmental conditions [16-18]. It is also known that epigenetic 

variability can be independent from genetic variability [19-22], 
becoming a source for adaptive potential in itself [18,23-25]. 
Epigenetic changes induced by stress are potentially reversible but 
some modifications are not only inherited from cell to cell during 
mitosis but they can also be inherited across generations [26-29]. 
This so-called "stress memory" allows plants to retain active 
molecular mechanisms after the stress signal disappears, thus 
responding more efficiently to recurrent stressful conditions [16-
18]. Stress memory can considerably increase the adaptive 
potential and may help plants to cope with changing environ
mental conditions [24]. 

Although the number of studies about epigenetic variation 
associated with biotic and abiotic stresses in plants is increasing, 
few studies are focused on forest tree species, with perhaps the 
exception of poplar [10,11,30,31]. Trees, and especially conifers, 
are key models for the study of stress adaptation due to their 
longevity and long-life cycles [9,32]. Some conifers like Sequoia 
sempervirens or Pinus longaeva can live for 3,000 and 5,000 years, 
respectively [33]. Therefore, these species must cope with very 
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variable environments through their life spans. Conifer genomes 
are very large, with genome sizes ranging between 20,000 and 
30,000 Mbp, which on average is 200-fold larger than Arabidopsis 
genome and 6–10-fold larger than the human genome [34,35]. 
Thus, regulatory machinery for gene expression and genome 
stability must be a key factor for these species in order to survive 
under changing environmental conditions. From an ecological and 
economic standpoint, conifers are the most important group of 
gymnosperms. Altogether, they represent 39% of the world’s forest 
area [36]. However, little research about epigenetics, and more 
specifically cytosine methylation, has been done in conifers. The 
most explored fields in conifers have focused on epigenetic 
processes in tree development [37–39] and epigenetic memory to 
environmental factors [40–42]. 

Pinus pinea L. (stone pine) is one of the most ecologically, 
economically and socially important Mediterranean forest tree 
species. It is patchily distributed in the North and Southeast 
Mediterranean area, from Portugal to Syria. Stone pine is 
characterized by a very low genetic variation [43–45] and high 
adaptive plasticity that increases its global fitness [46–49]. High 
degree of phenotypic plasticity has been found in response to water 
availability. The analysis of propagated trees grown under water 
deficit revealed a significant variation in functional traits [50]. This 
genetically depauperated but plastic species constitutes an optimal 
system to study natural epigenetic variability and its potential to 
shape phenotypic plasticity [24]. 

The main goal of this work was to analyze cytosine methylation 
in Pinus pinea genome. Despite the lack of genetic variation of this 
species we expect to identify methylation variability between 
individuals that might explain the significant variation in 
functional traits observed in the species. Two different objectives 
were outlined: 1) Analyze if P. pinea genome is methylated and the 
extent of methylation. 2) Analyze if cytosine methylation is 
correlated with genetic variability or if cytosine methylation 
patterns differ among and within individuals. To carry out this 
study we have analyzed DNA from vegetatively propagated 
individuals from natural populations of stone pine using two 
genome wide profiling techniques, Amplified Fragment Length 
Polymorphism (AFLP) and Methlylation Sensitive Amplified 
Polymorphism (MSAP) surveying both genetic and epigenetic 
variability, respectively. 

Materials and Methods 

Plant Material 
A total of 20 one-year-old seed-grown individuals from five 

natural populations representing the distribution of Pinus pinea L. 
in Spain (Tordesillas, Bogarra, Biar, Don˜ana and Palafrugell; 
Table S1 and Figure S1) were selected for this study. The two most 
represented populations, Tordesillas and Bogarra, have contrast
ing climates; Tordesillas has a colder continental climate while 
Bogarra has a temperate Mediterranean climate. Vegetative 
propagation of these individuals was conducted by planting 
cuttings in a mix of equal amounts of peat and river sand using 
1% IBA (Rhizopon AA powder) to promote rooting. A set of 95 
rooted cuttings (ramets) were obtained. After two months, the 
ramets were transplanted into 1.2 l containers with a 3:1 mixture 
of peat and river sand. Plants were grown in a climatic chamber 
under controlled conditions (photosynthetic photon flux density 
(PPFD) of 600–650 mmol m 2 2 s21 , temperature of 20uC, relative 
humidity of 60% and photoperiod of 16/8) placed in a random 
block design consisting in four blocks with 1–2 ramets of each 
propagated tree per block. Four months later, needles of similar 
developmental stage and 2 cm below tip of main apical shoots 
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were collected from every ramet and stored at 280uC for 
subsequent DNA extraction. Elongating shoots with very young 
needles were discarded during sampling as well as needles from 
initial rooted cuttings, which originated from the mother tree. In 
this respect, needles of same ontogenic state were carefully selected 
to reduce methylation variation associated to different develop
mental stages. 

DNA extraction and quantification 
DNA was extracted from needles grinded in a mixer mill 

(Retsch MM300) using Dellaporta’s protocol [51] modified as 
described in Cervera et al 2005 [52] Extracted DNAs were 
quantified using a spectrophotometer (Thermo Scientific, Nano-
drop 1000). DNA integrity was determined by agarose gel 
electrophoresis (1% agarose; 1x TBE; 0.03 mg/ml EtBr). 

AFLP analysis 
A total of 59 ramets from the 13 propagated trees belonging to 

the two most represented Spanish populations were analyzed using 
Amplified Fragment Length Polymorphism (AFLP) [53]. This 
analysis was performed by digesting 500 ng DNA with EcoRI/ 
MseI restriction enzymes according to Cervera et al. [54]. The 
number of selective nucleotides for the two consecutive amplifi
cation steps was EcoRI + 1/MseI +1 for the pre-amplification and 
EcoRI +3/MseI +3 for selective amplifications. Two primer 
combinations (Table S2) were used: EcoRI + ACC/MseI + CCA 
and EcoRI + ACG/MseI + CCA. EcoRI +3 selective primers were 
labeled at their 59 ends with fluorescence dye 800 IRDye to allow 
visualization of the fragments on a Li-Cor 4300 DNA Analyzer 
(Li-Cor Biosciences, Lincoln, NE). 

AFLP amplified products were separated by electrophoresis in 
25 cm denaturing polyacrylamide gels [16% Long Ranger 50% 
Gel Solution (Lonza), 7 M urea, 1x TBE], run at 1500 V and 
45uC. Before loading, samples were denatured by adding an equal 
volume of formamide buffer (98% formamide, 10 mM EDTA, 
pH 8.0, and 0.06% bromophenol blue) and heated for 2 minutes 
at 94uC. 

Scoring of the resulting fragment patterns was based on a 
presence/absence (1/0) approach. Only markers with an un
doubtedly reliable score of at least 95% of the samples (less than 
5% of missing data) were considered to estimate genetic variability. 

MSAP analysis 
Methylation Sensitive Amplified Polymorphism technique [55], 

modified by Cervera et al. [20], was used to analyze DNA cytosine 
methylation level and pattern in the genome of P. pinea 
propagated trees. 

Due to the large genome size of conifers [35] several steps of the 
technique were optimized for pine species. The initial amount of 
DNA digested with the two restriction enzyme combinations 
(EcoRI/HpaII and EcoRI/MspI), was increased up to 500 ng 
[52]. A combination of EcoRI +1//HpaII/MspI +1 selective 
nucleotides in the pre-amplification followed by EcoRI + 3 / / 
HpaII/MspI +3 selective nucleotides in the selective amplification 
step provided the best results. EcoRI +3 selective primers were 
labeled with fluorescent dye as in AFLP. 

Initially, nine different EcoRI +3//HpaII/MspI +3 primer 
combinations (AAC/AAT, ACA/AAT, ACT/AAT, ATC/AAT, 
AAC/ACT, ACA/ACT, ACG/ACT, ATC/ACT, AAC/ATC; 
Table S2) were tested on a sample subset to identify the most 
informative combinations. For this purpose, each propagated tree 
was represented by a pool made of equimolar amounts of pre-
amplified DNAs from its corresponding ramets. All pools were 
analyzed using the nine primer combinations to compare their 
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MSAP profiles, selecting the two most informative ones: EcoRI + 
AAC//HpaII/MspI + AAT (AAC/AAT) and EcoRI + ACA// 
HpaII/MspI + AAT (ACA/AAT). These two primer combina
tions were used to analyze cytosine methylation patterns of the 95 
ramets individually. Electrophoresis settings were similar to those 
applied for AFLP analysis. 

Scoring and interpretation of MSAP fragment patterns 
Comparative analysis between EcoRI/HpaII and EcoRI/MspI 

profiles for each primer combination allows establishing the 
methylation status of each targeted restriction site. Methylation-
sensitive endonucleases HpaII and MspI cleave CCGG sequences 
with differential sensitivity to methylation at the inner or outer 
cytosine: HpaII does not cut if one or both cytosines are full-
methylated (methylation occurs in both DNA strands) but cleaves 
when cytosine methylation occurs in a single strand. MspI does not 
cut if the outer cytosine is methylated in one or both strands 
[56,57]. 

Initially, separated matrices were constructed for EcoRI/HpaII 
and EcoRI/MspI fingerprints. MSAP fragment presence or 
absence was visually determined by two independent observations. 
We detected fragments differing in intensity probably due to 
different degree of cytosine methylation in different cell types of 
the analyzed samples. Only markers with an undoubtedly reliable 
score of at least 95% of the samples (less than 5% of missing data) 
were considered to estimate epigenetic variability. Rationale for 
the comparative scoring was based on differential presence/ 
absence of a particular fragment in HpaII and MspI digestions. 
Thus, for a given sample, hypomethylation (fragment present in 
EcoRI/HpaII and EcoRI/MspI fingerprints) and full methylation 
of both cytosines (fragment absent in EcoRI/HpaII and EcoRI/ 
MspI fingerprints relative to other samples) were coded as 0. Since 
P. pinea shows undetectable levels of genetic variation, the loss of 
the target sequence motif cannot be considered within this class. 
On the other hand, for a given sample, full methylation of the 
internal cytosine (fragment only present in EcoRI/MspI finger
print) and hemi-methylation of the external cytosine (fragment 
only present in EcoRI/HpaII fingerprint) were codified as 1. The 
resulting integrated matrix was used for statistical analysis. 

MSAP markers were then classified according to their global 
pattern in all samples (Figure 1-B). Two main groups were 
identified depending on whether there was at least a difference 
between EcoRI/HpaII and EcoRI/MspI digestions profiles. 
Markers were then identified as Methylation Insensitive (MI) 
when no difference was found between the two digestions profiles 
for any sample and as Methylation Sensitive (MS) when difference 
between both profiles was found for one or more samples. These 
two groups were further split according to whether difference 
among samples was found. Following this reasoning, MI markers 
presenting the same pattern among all samples were classified as 
Monomorphic Methylation Insensitive (MMI) markers and MIs 
presenting differences among samples were classified as Polymor
phic Methylation Insensitive (PMI) fragments. MS fragments were 
classified as well into Monomorphic Methylation Sensitive (MMS), 
when they showed different pattern between isoschizomers but not 
among samples, and Polymorphic Methylation Sensitive (PMS) 
fragments when at least one sample did not show the same profile. 

Statistical analysis 
Percentages of cytosine methylation were subjected to analysis 

of variance (ANOVA; Statistica [58]) to unveil differences in the 
degree of cytosine methylation among propagated trees. MSAP 
markers showing the same profile among all individuals derived 
from the same propagated tree were identified. To analyze its 
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discriminative power, epigenetic similarity (ES) was estimated 
from the number of shared amplified fragments by using the Dice 
similarity coefficient [59] [ES(ij) = 2a/(2a+b+c)] where ES(ij) is the 
measure of ES between the individuals i and j , a is the number of 
polymorphic fragments that are shared by i and j , b is the number 
of fragments present in i and absent in j , and c is the number of 
fragments present in j and absent in i. The resultant matrix was 
subjected to cluster analysis by the unweighted pair-group method 
analysis (UPGMA) and a dendrogram was constructed according 
to the clustering. Clustering was subjected to bootstrapping in 
order to obtain values for the reliability of the consensus 
dendrogram. Similarity matrix was obtained using DistAFLP 
software [60]. Using Bootstrap Computation, 1000 matrices were 
obtained. Cluster analysis and dendrogram construction were 
performed with PHYLIP phylogeny software package (programs 
Neighbor and Consense, respectively) [61]. Dendrogram was 
visualized with MEGA software [62]. 

Analysis of the Molecular Variance (AMOVA) [63] based on 
polymorphic methylation sensitive markers was performed over 
the 59 ramets of the two most represented populations, Tordesillas 
and Bogarra (Arlequin, version 3.5 [64]). Locus by locus AMOVA 
was performed to identify markers with a significant effect on 
population differentiation or differentiation of propagated trees 
(Table S3). These markers were then used to perform a Principal 
Component Analysis (PCA; Statistica [58]). 

Results 

Genetic variability in Pinus pinea 
A total of 59 ramets from 13 propagated trees of the two most 

represented Spanish populations (Tordesillas and Bogarra) were 
analyzed using Amplified Fragment Length Polymorphism 
(AFLP). A total of 215 AFLPs were identified with confident 
reliability using two primer combinations (EcoRI + ACC/MseI + 
CCA and EcoRI + ACG/MseI + CCA). A single AFLP fragment 
pattern was observed and no variation was found among ramets 
from each propagated tree as well as among different propagated 
trees. 

Epigenetic variability in Pinus pinea 
DNA methylation variability among the 95 ramets from the 20 

propagated individuals was analyzed comparing MSAP profiles. 
The two selected MSAP primer combinations yielded a total of 
216 scored markers (Table S4) from which 139 were classified as 
MS and 77 as MI. Within MS markers, 91 were identified as PMS 
(42.13% of the total number of MSAPs). The remaining 48 MS 
markers were identified as MMS MSAPs. Out of the 77 MI 
markers, 66 were found to be MMI MSAPs. The remaining 
11 MSAPs (5.09% of the total number of MSAPs) were identified 
as PMI. Ten out of these 11 PMI MSAPs showed a different 
pattern in at least one ramet of the propagated trees. Detailed 
classification per primer combination is shown in Figure 1-A. 

The EcoRI + AAC//HpaII/MspI + AAT (AAC/AAT) primer 
combination was the most informative with 119 out of the 216 
amplified MSAPs analyzed. The main difference between primer 
combinations was found in the number of PMS markers since 
MMS, MMI and PMI markers showed similar values for the two 
primer combinations (Figure 1). 

Comparison of EcoRI/HpaII and EcoRI/MspI profiles showed 
contrasting levels of polymorphism. While EcoRI/MspI provided 
a higher number of MSAPs than EcoRI/HpaII, 116 versus 91, 
their fragment patterns were less polymorphic. In particular, 82 
out of the 91 PMS markers showed variation only in the EcoRI/ 
HpaII profiles, 5 only in the EcoRI/MspI profiles and the 
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Figure 1 . Pinus pineagenome-wide methylation analysis based on MSAPs. Four different classes of MSAPs were identified depending on 
their cytosine methylation status and their polymorphic profile: Monomorphic Methylation Insensitive (MMI), Polymorphic Methylation Insensitive 
(PMI), Monomorphic Methylation Sensitive (MMS) and Polymorphic Methylation Sensitive (PMS). a): percentage of MSAP markers assigned to each 
class; b) fragment pattern associated with each class. 
doi:10.1371/journal.pone.0103145.g001 

remaining 4 were associated with polymorphic MSAPs identified 
in both profiles (Figure 2). Thus, 91.67% of the MMS fragments 
were only found in EcoRI/MspI profiles (Figure 2). 

We explored differences in methylation level among the 
propagated trees estimating the number of MS markers detected 

for each ramet vs. the total number of MSAPs. The resulting mean 
value and standard deviation of all ramets corresponding to the 
same propagated tree were calculated. Values ranged from 
42.7360.88% (Pal 27) to 47.9060.42% (Tor 27) (Table 1). 
DNA methylation significantly varied among the 20 different 

Figure 2. Detailed isoschizomer-based analysis of Methylation Sensitive fragments (MS). Comparison of Methylation Sensitive (MS) 
fragments between EcoRI/HpaII and EcoRI/MspI profiles. PMS.- Polymorphic Methylation Sensitive fragments; MMS.- Monomorphic Methylation 
Sensitive fragments. 
doi:10.1371/journal.pone.0103145.g002 
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Table 1 . Quantification of cytosine methylation in all analyzed genotypes. 

Propagated tree 

Tor 

Tor 

Tor 

Tor 

Tor 

Tor 

Tor 

Tor 

Bo -

Bo -

Bo -

Bo -

Bo -

Don 

Don 

Don 

Bi -

Bi -

Pal -

Pal -

- 3 

- 7 

- 12 

- 13 

- 24 

- 25 

- 27 

- 29 

13 

14 

18 

20 

21 

- 10 

- 13 

- 15 

23 

37 

19 

27 

Percentage of cytosine methy 
doi:10.1371/journal.pone.0103 

DNA methylation (mean and std. dev. in %) 

44,97 60,37 

44,67 61,08 

44,48 60,81 

44,21 61,71 

44,47 60,46 

45,05 60,28 

47,9 60,42 

43,37 60,63 

46,54 60,83 

45,15 60,56 

43,7 60,96 

46,98 60,47 

46,55 6 1,09 

45,69 60,34 

46,15 61,05 

45,26 61,79 

47,12 62,27 

44,21 60,85 

45,05 61,18 

42,73 60,88 

lation and number of 
145.t001 

polymorphic fragments are provided for each genotype. 

Number of PMS MSAPs 

1 

8 

4 

16 

12 

14 

6 

16 

3 

5 

10 

2 

16 

8 

21 

17 

9 

20 

11 

9 

propagated trees (ANOVA, p,0.0001). Cytosine methylation 
polymorphism among ramets of each propagated tree, based on 
PMS detected among ramets vs. total number of MSAP 
fragments, was also calculated with values ranging between 
0.46% (Tor 3) and 9.72% (Don 13). 

Similarity analysis among MSAP profiles of the propagated 
trees allowed the identification of 15 PMS that, while being 
polymorphic among the analyzed trees, shown the same pattern 
among their vegetatively propagated ramets (Table S4). These 
markers were used to calculate an epigenetic similarity matrix 
based on DICE coefficient and to perform an UPGMA cluster 
analysis. As a result, the use of the 15 PMS MSAPs allowed to 
identify 14 out of the 20 studied individual trees (Figure 3) 
meaning that for these trees, all their ramets clustered together in 
common branches. Bootstrap values for these clusters were above 
50% in 11 of the 14, and above 25% in all cases. All propagated 
trees from both Bogarra and Don˜ana populations were clustered 
as well as 5 out of 8 trees from Tordesillas. Trees from both Bihar 
and Palafrugell populations were not clustered together. 

Although the number of analyzed trees is scarce to approach 
population epigenetic studies, we roughly estimated variability of 
DNA cytosine methylation associated with the studied popula
tions. For this purpose, the mean value of the methylation levels 
obtained for all propagated trees of a given population was 
calculated. Palafrugell was the population whose individuals 
showed the lowest level of DNA methylation with 43.8961.64% 
methylated cytosines, followed by Tordesillas, Biar, Don˜ana and 
Bogarra with 44.8961.32%, 45.6662.06%, 45.7060.44% and 
45.7861.35%, respectively. We also found variation in the 
percentage of PMS MSAPs among populations (for a given 
population, PMS MSAPs vs total MSAPs). The less polymorphic 
population was Palafrugell (13.89%) and the most polymorphic 

one was Tordesillas (27.31%). Biar, Bogarra and Don˜ana showed 
intermediate values of 16.67%, 17.13% and 18.52%, respectively. 

We tested the discriminative power of MSAP markers for the 
same two populations analyzed with AFLP technique by 
performing an Analysis of the Molecular Variance (AMOVA). 
The fixation index between populations (FST) was 0.274 ( p , 
0.0001). A locus-by-locus AMOVA was performed to determine 
which markers showed statistically significant epigenetic variation 
among populations. The resulting 52 markers (69.3% of the total 
polymorphic MSAPs identified in the two populations; Table S3) 
were used to differentiate populations and propagated trees using a 
Principal Components Analysis. First two components accounted 
for 35.24% of the total variance (comp. 1=21.60%; comp. 
2=13.64%). Scores for these two components of each analyzed 
ramet were plotted in Figure 4. First component clearly differen
tiated both populations. In addition, it was possible to identify 
three propagated trees from Tordesillas population (Tor 3, Tor 7 
and Tor 25) whose ramets clustered in separate groups. 

Discussion 

Stone pine has been described as a genetically depauperated 
species, showing a very low level of genetic diversity [43–45]. The 
almost undetectable genetic variation has made it very difficult to 
genetically distinguish stone pine trees. In this study, we were 
unable to identify a single polymorphic marker using the multi-loci 
technique AFLP, making impossible genetic discrimination of the 
analyzed trees. This lack of genetic variation together with the 
relevant phenotypic plasticity displayed by this species [50], 
supports Pinus pinea as a suitable model for studying epigenetics 
and its ecological and evolutionary implications [24]. 
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Figure 3. UPGM tree for genotype identification. Genetic similarity was calculated and bootstrapped UPGMA clustering was performed for 
genotype discrimination. Bootstrap computation percentages are shown over the different branches. Tree has been condensed a 25% and clones 
from the same genotype clustering together are labeled under the genotype code name for easier visualization. 
doi:10.1371/journal.pone.0103145.g003 

In this study we have analyzed DNA cytosine methylation 
patterns of 20 selected Pinus pinea individuals from natural 
populations covering the area of distribution of the species in 
Spain, as a first attempt to characterize this species. Due to the 
limited number of cDNAs that are publicly available for this non-
model tree species, MSAP technology was used to analyze the 
methylation status of anonymous cytosines in P. pinea genome. 
We have detected that 64.36% of the analyzed cytosines at CCGG 
motifs were methylated. The observed percentage of stone pine 
genome-wide cytosine methylated sites was at least 10% higher 
than those reported for both annual and other perennial plants 
[6,12,21,65–67]. This result is in agreement with genome 
hypermethylation of conifer genomes proposed by Nystedt et al. 
[68] as one of the mechanisms underlying conifer genome 
evolution. It is interesting to mention that most of the markers 
that were not selected for the analysis (DNA fragments undoubt
edly scored in less than 95% of the analyzed samples) were 
Methylation Sensitive. Additionally, the degree of cytosine 
methylation is expected to be even higher since fully methylated 
sites cannot be detected with the MSAP technique [21,66]. The 
broad presence of DNA methylation found in Pinus pinea genome 
might be related to certain extent with the repetitive nature of 
conifer genomes [68]. DNA methylation is known to control 
activity of mobile elements, protecting plant genomes against their 
mobilization [4,69] and transposable elements are abundant in 
conifer genomes. Pseudogenes, which are also very abundant in 
conifers, have been described in mammal genomes as elements 

encoding long noncoding RNAs involved in the epigenetic 
regulation of gene expression [70]. 

This study has also revealed a high level of PMS markers 
meaning that 42.13% of the total MSAPs analyzed (or 65.46% of 
MS markers) showed cytosine methylation variation. Taking into 
account that this study comprises ramets belonging to 20 trees 
from five populations, this result becomes especially significant to 
picture the cytosine methylation landscape of the species. Several 
studies suggest that cytosine methylation variability in particular, 
and epigenetic variability in general, may be associated with 
phenotypic plasticity in traits with potential for improving local 
adaptation [12,18,65]. It has been shown in Arabidopsis thaliana 
that epigenetic diversity favors functional diversity associated with 
productivity and stability of populations [71]. The epigenetic 
variation found in Pinus pinea may play a role in the fitness of the 
species by acting as an alternative source of variability, different to 
genetic diversity, with evolutionary consequences. 

Better understanding of this high DNA methylation variation 
can be achieved by comparing isoschizomers profiles associated to 
EcoRI/HpaII and EcoRI/MspI digestions. Most of the cytosine 
methylation variation detected (90% of the PMS fragments) was 
associated with EcoRI/HpaII profiles, as the result of fragment 
detection due to HpaII digestion of hemimethylated external 
cytosines at the CCGG sites (mCNG), that other samples lack 
because of fully methylation of the inner (CmCGG) or both 
cytosines (mCmCGG) at the corresponding sites. On the other 
hand, the number of MSAPs present in the EcoRI/MspI profile 
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Figure 4. Two dimensional PCA scatter plot for population differentiation. Principal Components was performed to analyze samples 
belonging to Tordesillas and Bogarra populations using MSAPs with significant epigenetic effect differentiating populations and propagated trees. 
Bogarra ramets are identified by squares and Tordesillas ramets by triangles. Propagated trees which ramets clustered together are highlighted with 
circles. First component (X axis) gathers 21.60% of the variation and second component (Y axis) 13.64. 
doi:10.1371/journal.pone.0103145.g004 

was higher (117 vs 94) and most of the MMS fragments (91.67%) 
were found associated with MspI digestion. This lower level of 
variation may be associated with a higher percentage of fully 
methylated cytosines at CG motif (CmCGG) in Pinus pinea 
genome. These results are in agreement with the highest levels of 
cytosine methylation found in the CG motif observed in both 
plants and animal genomes [72]. In Arabidopsis it is mainly found 
in heterochromatic regions with transposable elements and 
repeats, as well as in genic regions. Cytosine methylation in 
CNG sequence motif (where N denotes A, T or C; in our case N is 
C), which is also frequent in plant genomes, is associated with 
histone modification and involved in small non-coding RNA 
biogenesis in Arabidopsis [73]. From an adaptive perspective, 
modification of their methylation status may allow trees to rapidly 
respond to abrupt changes in environmental conditions as well as 
to deal with long term responses to more general environmental 
scenarios [74]. 

The extent of cytosine methylation at CCGG sites was 
statistically different among stone pine individuals, ranging from 
42.73% to 47.90%. PMS fragments among vegetatively propa
gated plants obtained from each original tree were used to estimate 
variability among the 20 trees initially analyzed. Polymorphism 
levels ranged from 0.46% (Tor 3) to 9.72% (Don 13). This 
variability may be associated with the developmental stage of the 
plant or/and differences in their growing environmental condi-

tions. Although all clonally propagated trees shared their 
chronological stage, methylation variability may be in part 
associated with differences in their ontological stage, since each 
ramet derived from a different branch of the corresponding one-
year-old mother tree, developing a specific rooting pattern. 
Additionally, soil heterogeneity among plant pots and micro-
environmental variation among plants due to the block design may 
be associated to some extent with methylation variability. 

It is known that MSAP technique could help assessing genetic 
variability of the analyzed samples since PMI fragments can be 
associated with mutations on the restriction site in individuals 
lacking the fragment. However, considering the absence of genetic 
variation in the species, also supported by the AFLP analysis, PMI-
MSAP fragments (5.09% of the total number of MSAPs) detected 
in trees from five populations of stone pine should be mainly 
associated with fully methylated mCmCGG restriction sites, which 
are demethylated in those individuals with fragment presence. All 
these results indicate that epigenetic variability is independent 
from genetic variability in this species and therefore underscore 
the potentially important role of the epigenetic variability as an 
evolutionary mechanism [24,75]. 

To acquire a better understanding of the evolutionary 
implications of this biological process, additional experiments are 
required to study modification of the cytosine methylation status in 
response to different environmental conditions (i.e. drought, 
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different atmospheric CO2 concentrations, etc.) as well as 
transgenerational inheritance of these epigenetic marks at both 
genome - and candidate gene-level. 

In relation with genomic resources and from an agronomic 
point of view, the lack of genetic variation has limited the advance 
of breeding programs of the species. P. pinea is an economic 
important tree species mainly due to its edible seeds and elite 
clones for cone production are cultivated in grafted plantations 
using mainly non-clonal rootstocks [76]. Limitation to identify 
both, elite tree cuttings and rootstocks, makes more difficult a 
reliably selection and effective discrimination of materials with a 
superior capacity for pine nuts yield. The MSAP technique opens 
an alternative that is worth exploring in order to achieve tree 
discrimination. In this study we detected a total of 15 PMS that 
were present or absent in all propagated trees obtained from each 
original tree (i.e. same profile among ramets from a mother tree 
but different profiles among different mother trees) that allow to 
distinguish 14 out of the 20 original trees analyzed. Due to the 
reduced set of markers in comparison with the number of analyzed 
samples the epigenetic relationships among the 14 trees were not 
determined, as indicated by the low bootstrap values obtained at 
most of the nodes. Additional PMS markers with potential 
discriminant power could be identified using additional primer 
combinations. A suitable number of markers can potentially be 
useful for elite tree identification, supporting stone pine breeding 
programs with a reliable method to identify improved materials. 
However, DNA methylation status of cytosines at target CCGG 
restriction sites from a given organ may vary, as mentioned above, 
due to plant ontogeny or environmental changes. It is therefore 
critical to determine the stability of any selected PMS-MSAP 
marker in different developmental stages and contrasting growing 
conditions. 

Population differentiation for conservation purposes is also a 
major issue in this species. Different provenances have been 
identified along the Spanish natural distribution based on 
environmental characteristics (climatic and geographic) and 
historical human intervention (fires, clear-cuts, reforestations) but 
without a genetic structure supporting it [77]. Recently, a set of 
nuclear microsatellites with medium-low or low polymorphic 
information content have been identified and used to analyze, in a 
broad sense, stone pine population structure [45]. Additionally, 
inter-population variability has been described for growth related 
phenotypic traits in common garden assays [48,49]. MSAP 
analysis offers the opportunity to study a source of variability 
unexplored to date [78]. Although the low number of individuals 
per population in this work does not reach the typical approach 
from population genetic studies, a preliminary analysis showed 
epigenetic differences among populations. AMOVA and PCA 
performed over the two Spanish populations represented in this 
study with a higher number of trees, Tordesillas and Bogarra, 
showed that MSAP fragments were informative enough to clearly 
differentiate them, in contrast with the single AFLP pattern shared 
between all the samples that made it impossible to distinguish both 
populations. PCA results showed how ramets from each popula
tion clustered together along the first component in a two-
dimensional scatter plot. In addition, it was possible to identify 
smaller clusters of ramets corresponding to propagated trees. Even 
though genome-wide methylation levels were similar among 
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