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A b s t r a c t . Bayesian network classifiers are widely used in machine 
learning because they intuitively represent causal relations. Multi-label 
classification problems require each instance to be assigned a subset of 
a defined set of h labels. This problem is equivalent to finding a multi­
valued decision function that predicts a vector of h binary classes. In this 
paper we obtain the decision boundaries of two widely used Bayesian net­
work approaches for building multi-label classifiers: Multi-label Bayesian 
network classifiers built using the binary relevance method and Bayesian 
network chain classifiers. We extend our previous single-label results to 
multi-label chain classifiers, and we prove that, as expected, chain classi­
fiers provide a more expressive model than the binary relevance method. 

1 Introduction 

We consider a multi-label classification problem [19] over categorical predictors, 
that is, mapping every instance x = (x i , . . . , xn) to a subset of h labels: 

fii x • • • x fin —>Ycy= {yi,...,yh}, 

where i?j C K, \i2i\ = m; < oo. This could be transformed into a multi­
dimensional binary classification problem, that is, finding an /i-valued decision 
function f that maps every instance of n predictor variables x to a vector of h 
binary values c = (c i , . . . , Ch) € { — 1, +1}^: 

f : ft = J?i x • • • x nn -4- {-1, +l}h 

( X l , . . . , Xn) \—> ( c i , . . . , Ch), 

where Cj = +1 ( — 1) means that the ith label is present (absent) in the predicted 
label subset. Moreover, we consider the predictor variables X\,... ,Xn and the 
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binary classes C$ € { —1, + 1 } as categorical random variables. Real examples in­
clude classification of texts into different categories by counting selected words, 
diagnosis of multiple diseases from common symptoms and identification of mul­
tiple biological gene functions. 

The simplest method to build a multi-label classifier is to consider h single-
label binary classifiers, one for each class variable C$. Each classifier /$ is learned 
from predictor variables and C$ data, and the results are combined to form 
multi-label prediction. This method, called binary relevance [6], is easily imple-
mentable, has low computational complexity and is fully parallelizable. Hence it 
is scalable to a large number of classes. However, it completely ignores depen­
dencies among labels and generally it does not represent the most likely set of 
labels. 

Chain classifiers [14] relax the independence assumption by iteratively adding 
class dependencies in the binary relevance scheme, that is, the A;th classifier in 
the chain predicts class C& from X\,..., Xn, C\,..., Ck—i. 

We study differences in the expressive power of these two methods when 
Bayesian network (BN) classifiers [1] are used. Sucar et al. [15] employed naive 
Bayes within chain classifiers. We use the results on the decision boundaries 
and expressive power of one-dimensional BN classifiers. (a) For naive Bayes 
classifiers, Minsky [9] proved that the decision boundaries are hyperplanes if 
binary predictors are used. (b) Peot [11] observed that Minsky’s results could 
be extended to categorical predictors. (c) Recently, we have developed a method 
[18] to compute decision boundaries for a broad class of BN classifiers. In this 
paper we extend these results to multi-label classifiers. Moreover, we suggest 
some theoretical reasons why the binary relevance method performs poorly and 
prove that chain classifiers provide more expressive models. 

The paper is organized as follows. In Sect. 2 we give some definitions and re­
port our results on one-label classifiers. We describe the binary relevance method 
in Sect. 3 and chain classifiers in Sect. 4. In Sect. 5 we compare the decision 
boundaries, and expressive power of the two methods. In Sect. 6 we present our 
conclusions and some ideas for future research. 

2 Expressive Power of One-Dimensional BN Classifiers 

We first report some results on the decision boundary and expressive power of 
one-label, or equivalently one-dimensional binary, BN classifiers [18]. In partic­
ular we look at Bayesian network-augmented naive Bayes (BAN) classifiers [5]. 

BAN classifiers are Bayesian network classifiers where the class variable C is 
assumed to be a parent of every predictor and the predictor sub-graph can be a 
general BN. The decision function induced by the BAN classifier is 

fa (xi,... ,xn) = arg max P(C = c,Xi = xi,...,Xn = xn), 
c£{-l, + l} 



where P{C = c, X\ = x\,..., Xn = xn) could be factorized according to BN 
theory [10] as 

n 

P (C = c) \ P (Xi = Xi\C = c, X p a ( j ) = xpa(j-)) , 
i=i 

where Xp a( j ) s tands for the vector of parents of Xi in the predictor sub-graph 
Q. Moreover, pa ( i ) denotes the set of indexes defining the parents of Xi tha t are 
not C and M$ = x s e p a ( j ) { l , . . . , ms}, the set of possible configurations of the 
parents of Xi. 

Let us recall t ha t the sign function sgn(t) is defined as 

[ + 1 if t> 0 

sgn{t)= < 0 if t =0 

[ -1 if t < 0. 

We define [18]: 

Def in i t ion 1. Given a decision function f : Q —> { —1 ,+1} , where Q C Mn , 
| Q| < oo and r : R n 1 4 I is a polynomial, we say that r sign-represents f if 

/ ( x ) = sgn(r(x)) for every x G Q. 

Moreover, given a set of polynomials V, we denote by sgn{V) the set of decision 
functions that are sign-representable by polynomials in V and by { — 1 , + l } ' n ' , 
the set of all 2'n' decision functions over $7. 

Example 1. We consider Q = {0, 2} x {—3,1} and the decision function over Q 

1+1 if (x i , X2) = (0, — 3) , (2, — 3) , (0 ,1) 
M \ - l i f ( x 1 , x 2 ) = ( 2 , l ) . 

We have tha t the polynomial r(xi, X2) = — xi — X2 + 3 sign-represents / over $7, 
precisely: 

r(0, —3) = 6 > 0, r(2, —3) = 2 > 0, r(0,1) = 2 > 0 and r(2,1) = —2 < 0. 

Next let us recall the definition of the Vapnik-Chervonenkis (VC) dimension 
[17]. 

Def in i t ion 2. Given a subset of decision functions T C { — l , + l } ' n ' , we say 
that T shatters fio C $1 if for every g G { — l j + l } ' ^ 0 there exists a decision 
function f G T such that / |n 0 = g, where / |n 0 indicates the restriction of f over 

That is, T shatters Qo if every decision over Qo is representable by some ele­
ments of T. The cardinality of the largest subset shattered by T is called the 
VC dimension of J-'. It indicates the maximum number of points tha t can be 
discriminated by J-'. 



Def in i t ion 3 . The VC dimension of T C { — 1 , + 1 } ' n ' , denoted by dyc(J7), 

defined by 

wc (J7) = max{|f20| s.t. fi0 is shattered by J 7 } . 

For every predictor variable Xi G fli = {£1,..., £[""*}, we define the Lagrange 
basis polynomials over fli 

t • *(x) = —: — for every j = 1 , . . . , m ; and i £ f . (1) 

Then we have [18]: 

L e m m a 1. If f is the decision function induced by a BAN classifier for a clas­
sification problem with n categorical predictor variables {Xi G fli C R , \&2i\ = 
mi}i'=1, then there exists a polynomial of the form 

n nii 

^j z(xi) A(i|k) £k
3(xs) 

i=1 j=1 k e M i sGpa(i) 

that sign-represents f, where we write ^keM- A ( i | k ) ELepa(i) ^k s (xs) = A(?) 
when a variable does not have parents different from C, that is, pa( i) = 0. 

The proof of Lemma 1 [18] is constructive and the coefficients A(?'|k) of the 
built polynomial are related to the conditional probability tables of the BAN. 
Precisely we have tha t 

P(Xi = &\Xs(i) = £ g , Vs G p a ( i ) , C = +1) 
Pi(j\K)= l n : ; T ; , ( 2 ) 

P(Xi = £ | |X s ( i ) = £s s , Vs G p a ( i ) , C = — 1) 

where k = (ks) (.), ks G {1,..., ms}. 

When the predictor sub-graph Q does not contain V-structures, the inverse 

implication of Lemma 1 is provable and thus the following theorem [18] holds. 

T h e o r e m 1. Let Q be a directed acyclic graph with nodes Xi for i G {1, 2 , . .., n} 
and f, a decision function over predictor variables Xi G fli = {£1, .. ., £[""*}. Sup­
pose that Q does not contain V-structures, then we have that f is sign-represented 
by a polynomial of the form 

n rrii 

r(x) = / / ^ji(xi) / A(?'|k) I I £k
s(xs), 

i=1 3 =1 kGM i sGpa(i) 

if and only if f is induced by a BAN classifier whose predictor sub-graph is Q. 

The above result applies in a lot of practical cases as naive Bayes (NB) 
classifier [9], tree augmented naive Bayes (TAN) classifier [5] and super-parent 



one-dependence-estimator (SPODE) classifier [8], because the corresponding pre­
dictor sub-graphs do not contain V-structures. Moreover, Theorem 1 implies tha t 
when Q does not contain V-structures the family of polynomials 

[ n mi I 

Vg = < r(x) = \ \ £• i(xi) y /3j(j|k) I I £k
s(xs) s.t. /3j(j|k) G R > 

[ i=1 j=1 keMi sGpa(i) J 
(3) 

completely represents the set of decision functions induced by BAN classifiers, 
tha t is, sgn(Vg) is exactly the set of decision functions induced by BAN classifiers 
whose predictor sub-graph is Q. 

Remark 1. In the simplest NB classifier case, tha t is, when the predictor sub­
graph Q is an empty graph, we have tha t 

I n rrii | 

Vg = VNB = \ r(x) = y^ y^a.i(j)£j *(a?j) s.t. o.i(j) G R > 
I i=1 j=1 \ 

is exactly the set of polynomials tha t sign-represent the decision function induced 
by NB classifiers. 

We can prove tha t the set Vg is a vector space of dimension 

d = (rrii — 1) ms + 1 

»=1 \ sGpa(i) / 

and tha t the VC dimension of sgn(Vg) is precisely d. Theorem 1 also places 
an upper bound on the number of decision functions representable by BAN 
classifiers without V-structures [18]. 

C o r o l l a r y 1. Consider a BAN classifier over predictor variables Xi G fli, 
\^i\ = mi for every i = 1,. .., n. Moreover suppose that the predictor sub-graph 
Q does not contain V-structures. Then we have 

\sgn(Vg AN )\<C{M,d)= 2 2_J{ , 
fc=0 

where d = 2^ i = 1 I {'m-i — 1J l l s e D a ( j ) 'm-s j + J- and M = [[i=1 rrii. 

Remark 2. If Q, = fl1 x • • • x i?„, we observe tha t |{ — 1 , + l } ' n ' | = 2 ' n ' = 2M. 
Thus Corollary 1 implies tha t in the case of the NB classifier the quotient of 
decision functions representable by NB classifiers over 2M becomes vanishingly 
small as the number of predictors increase. Figure 1 shows the number of total 
decision functions (2 ' n ' ) and the bounding of Corollary 1 for NB classifiers with n 
binary predictors, C(M, d). Observing tha t the scale of the graph is logarithmic, 
the graph shows tha t the number of decision functions induced by NB classifiers 
is small compared with all possible decision functions over Q. 

a 



NB Upper Bound vs. Total Number of Decision Functions 

2 4 6 8 10 12 14 

Fig . 1 . Total number of decision functions over n binary predictors (gray) and the 
bounding C(M, d) of Corollary 1 (dashed black) for NB classifiers 

Remark 2 could be extended to every type of BAN classifier, such that for every 
variable the number of parents is bounded (Corollary 17 in Varando et al. [18]), 
that is, |pa(i)| < K. 

Remark 3. When the predictor sub-graph Q of a BAN classifiers contains V-
structures, Lemma 1 is still valid and exists a polynomial that sign-represents 
the induced decision function. The problem is that the associated family of 
polynomials is not a linear space as in (3), thus is not possible to employ the 
same techniques as in Varando et al. [18] to prove the bounding in Corollary 1. 

3 Binary Relevance Method 

We consider the binary relevance method with BAN classifiers, that is, for every 
class Ci we build a BAN classifier with predictor sub-graph Q. Thus every one-
dimensional classifier has the same predictor structure and differs with respect to 
the values of the conditional probability tables that define the BAN models. From 
a practical point of view, the advantages of this method are that the structure 
of the predictor sub-graph has only to be learned once and the parameters of 
the BN are then fitted to the different data sets related to each class. 

From Lemma 1 it follows that if f = (/i(x) , / 2 (x ) , . . . , /h(x)) is the multi­
valued decision function induced by the h BAN classifiers, then there exist 

Pl(x),...,ph(x) eVg, 

such that / i(x) = sgn(pi(x)) for every i G {1,..., h}. Thus, in Lemma 2, we 
bound the number of multi-valued decision functions representable by the BAN 

n 



binary relevance method, when the predictor sub-graph does not contain V-
structures. 

L e m m a 2. Consider h BAN classifiers, whose predictor sub-graph Q contains 
no V-structures, to predict h binary classes. We have that N(Q, h), the number of 
h-valued decision functions representable by the BAN binary relevance method, 
satisfies 

N(G, h) < C(M, d) , 

j 2 ^ d - l (M-l\ j v ^ « ( n \ 
where C(M,a) = k=o\ k ) , Z^i=i ( (mi ~ 1) llsepa(i) m» j + 1 and 
MT—rn 

= [[i=1 TOj. 

Proof. The proof is a straightforward application of Corollary 1. • 

Remark 4. The total number of h-valued decision functions over n categorical 
predictors is 2h ^ mi = 2hM. Then the fraction of h-valued decision functions 
representable by the BAN binary relevance method is bounded by 

N(G.h) ( C(M, d)\ 
J _ < __ 

2hM — I 2M ' 

Thus, as in Remark 2, we have tha t if we fix the structure of the predictor sub­
graph, and it does not contain V-structures, the number of representable multi­
valued decision functions becomes vanishingly small as the number of predictors 
increase. Moreover, using the binary relevance method, the speed at which the 
ratio between representable multi-valued decision functions and the total number 
of multi-valued decision functions drops to zero, is exponential in h, the number 
of classes. 

The above bound could also be computed when each of the h BAN classifiers 
is built with different structures, tha t is, the A;th classifier to predict class Ci~ is 
a BAN classifier whose predictor sub-graph Qk does not contain V-structures. 
Then if we denote N(Q\,... ,Qh) the number of h- valued decision functions built 
with h BAN classifiers whose predictor sub-graph is Q\,..., Qh respectively, we 
have tha t 

h 

N(Qi,..., Qh) < C(M, dk), 
fc=i 

where c4 

in Qk and M 
= 11^=1 ™i . 

Example 2. We consider two binary classes C\, Ci and two predictor variables 
Xi G {0,1} and X2 € {2, 3 , 4} . Using the binary relevance method we build two 
independent NB classifiers, see Fig. 2. 

Next, we list the conditional probability tables for both classifiers (Tables 1a 
and 1b). 



Fig . 2 . Two NB classifiers in Example 2 

Ta b l e 1 . Conditional probability tables in Example 2 for the two NB classifiers 

(a) NB for C1 

X\ 
0 
1 

C\ = +1 
0.5 
0.5 

C = -1 
0.25 
0.75 

X2 
2 

3 

4 

C\ = +1 
0.3 

0.5 

0.2 

C = -1 

0.1 

0.7 

0.2 

(b) NB for C2 

X\ 
0 
1 

C2 = + 1 
0.7 
0.3 

C2 = -1 
0.4 
0.6 

X2 
2 

3 

4 

C2 = + 1 
0.1 

0.1 

0.8 

C2 = -1 
0.6 

0.2 

0.2 

From the representation of Theorem 1 we have t ha t there exist two polyno­
mials p1, p2 t h a t sign-represent the decision functions induced by the two NB 
classifiers 

p1(x1, x2) 

and 

p2(x1, x2) 

ln 

ln 

ln 

+ l n 

ln 

0.5 

0.25 

x\ — 1 

1 
ln 

0.5 \ x\ 

0.75 1 

0 . 3 \ (x2 — 3)(x2 — 4) 

0.1 2 
ln 

0 . 2 \ (x2 — 2)(x2 — 3) 

0.2 2 

/ 0 . 7 \ x\ — 1 
ln — 

0.4 1 
ln 

0 . 3 \ x\ 

0.6 1 

0.1 \ (x2 — 3)(x2 — 4) 

0.6 2 
ln 

0 . 8 \ (x2 — 2)(x2 — 3) 

0.2 2 

0 . 5 \ (x2 — 2)(x2 — 4) 

0.7 1 

0.1 \ (x2 — 2)(x2 — 4) 

0.2 1 



We have that 

f(x) = sgn(pi(x)), sgn(p2(x)) 

is the bi-valued decision function that predicts C\,C2 from X\,X2. Figure 3 
shows the decision boundaries of the two classifiers (black for C\ and gray for 
C2). We observe that the predictor space Q = {0,1} × {2,3,4} is partitioned 
into four subsets corresponding to the four different predictions of the two binary 
classes. Moreover, the value of the respective predicted class changes when one 
of the decision boundaries is crossed. 

Fig . 3 . Decision boundaries for the two NB classifiers in Example 2. The value of the 
predicted classes and the coordinates of the points are reported. 

4 B N Chain Classifiers 

The easiest way to relax the strong independence assumption of the binary 
relevance method is to gradually add the predicted classes to the predictors. 
Specifically, suppose that we have to predict h binary classes C1, . . . , Ch from n 
predictor variables X1, . . . , Xn. We consider h BAN classifiers such that the kth 
BAN classifier predicts Ck from the variables 

X1,...,Xn,C1,...,Ck-1. 

From Lemma 1 we have that there exist h polynomials p1, . . . , ph such that 

pk(x,c1,...,ck-1) : R n + k - 1 R 



Pk £ T^Qki 

where Qk is the predictor sub-graph related to the A;th BAN classifier over 
X\,... ,Xn,C\,...,Cfc_i. 

If we consider only naive Bayes classifiers, we state 

f n mi fc-1 \ 
I r(x) = > > ai(j)£ • %(Xi)+ / /3i(+l)£+

-
1 ' (Ci)+ /?i(—l)^-

 -
1 ' (ci) I 

k = % / i 
i=1J=1 i=1 

^ s.t. «i(j) , /3i(+l), /3i(—1) GR J 
(4) 

for the set of polynomials sign-representing the decision function of the A;th 
classifier in the chain, tha t is, the NB classifier tha t predicts Ci~ from X\,..., Xn 

and Ci,..., Cfc_i. Moreover, observe tha t 

/ i i - i + 1 } ( Cj + 1 | 1 if Cj = + 1 
t_j_1 ' C j ) = = < 

2 0 i f a = 1 

/ ){- i+U( 1 — Cj 0 if Cj = + 1 

1 2 1 if Cj = -1 

For the first class C\, we have tha t the first classifier is a NB over X\,..., Xn 

and so the decision function for C\ is 

/ l ( x ) = sgn(pi(x)), (5) 

where £>i(x) = 2^ i = 1 z^,-=i «j(j)c • (Xj) € r i . For the second class 02, we have 
a NB classifier over Xi,..., Xn, C\. Thus /2(x) , the decision function for C2, is 

/2(x) = s<;n(p2(x,ci) , (6) 

where ^2 € ^2 and ci = / i ( x ) . Substi tuting (5) in (6), we obtain 

/2(x) = s<;n(p2(x, s<?n(pi(x))) . 

This chain classifier over two classes is equivalent to the bi-valued decision func­
tion 

f = ( / l ( x ) , /2(x)) . 

Iterating the above computations, we have tha t the A;th decision function tha t 
predicts class Ci~ is given by 

/fc(x) = sgn pk (x , / i ( x ) , . . . , /fc_i(x)) , 



where pi~ G Vk . More explicitly, we have that 

sgn[ gfc(x) + 7 ( + l , + l , . . . , + l ) I if /i(x) = +1 , . . . , /fc_i(x) = +1 

/fc(x) = < sgnl gfc(x) + 7(ci, o"2 • • • , Cfc-i) if /i(x) = <7i,.. ., /;_i(x) = <7fc_i (7) 

sgn[ gfc(x) + 7 ( - 1 , - 1,... , - 1) I if /i(x) = -!,..., /fc_i(x) = - 1 

where </fc(x) G Pi and 7(o"i , . . . , 0"fc-i) € K for every (<TI , . . . , <7fc-i) 
1 , + 1 . In other words, the A;th decision function, in every subset of 

R for every (<TI , . . . , <7fc-i) € 
{ —1,+1}fe_1. In other words, the A;th decision function, in every subset of Q, 
defined by the previous k — 1 decision functions, is sign-represented by a poly­
nomial in V\ or equivalently by a NB classifier over the original predictors. The 
only difference between these polynomials is the additive coefficients. Precisely 
the additive coefficients 7(c"i , . . . , 0"fc-i) are obtained from the representation in 
(4) as follows: 

fc-i 

7 ( < 7 l , . . . , <7fc - l )= y /3j(<7j), 

where 

l3i(ai) =ln^ 

Figure 4 shows two examples of decision boundaries of a NB chain classifier for 
two classes. The predictor domain in both examples is {0,1,2,3} x {0,1,2,3}. 
We observe that the decision boundaries related to the second class in the chain 
C2 (dashed black line) are dependent on the decision boundaries of the first class 
C\ (gray line). 

Remark 5. For simplicity’s sake, we have presented the computation of the de­
cision boundaries in the NB case. The same arguments as used above could be 
applied to a broader class of chain classifiers, specifically to every model where a 
BAN classifier with predictor sub-graph Qk is built in the A;th step of the chain. 
If the previously predicted classes C\,..., Ck-i are added in a naive way, that 
is, they have only one parent, Ck and they have no children, we have that the 
form of the A;th decision function is similar to (7), where the previously predicted 
classes contribute in the form of additive constants. 

Example 3. We use a chain NB classifier over the prediction problems of Example 
2. The NB classifier for predicting class C\ is the same as in Example 2 (see Fig. 
2 left and Table 1a). The predictors of the NB classifier for predicting C2 now 
include C\. We consider the same conditional probability tables as in Example 
2 (Tables 1a and 1b). Moreover we have to specify the conditional probabilities 
of C\ given C2 in the NB that predicts C2. We set 

P(C\ = +1IC2 = +1) = 0.3 and P(C\ = — 1 |C2 = +1) = 0.7 



(0,0) (1,0) (2,0) (3,0) (0,0) (1,0) (2,0) (3,0) 

Fig. 4. Decision boundaries for NB chain classifiers with two predictor variables 

P(C\ = + 1 |C2 = —1) = 0.9 and P(C\ = — 1 |C2 = —1) = 0.1 

And, thus, coefficients /3i(+1) and /3i( —1) as defined in (4) are given by 

/ 0 . 3 \ f0.7\ 
P i ( + 1 ) = ln —— and pu—1) = ln ——• . 

0.9 0.1 

We have tha t the decision function to predict C2 is given by 

sgnl p2(x\,X2)+ /3i(+1) if pi(xi,X2) > 0 
/ 2 ( x i , x 2 ) = < > < 

sgn ^2(^1 j ^ 2 ) + fii( — 1) if Pi (x i ,X2) < 0 

where p\ and p2 are the polynomials defined in Example 2. The decision bound­
aries of the two classes are shown in Fig. 5. We observe tha t the two boundaries 
are no longer independent; the decision boundary for the second class C2 (dashed 
black line) depends on the predicted value of the first class C\. 

5 Binary Relevance vs. Chain Classifier 

We denote the set of multi-valued decision functions representable by a NB chain 
classifier over X\,..., Xn and by a multiple independent NB classifiers built as 
in the binary relevance method by T and V, respectively. We can prove the 
following lemma. 

L e m m a 3 . 
\T\ > \V\. 

In other words, NB chain classifiers are more expressive than the NB binary 
relevance method. 



0(0,4) ^ ^ ^ #(1,4) 
(+1,+D _ - 5 - ^ * ^ (-1,+D 

• (0,3) 
(+1,-1) 

• (0,2) #(1,2) 
(+1,-1) (+1,-1) 

Fig . 5 . Decision boundaries for the chain NB classifier in Example 3. The value of the 
predicted classes and the coordinates of the points are reported 

Proof. We need only consider two class variables, since the result in the general 
case is proved analogously. If we define Vk for k = 1 , 2 as in (4), we have tha t 

T> = sgn(Vi) x sgn(Vi) C sgn(Vi) x sgn(T>2) = T. 

So, obviously, |J-"| > \V\. Thus to prove the lemma we just have to disprove 
the equality. Moreover, the VC dimension of sgn(Vi) (the cardinality of the 
maximum shattered subset) is equal to 

n n 

d = y rrii — n+1<|fl|=||mj. 
i=i i=i 

Then, by the definition of VC dimension, there exists fio C 2̂ such tha t | Qo \ = d 
which is shattered by sgn(Vi). We now choose w € fi \ Qo and find tha t there 
exists £>o(x) € V\ such tha t 

Po(u)) < 0 

and 
£>o(x) > 0 for every x = UJ. 

Consider the bi-valued decision function f G T with the form 

f = s<;n(po(x)), sgn(j>2("X-, sgn(po(x)))) . 

We observe from (4) tha t we have 

/ \ I </(x) + /3i(+1) i f p o ( x ) > 0 
P2\X-, sgn(po(x)) = < 

</(x) + Pi( — 1) i f p o ( x ) < 0 , 



where </(x) G sgn(Vi). We now prove that the set of decision functions 

\ /2 = sgn (p2 (x, s<;n(po(x))) s.t. P2 G P2I 

can shatter a subset of cardinality d+1 and thus cannot be represented by a NB 
classifier over predictors X\,..., Xn alone. We have that </(x) + /3i(+1) G Pi. 
Thus, by varying q G Pi, it can sign-represent every decision function over Qo 
because of the choice of Qo . But the value of fi (x) over UJ can be set indepen­
dently by choosing /3i( —1) G K. So we have that choosing the polynomial q G V\ 
and the real numbers /3i(+1) and /3i( —1), the defined decision functions /2(x) 
can shatter Qo U {w}, a subset of cardinality i i + 1 . • 

Remark 6. As the number of classes grows, we see from (7) that the number of 
extra parameters, that is, the coefficients 7( . . .) that are added in a chain classi­
fier model increase. Thus the chain NB classifier is considerably more expressive 
than a set of NB classifiers built with the binary relevance method. 

From Remark 5, it follows that Lemma 3 could be extended to compare the ex­
pressive power of BAN chain classifiers versus the BAN binary relevance method, 
proving that BAN chain classifiers are in general more expressive than classifiers 
built using binary relevance. 

Moreover we observe that changing the order of classes in which the classifier 
is built implies a change in the expressive power of the resulting multi-label 
classifier. In fact we find that the first class in NB chain classifiers is predicted 
as in the binary relevance method, and from Lemma 3, we get that the chain 
classifier is more expressive than binary relevance over the second variable. In 
general it is possible to prove that if the chain classifier for classes C\,..., Ch, is 
built with the class ordering ji,... ,jh, we have that the A;th classifier for Cjk is 
more expressive than all the previous classifiers in the chain. So, by changing the 
order of the classes, we obtain a multi-label classifier with different expressive 
power. This last observation led us to formulate an easy expressiveness-based 
heuristic to select an ordering for the chain classifier. We built h classifiers, 
one for each class as in the binary relevance method. We sorted the classifiers 
according to some evaluation metric and we used the resulting order to build a 
chain classifier. Precisely we started with the classifier with the best prediction 
performance and we ended with the worst predicted classes. In other words, 
we tried to employ the more expressive classifiers in the chain for the classes 
that were predicted worst by the binary relevance model. Moreover, if the BAN 
chain classifier is built as suggested in Remark 5, that is, by adding the previously 
predicted classes in a naive way, we find that the above heuristic introduces a low 
computational complexity: once the binary relevance model is built we have only 
to compute the additive coefficient, corresponding to the previously predicted 
classes to build the chain classifier. In real problems, where the coefficient of 
the models have to be estimated, overfitting could be an issue, specially with 
a limited number of observations available. In those cases we have to check 
that the increased expressive power of the chain model does not increase the 
classification errors. This could be achieved estimating the errors with cross-
validation techniques [7] or using structural risk minimization [16]. 



6 Conclusions and Future Work 

In this paper we have extended our previous results on the decision bound­
aries and expressive power of one-label BN classifiers to two types of BN multi-
label classifiers: BAN classifiers built with binary relevance method and BAN 
chain classifiers. We have given theoretical grounds for why the binary relevance 
method provides models with poor expressive power and why this gets worst 
for larger numbers of classes. In both models we have expressed the multi-label 
decision boundaries in polynomial forms, and we have proved that chain clas­
sifiers provide more expressive models than the binary relevance method when 
the same type of BAN classifier is used as the base classifier. 

As possible future research, we would like to extend our results to general 
multi-dimensional BN classifiers [4,12,2,13]. Multi-dimensional BN classifiers 
permit BN structures between classes and predictors, and so the multi-valued 
decision functions have to be found by a global maximum search over the possi­
ble class values. This fact does not permit to employ the same arguments used 
in this work. Class-Bridge decomposable multi-dimensional BN classifiers [2,3] 
could be easier to study due to the factorization of the maximization problem 
into a number of maximization problems in lower dimensional spaces. 
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