
Faculty of Computer Science

Technical University of Madrid

Master Thesis

University Master in artificial intelligence

Learning Bayesian networks
from data by the incremental
compilation of new network

polynomials

Author: Marco A. Benjumeda Barquita
Supervisors: Concha Bielza Lozoya and Pedro Larrañaga Múgica

November 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148673211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Resumen

Los modelos probabilísticos gráficos son un importante campo de investigación en
inteligencia artificial hoy en día. El alcance de este trabajo comprende el estudio de
modelos probabilísticos gráficos dedicados a la representación de distribuciones prob-
abilísticas discretas. Dos de las mayores líneas de investigación relacionadas con esta
área se centran en la aplicación de inferencia sobre modelos probabilísticos gráficos y
en el aprendizaje de modelos probabilísticos gráficos a partir de datos. Tradicional-
mente, el proceso de inferencia y el proceso de aprendizaje han sido tratados por
separado, pero dado que la estructura de los modelos aprendidos marca la comple-
jidad de inferencia, este tipo de estrategias produce en muchas ocasiones modelos
muy ineficientes. Con el fin de obtener modelos más ligeros, en esta tesis de fin de
máster se propone un nuevo modelo para la representación de polinomios de red, a la
que llamamos árboles polinómicos. Los árboles polinómicos son una representación
complementaria de las redes Bayesianas que permite una evaluación eficiente de la
complejidad de inferencia y proporciona un marco dedicado a la inferencia exacta.
También proponemos un conjunto de métodos dedicados a la compilación incremen-
tal de árboles polinómicos y un algoritmo para el aprendizaje de árboles polinómicos
a partir datos, que utiliza un método voraz de búsqueda y puntuación que incluye
la complejidad de inferencia como una penalización en la función de puntuación.

iii

Abstract

Probabilistic graphical models are a huge research field in artificial intelligence nowa-
days. The scope of this work is the study of directed graphical models for the
representation of discrete distributions. Two of the main research topics related
to this area focus on performing inference over graphical models and on learning
graphical models from data. Traditionally, the inference process and the learning
process have been treated separately, but given that the learned models structure
marks the inference complexity, this kind of strategies will sometimes produce very
inefficient models. With the purpose of learning thinner models, in this master the-
sis we propose a new model for the representation of network polynomials, which
we call polynomial trees. Polynomial trees are a complementary representation for
Bayesian networks that allows an efficient evaluation of the inference complexity
and provides a framework for exact inference. We also propose a set of methods
for the incremental compilation of polynomial trees and an algorithm for learning
polynomial trees from data using a greedy score+search method that includes the
inference complexity as a penalization in the scoring function.

iv

Acknowledgements

I want to thank my supervisors Pedro Larrañaga and Concha Bielza for their guid-
ance during this master thesis and their confidence in me. I also want to thank my
parents for their huge support, that have allowed me to focus on my work without
worrying about many other things.

v

Contents

Resumen iii

Abstract iv

Acknowledgements v

Contents vi

List of Figures ix

List of Tables xi

Abbreviations xiii

1 Introduction 1
1.1 Graphical models and Bayesian networks 1
1.2 Motivations . 3
1.3 Notation . 4
1.4 Structure of the report . 4

2 Bayesian Network Models 7
2.1 Bayesian networks . 7
2.2 Inference in Bayesian networks . 10

2.2.1 Exact inference . 11
2.2.2 Approximate inference . 13

2.3 Scoring metrics . 16
2.3.1 Bayesian metrics . 17
2.3.2 Information-theory metrics . 19

2.4 Learning the structure of Bayesian networks 21
2.5 Learning thin Bayesian networks . 24

3 Network Polynomials 27
3.1 Introduction to network polynomials 27
3.2 Arithmetic circuits . 30

vii

Contents viii

3.3 Learning arithmetic circuits . 32
3.3.1 Example of split . 34

4 Polynomial Trees 37
4.1 Inference in polynomial trees . 40

4.1.1 Example. Inference in polynomial trees 43
4.2 Evaluating the complexity of polynomial trees 45

4.2.1 Example. Evaluating the complexity of a polynomial tree . . . 46
4.3 Incremental compilation of polynomial trees 47

4.3.1 Arc addition . 48
4.3.2 Arc deletion . 53
4.3.3 Arc reversal . 54
4.3.4 Polynomial tree optimization 54

4.4 Learning polynomial trees from data 59
4.5 Scoring function . 61
4.6 Hill-climbing for polynomial trees . 62

5 Experimental Results 67
5.1 Test methodology . 68
5.2 Learning Results . 69
5.3 Inference Results . 71

6 Conclusions and Future Research 83

A Proof of Theorem 1 85
A.1 Properties of the Polynomial trees and notation 85

Bibliography 95

List of Figures

2.1 Bayesian network Earthquake . 8

3.1 Bayesian network BN1. 28
3.2 Arithmetic circuit AC1 . 31
3.3 Maximizer circuit for AC1 . 32
3.4 LearnAC example. BN (top) and AC (bottom) before split. 35
3.5 LearnAC example. BN (top) and AC (bottom) after split. 35

4.1 Structure of the Bayesian network BN2. 39
4.2 Combination of BN and PT for BN2 (left), and only the PT (right). . 39
4.3 Example. A PT and the parameters of its corresponding BN. 41
4.4 Example of the inference complexity calculation for P 47
4.5 Examples of BN (left) and PT (right) respectively. 49
4.6 Example of arc addition for scenario 1. BN (left) and PT (right). . . 50
4.7 Example of arc addition for scenario 2. BN (left) and PT (right). . . 50
4.8 Example of arc addition for scenario 3. BN (left) and PT (right). . . 51
4.9 Example of an arc deletion. Initial BN (left) and PT (right). 54
4.10 Example. Arc reversal. BN and PT respectively. 55
4.11 Section of a PT . 60
4.12 Step 1 . 60
4.13 Step 2 . 60
4.14 Step 3 . 60
4.15 Step 4a . 61
4.16 Step 4b . 61

5.1 Inference in ALARM. NMLP for 15 % query variables 74
5.2 Inference in ALARM. NMLP for 15 % evidence variables 74
5.3 Inference in ALARM. MSE for 15 % query variables 75
5.4 Inference in ALARM. MSE for 15 % evidence variables 75
5.5 Inference in HEPAR II. NMLP for 15 % query variables 77
5.6 Inference in HEPAR II. NMLP for 15 % evidence variables 77
5.7 Inference in HEPAR II. MSE for 15 % query variables 78
5.8 Inference in HEPAR II. MSE for 15 % evidence variables 78
5.9 Inference in WIN95PTS. NMLP for 15 % query variables 80
5.10 Inference in WIN95PTS. NMLP for 15 % evidence variables 80
5.11 Inference in WIN95PTS. MSE for 15 % query variables 81

ix

List of Figures x

5.12 Inference in WIN95PTS. MSE for 15 % evidence variables 81

A.1 Case 2 of Lemma 1. Before addArc(B,P , Xout, Xin). 87
A.2 Case 2 of Lemma 1. After addArc(B,P , Xout, Xin). 87
A.3 Case 3 of Lemma 1. Before addArc(B,P , Xout, Xin). 89
A.4 Case 3 of Lemma 1. After addArc(B,P , Xout, Xin). 89
A.5 Pa. 91
A.6 Case 1. 91
A.7 Case 2. 91

List of Tables

5.1 Basic properties of the BNs used for the experiments. 68
5.2 Sizes of the datasets generated for the experiments. 68
5.3 Learning results for ALARM . 70
5.4 Learning results for WIN95PTS . 70
5.5 Learning results for HEPAR II . 70
5.6 Inference in ALARM. 15 % query variables 73
5.7 Inference in ALARM. 15 % evidence variables 73
5.8 Inference in HEPAR II. 15 % query variables 76
5.9 Inference in HEPAR II. 15 % evidence variables 76
5.10 Inference in WIN95PTS. 15 % query variables 79
5.11 Inference in WIN95PTS. 15 % evidence variables 79

xi

Abbreviations

AC Arithmetic Circuit

AI Artificial Intelligence

AIC Akaike Information Criterion

BD Bayesian Dirichlet

BIC Bayesian Information Criterion

BN Bayesian Network

CHC Constrained Hill-Climbing

CPD Conditional Probability Distribution

CPT Conditional Probability Table

DAG Direct Acyclic Graph

HC Hill-Climbing

HCPT Hill-Climbing for Polyomial Trees

JT Junction Tree

LL Log-Likelihood

LMM Light Mutual Min

LW Likelihood-Weighting

MCMC Markov Chain Monte Carlo

MDL Minimum Description Length

MMHC Max Min Hill-Climbing

MMPC Max Min Parents and Children

MP Message Passing

NMLP Normalized Mean Log Probability

xiii

Abbreviations xiv

NP Network Polynomial

PC Parents and Children

PLS Probabilistic Logic Sampling

PT Polyomial Tree

Chapter 1

Introduction

1.1 Graphical models and Bayesian networks

During the last decades, there has been an information revolution due to the rise of
internet. There are multiple information sources from several fields. Social data can
be obtained from the web, from social networks or from official data sources. but
there are also huge amounts of data from specific fields. For example, there are mul-
tiple datasets related to finance and business, including the stock market data and
electronic trading. In science, there are many experimental results published online,
there are huge biomedical databases available, and different sources of information
for almost every scientific field.

Modelling this data is one of the main topics of artificial intelligence (AI) nowa-
days. Models are necessary to reason about the phenomenas collected in the data
or to get predictions of the outcome of certain events. The models are also useful
to hide the complexity of the real world, and therefore simplify the representation
of the problem that we are facing. They can also be applied in situations that are
different from the ones where they were learned, so the models should learn the
patterns in the data and recognise similar situations.

It is important to mention that most of the domains that we need to deal with in
AI involve uncertainty. Probabilistic models are specially interesting, because they
handle uncertainty applying the probability theory, that is long-established. These
models use probabilities to indicate different degrees of certainty.

1

Introduction 2

Trying to store the full joint probability distribution related to a problem would
be intractable, so it is necessary to use a more compact representation of the prob-
abilistic models that is useful in practice. The idea is to take advantage of the
independences between the variables of the model to avoid unnecessarily big proba-
bility tables. Probabilistic graphical models represent the dependences between the
variables graphically, usually with a graph structure where the nodes represent the
variables of the model and the arcs represent the probabilistic relationships between
the variables.

Bayesian networks (BNs) are one of the most popular and successful graphical
models. The dependences of the model are represented by directed arcs, so the
structure of BNs is a direct acyclic graph (DAG). The name of Bayesian networks
comes from the Bayes rule, which they use to compute probabilities. Another in-
teresting property of BNs is that they show the relationships between the variables
intuitively, so they can be easily consulted or modified by experts. This makes the
BN easier to understand for the users.

The next are some of the properties that make BNs so widely used:

• They are probabilistic models. They represent the uncertainty with probabil-
ities, which makes the models coherent with the probability theory.

• They are graphical models. They are easily understandable and the relation-
ships between the variables are intuitive.

• They are self-explanatory. They do not only give the solutions to problems,
but they also provide the justification.

• They favour the representation of causal relationships.

• They can be created by experts or learned from data. Learning BNs from
data can be also useful to learn some undiscovered relationships from complex
domains.

• There are methods for BNs that can deal with high dimensional domains and
large amount of variables.

Although Bayesian networks have many desirable properties, there are also some
difficulties related to them that must be considered:

• The complexity of brute force approaches for performing inference in BNs is
exponential in the number of variables and it has been proved that both exact

Introduction 3

inference (Cooper, 1990) and approximate inference (Dagum and Luby, 1993)
in BNs are NP-Hard.

• Learning BNs from data is an NP-complete problem (Chickering, 1996) and
state-of-the-art methods still capture many unnecessary relationships between
the variables.

Graphical models, and Bayesian networks in particular, are a huge research field
in AI, and there is a great effort and tones of work dedicated to the improvement of
the performance and accuracy of the inference and learning procedures.

1.2 Motivations

Traditionally, the inference and learning methods for Bayesian networks have been
treated separately. Research works focused on inference methods usually try to
improve their efficiency while keeping its faithfulness to the network, while the works
focused on learning methods usually try to find the best fitted networks with a
limited number of parameters in a tractable time.

The problem with this approach is that the learning process affects dramatically to
the efficiency of performing inference in the learned model. The shape of the model is
crucial for obtaining networks where the computational complexity of exact inference
is tractable. It would be interesting to have algorithms that consider the inference
complexity of the learned models in a way that it is possible to learn not only fitted
networks, but also models where exact inference is tractable.

The objective of this work is to create a new type of graphical model to complement
Bayesian networks during the learning process, so it can be used as an inference
complexity indicator, and also provide a framework for exact inference. The idea is
that if we can avoid the addition of those arcs that imply a huge increment of the
inference complexity and do not improve enough the fitting of the network, we should
obtain thinner models without worsening too much their faithfulness, allowing exact
inference in many cases.

Introduction 4

1.3 Notation

In this section we make a brief review of the notation used in this work.

The notation for mentioning graphical models is a calligraphic capital letter, that
can be combined with a sub-index or a super-index. The Bayesian networks are
usually represented with a capital B and the polynomial trees are usually represented
with a capital P . An example is the PT P ′.

The sets of variables are represented with one or more calligraphic capital letters,
that can be combined with a sub-index. An example would be the set of nodes XP .

Each variable is represented with one or more capital letters in italic, that can be
combined with a sub-index with lower-case letters or numbers. An example would
be the node Xi.

The precedence dependences in the models are represented as follows:

• Pa(M,Xi): Parents of the node Xi in model M .

• Ch(M,Xi): Children of the node Xi in model M .

• Pred(M,Xi): Predecessors of the node Xi in model M .

• Desc(M,Xi): Descendants of the node Xi in model M .

When knowing which model is M is trivial, sometimes the precedence notation
is simplified and M is not mentioned. For example, Pa(Xi) could be mentioned
instead of Pa(M,Xi).

1.4 Structure of the report

• Chapter 1 contains an introduction to the graphical models and the motiva-
tions of this work.

• Chapter 2 contains the definition of Bayesian networks (BNs), and reviews
some of the most relevant methods for inference and learning in BNs.

• Chapter 3 is an introduction to network polynomials (NPs). It includes the
definition of arithmetic circuits (ACs) and reviews some methods for learning
ACs from data.

Introduction 5

• Chapter 4 contains the definition of the polynomial trees (PTs), the new
model proposed for representing network polynomials. It includes the meth-
ods proposed for the incremental compilation and optimization of PTs, and a
method for learning PTs from data.

• Chapter 5 consists of a set of experimental tests over the proposed PT learn-
ing algorithm.

• Chapter 6 includes the conclusions of this master thesis and discusses about
possible future research work related to PTs.

Chapter 2

Bayesian Network Models

2.1 Bayesian networks

Bayesian networks are very powerful tools for modelling probability distributions.
They belong to the family of probabilistic graphical models, and specifically, each BN
represents a probability distribution over a set of variables X = {X1, X2, . . . , Xn}.

A BN encodes the conditional dependences between the variables in X , and it is
composed of:

1. Directed acyclic graph: Each node of the graph represents a random variable
in X , and each directed arc Xi → Xj represents the conditional dependence
between Xi and Xj.

2. Parameters : Each variable Xi ∈ X has a conditional probability distribution
P (Xi, Pa(Xi)). This probability distributions are called the parameters of
the network. The parameters of the network can be represented in multiple
ways. For discrete networks, conditional probability tables (CPTs) are the
most common choice. Gaussians (Geiger and Heckerman, 1994; Shachter and
Kenley, 1989; Lauritzen and Spiegelhalter, 1988; Chevrolat et al., 1994) have
been used for continuous networks.

The BN shown in Figure 2.1 is called Earthquake (Korb and Nicholson, 2003),
and here we use it as a simple example of the BNs structure and functioning. This
network models the behaviour of an alarm that can be activated by burglars, but
also has a small probability of being activated by an earthquake, and the reactions of

7

Bayesian Network Models 8

A

B E

J M

P(B)
T F

0.001 0.999

P(E)
T F

0.002 0.998

P(A|B,E)
B E T F
T T 0.95 0.05
T F 0.94 0.06
F T 0.29 0.71
F F 0.001 0.999

P(J|A)
A T F
T 0.9 0.1
F 0.05 0.95

P(M|A)
A T F
T 0.7 0.3
F 0.01 0.99

Figure 2.1: Bayesian network Earthquake

John and Mary (if they call or not) to the activation of the alarm. All the variables
in the BN are Boolean, and they represent the next events:

• B: There is a burglary.

• E: There is an earthquake.

• A: The alarm activates.

• J: John calls.

• M: Mary calls.

As the network domain is discrete, the parameters are represented in CPTs (Figure
2.1). For example, it is easy to see that the probability of activation of the alarm
is higher if there is a burglary and there is not an earthquake (P (A = T |B =

T,E = F) = 0.94) than if there is an earthquake and there is not a burglary
(P (A = T |B = F,E = T) = 0.29), or that there is more probability that John calls
(P (J = T |A = T) = 0.9) than that Mary calls (P (M = T |A = T) = 0.7) if the
alarm is activated. The concept of conditional independence is essential to obtain
information from BNs. It is defined below:

Definition 1. (Conditional independence): Given a probability distribution P,
two random variables Xa and Xb are conditionally independent given another random
variable Xc if and only if:

P (Xa, Xb|Xc) = P (Xa|Xc) · P (Xb|Xc)

Bayesian Network Models 9

We use (Xa ⊥ Xb|Xc)P to denote that in P, Xa and Xb are conditionally indepen-
dent given Xc.

It is intuitive to see some of the dependences between the variables of the network.
For example, it is simple to see that A depends on B, or that J depends on A, but
there are some properties of BNs that allow assuming conditional independences
among the variables of the network, which is extremely useful in practice. An
interesting property of the BNs is the Markov blanket (Pearl, 1988).

Definition 2. (Markov blanket): Let B be a BN over X = {X1, X2, . . . , Xn}.
The Markov blanket MB(Xi) of any node Xi ∈ X in B is the set of nodes composed
by the parents of Xi, its children, and the parents of its children. Furthermore, any
node is conditionally independent of the rest when conditioned on MB(Xi).

Although previous works have described sets of axioms that help finding the in-
dependences encoded in a BN, as the ones described in Pearl (1995), it is much
simpler to use the independence statements from the topological properties of di-
rected graphs, and in particular the concept of d-separation (Pearl, 1988; Geiger
et al., 1990; Pearl, 1995).

Definition 3. (d-separation): Let XA, XB and XC be three disjoint sets of nodes
in a DAG G. Let T be the set of possibles trials from any node Xa ∈ XA to any node
Xb ∈ XB, where a trial in the network is a succession of arcs in G, no matter their
directions. Then XC blocks a trial TI ∈ T if one of the following holds:

1. TI contains a chain Ti−1 → Ti → Ti+1 such that Ti ∈ XC.

2. TI contains a fork Ti−1 ← Ti → Ti+1 such that Ti ∈ XC.

3. TI contains a collider Ti−1 → Ti ← Ti+1 such that Ti and any of its descendants
do not belong to XC.

If all the trials in T are blocked by XC, then XC d-separates XA and XB, which is
expressed by (XA ⊥ XB|XC)G.

It is convenient to know the relation between the topological properties of di-
rected graphs and the independences of its underlying probability distribution. This
relation is defined by the concept of I-map (Pearl, 1988).

Definition 4. (I-map): Let XA, XB and XC be three disjoint sets of nodes in a
DAG G. Then G is an I-map of a probability distribution P if:

Bayesian Network Models 10

(XA ⊥ XB|XC)G =⇒ (XA ⊥ XB|XC)P

This means that if G is an I-Map of P , if two set of nodes XA and XB are d-
separated by another set of nodes XC in G, then XA and XB are conditionally
independent in P . This concept allows a formal definition of BNs.

Definition 5. (Bayesian network): Let P be a probability distribution over a set
of variables X , then a Bayesian network B is composed of a DAG G and a set of
conditional probability distributions such that:

• Every node Xi in G represents a variable in X , and has a conditional probability
distribution P (Xi|Pa(Xi)) associated to it.

• G is a minimal I-map of P. That is no arcs can be removed from G without
negating the I-map property.

2.2 Inference in Bayesian networks

The BN model is a complete representation of probability distributions that includes
all the variables and their relationships in the model. This allows the calculation of
the probability of conditional queries involving any variable of the network.

One of the main objectives of probabilistic models is to answer varied probability
queries successfully. For this task it is necessary to perform some kind of reasoning.
BNs can deal with diverse problems, and they support deductive, inductive and
abductive reasoning. Deductive inference consists of obtaining conclusions from
some given events. Inductive reasoning starts from some known events and looks
for the causes of these events. Abductive inference tries to find the most likely
hypothesis for the given observations.

The most common reasoning problems in BNs are the next:

• Prediction and diagnosis: The inference process for deductive and inductive
reasoning in BNs is usually called probability propagation or belief updating.
It consists of obtaining the posterior probability P (Q|e) of a set of query
variables Q conditioned to a set of evidences e.

• Maximum a posteriori (MAP): It is an abduction problem, usually called par-
tial abduction. It consists of searching the most probable configuration of a
set of variables in a BN given an evidence.

Bayesian Network Models 11

• Most probable explanation (MPE): It is an abduction problem, usually called
total abduction. It consists of searching the most probable configuration of all
variables not instantiated in a BN given an evidence. It is a particular case of
the MAP problem.

The most desirable methods for probability propagation are those that allow ob-
taining the exact value of the probability P (Q = q|E = e) given the structure and
parameters of a BN. This type of inference is called exact inference. There are many
cases where exact inference is intractable or where an small error in the answers can
be handled. Here, approximate inference is usually applied to reduce the computa-
tional cost of inference. It consists of obtaining approximate answers that include
an error regarding to the BN. The most widely used approximate methods are the
stochastic methods, that sample from the network to get an estimation of the result.

In this section we describe some of the most popular methods for both exact and
approximate inference.

2.2.1 Exact inference

Performing inference directly from BNs using a brute force approach is extremely ex-
pensive computationally, so it is rarely used in practice. There are different methods
that try to exploit the factorization encoded in the network.

One of the most popular methods is the message passing (MP) algorithm (Pearl,
1986). The MP algorithm is very efficient for the propagation of probabilities in
polytrees. The main problem of this method is that it only works for polytrees, and
these models are usually not enough for the representation of the knowledge in many
real-world domains.

The most widely used approach for performing inference in BNs that are not
polytrees is clustering. The main idea of these methods is to compile the network
using a clustering technique to group the nodes in a way that the resultant structure
is a polytree, and then perform the MP algorithm to the new model. The secondary
structures obtained after the compilation of the BNs is another factorization of
the joint probability distribution encoded by the BNs, and they are usually called
junction trees (JTs).

Bayesian Network Models 12

The JT algorithm was introduced by Lauritzen and Spiegelhalter (1988), but there
are many different approaches based on this method. The structure of these algo-
rithms is similar, and in most cases they follow the next steps:

1. Obtain the moral graph from the BN.

First, the nodes with common parents in the BN are joined with a moral link,
so the dependences that would be lost with the transformation of the DAG
into an undirected graph are kept.

2. Triangulate the moral graph.

This is a crucial phase, and there are multiple ways of proceeding in this step.
In the triangulation a chord is introduced in all the cycles with a length bigger
than three. These edges are called fill-ins.

3. Identify the cliques in the triangulated graph.

The nodes of the secondary structure, that are formed for a group of nodes of
the BN, are called cliques. In this step the maximal complete subgraphs should
be identified in the triangulated graph. The identification of the cliques is
dependent on the triangulation process.

4. Create the junction tree.

The actions necessary for the creation of a valid JT from a set of cliques are
the identification of the separators of the JT and the connection of the cliques.

5. Compute the new parameters.

Lastly, the new CPDs should be computed according to the JT structure using
the parameters of the BN.

A different approach for the compilation of BNs was proposed in Darwiche (2003).
It is based on the representation of the network polynomials that are implicit in the
BNs as arithmetic circuits, a useful framework for the graphical representation of
polynomials. This work is reviewed in more detail in Chapter 3.

Bayesian Network Models 13

2.2.2 Approximate inference

The purpose of approximate inference is to reduce the computational complexity of
the inference process in BNs, that is usually intractable for relatively large networks.
The main disadvantage of these methods is that they add an error to the results.

The answers returned by approximate methods are an estimation of the real values.
The most popular approximate methods are stochastic. In the stochastic methods
the returned values are basically estimated by first, generating samples from the BN,
and second, computing the probability of the query from the generated samples.
The stochastic methods are based in the Law of large numbers, that states that the
estimation should converge to the probability as the number of generated samples
grows.

If we imagine that a conditional query P (Q = q|E = e) has been asked to the
network, then the most obvious way of getting an approximate response with a
stochastic approach is to generate samples from the BN, and then obtain the answer
by Nqe ÷ Ne, where Nqe is the number of samples where Q = q and E = e, and
Ne is the number of samples where E = e. This is the general functioning of
stochastic inference methods. Probabilistic logic sampling (PLS) (Henrion, 1988) is
an approximate inference method that proceeds in this way, but using an ancestral
ordering of the variables to sample from the BN. The PLS algorithm is described in
Algorithm 2.1.

The main problem of the PLS algorithm is that all the samples that do not match
with evidence e are rejected, which in practice could suppose that, in order to get
a satisfactory convergence, a huge amount of samples should be generated. This
makes the PLS algorithm intractable or unnecessarily slow in many cases. The
likelihood weighting (LW) algorithm (Fung and Chang, 1989; Shachter and Peot,
1989) overcomes this difficulty by generating weighted samples that always match
with evidence e. Each sample and its weight is obtained using the LW particle
generation procedure, and then the value of P (q|e) is calculated using the weight
of the samples. Algorithm 2.2 describes the likelihood weighting algorithm for m
samples.

Markov chain Monte Carlo (MCMC) methods are one of the most popular ap-
proaches for sampling from probability distributions. An stochastic process has the
Markov property if in each iteration the future states depend only on the current
state, so they are conditionally independent from the past states given the present

Bayesian Network Models 14

Algorithm 2.1 PLS(B, q, e,m)

Input: BN B over X , query variables Q = q, evidence E = e,
number of samples m

Output: Approximate probability P (q|e)

1: let X1, . . . , Xn be a topological ordering of X
2: let smpl be an empty list
3: for i = 1, . . . ,m do
4: for Xj in {X1, . . . , Xn} do
5: let πXj

be the configuration of Pa(Xj) in iteration i
6: Generate xij ∼ Xj|πXj

7: end for
8: append (xi1, xi2, . . . , xin) to smpl
9: end for

10: let Ne be the number of samples in smpl where E = e
11: let Nqe be the number of samples in smpl where E = e and Q = q
12: P (q|e) = Nqe ÷Ne

13: return P (q|e)

Algorithm 2.2 LW (B, q, e,m)

Input: BN B over X , query variables Q = q, evidence E = e,
number of samples m

Output: Approximate Probability P (q|e)

1: let X1, . . . , Xn be a topological ordering of X
2: let smpl be an empty list
3: let wl be an empty list
4: for i := 1, . . . ,m do
5: w := 1
6: for Xj in {X1, . . . , Xn} do
7: let πXj

be the configuration of Pa(Xj) in iteration i
8: if Xj ∈ E then
9: let xij be the value of Xj in e

10: w := w · P (xij|πXj
)

11: else
12: Generate xij ∼ Xj|πXj

13: end if
14: end for
15: append (xi1, xi2, . . . , xin) to smpl
16: append w to wl
17: end for
18: P (q|e) :=

∑m
i=1 wl[i]·I(smpl[i]〈Q〉=q)∑m

i=1 wl[i]
. I = 1 if smpl[i]〈Q〉 = q and I = 0 otherwise

19: return P (q|e)

Bayesian Network Models 15

state. The mechanism of MCMC methods consist of a Markov chain that is built in
a way that it spends more time in the most important regions of the distribution,
so they can sample successfully from complex probability distributions.

Gibbs sampling is a MCMC method that is specially useful for sampling the pos-
terior distribution in BNs (Hrycej, 1990). It is a special case of the Metropolis
Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) that is simple to apply
when the conditional distribution of each variable is easy to sample, which is the
case of BNs. The method is divided in a warm-up period, used to converge to the
target distribution, and a sampling period, where the useful samples are generated.
Algorithm 2.3 applies the Gibbs sampling method to answer any conditional query
P (q|e) in a BN B usingmw as the number of warm-up samples andm as the number
of useful samples.

Algorithm 2.3 Gibbs Sampling(B, q, e,m,mw)

Input: BN B over X = {X1, . . . , Xn}, query variables Q = q, evidence E = e,
Number of samples m, Warm-up samples mw

Output: Approximate Probability P (q|e)

1: let smpl be an empty list
2: let s0 be a random sample of B
3: for i := 1, . . . ,m+mw do
4: for Xj in {X1, . . . , Xn} do
5: if Xj is in E then
6: let xij be the value of Xj in e
7: else
8: let πXj

be the configuration of Pa(Xj) in iteration i− 1 if i 6= 1,
or in s0 otherwise

9: Generate xij ∼ Xj|πXj

10: end if
11: end for
12: if i > mw then
13: append (xi1, xi2, . . . , xin) to smpl
14: end if
15: end for
16: let N be the number of samples in smpl
17: let Nq be the number of samples in smpl where Q = q

18: return Nq

N

The main problem of approximate methods is that it is complex to estimate the
convergence of the samples to the target probability distributions, so many times the
number of samples is predefined. If the number of samples is too large the algorithm

Bayesian Network Models 16

can be extremely expensive, and if it is too small the method will not converge to
the target probability distribution.

2.3 Scoring metrics

The scoring function has always a mayor impact in the process of learning the
structure of BNs with score + search methods. Many different metrics have been
proposed over the years, but most of them can be classified as Bayesian metrics or
information-theory metrics. Basically, the methods belonging to the first type try
find the network that maximizes the posterior probability distribution conditioned
to the available data, and those belonging to the information theory metrics base
the search on the data compression that can be achieved over the different candidate
networks. Carvalho (2009) compares the performance of some methods belonging
to both groups of metrics. The results do not show big differences, but in general
the results are slightly better for Bayesian scoring functions in large datasets and
for information-theory functions in smaller datasets.

While searching for the structure of a BN, the scoring function must evaluate mul-
tiple candidate networks, and when facing large datasets or networks the evaluation
process is computationally expensive. Therefore, an essential property of the scoring
functions is their decomposability. A scoring function is decomposable if the score
can be expressed as the sum of a set of scores that depend only on a variable and
its parents. If the metric is decomposable, a local change in the network supposes
that the metric must compute the evaluation function only for the nodes involved
in the change. This supposes a huge improvement in the efficiency of the evaluation
process.

Next, we will consider some of the most widely used metrics belonging to both
Bayesian and information-theory metrics. All the scoring functions displayed below
are decomposable. These metrics are essential for the global purpose of this work,
and in Chapter 4 we introduce a metric adapted to our method that is based on
some of the scoring functions reviewed in this section. The notation used to define
the metrics in this chapter is introduced next:

D: Dataset.

X : Set of variables X = {X1, X2, . . . , Xn}.

B: Bayesian network over X .

Bayesian Network Models 17

xik: Value k of variable Xi.

wij: Configuration j of the parents of Xi.

θijk: Parameter for the k-th state of Xi conditioned to wij, i.e., P (Xi =

xik|Pa(Xi) = wij).

ri: Number of states of variable Xi.

qi: Number of possible configurations of the parents of Xi.

Nijk: Number of samples of D where Pa(Xi) are in their j-th configuration
and Xi is in its k-th state.

Nij:
∑ri

k=1 Nijk.

N : Number of samples of D.

N ′ijk: Exponents of the Dirichlet prior of θijk.

N ′ij:
∑ri

k=1 N
′
ijk.

N ′: Equivalent sample size.

2.3.1 Bayesian metrics

The Bayesian scoring functions evaluate each DAG structure by computing the pos-
terior probability distribution P (B|D) given a prior distribution over the possible
networks conditioned on the data. The next ones are some of the main Bayesian
score functions.

The Bayesian Dirichlet (BD) scoring function (Heckerman et al., 1995) faces the
optimization problem by making five assumptions related to the user’s prior knowl-
edge and the database.

1. The first assumption is called multinomial sample. It means that the data can
be partitioned into multinomial samples given the structure of B. In other
words, it considers that the data is exchangeable, so if an instance of the data
is substituted by another instance, the new sample has the same probability
as the old one.

Bayesian Network Models 18

2. The second assumption is about parameter independence. It means that the
parameters related to each variable Xi are independent (global parameter inde-
pendence), and also the parameters related to each configuration of the parents
of Xi are independent (local parameter independence).

3. Third, it assumes parameter modularity. It means that the density of the
parameters depends only on a variable and its parents.

4. Forth, it assumes that the parameters have a Dirichlet distribution. The
Dirichlet distributions are desirable as priors because they are closed under
multinomial sampling. This kind of distributions conjugate the prior distribu-
tion of the categorical and the multinomial distributions, so if a prior distri-
bution is Dirichlet, the posterior, given a multinomial or categorical sample is
also Dirichlet.

5. The last assumption is that there is complete data. Although this assumption
requires a complete database, in Heckerman et al. (1995) it is suggested that
incomplete data would not suppose a big obstacle for using the BD function,
given that there are many methods that can handle missing data in practice
that could be applied in combination with the BD metric. Some examples
used to handle missing data are the use of the EM algorithm (Dempster et al.,
1977), or Gibbs sampling (Yi and Li, 2011).

Thus, the BD function is:

P (B, D) = P (B)×
n∏
i=1

qi∏
j=1

(
Γ(N ′ij)

Γ(Nij +N ′ij)
×

ri∏
k=1

Γ(Nijk +N ′ijk)

Γ(N ′ijk)

)
(2.1)

Where N ′ijk are the hyperparameters for the Dirichlet priors of the parameters
given the network structure, and Γ is the gamma function.

The BD metric requires the specification of all Nijk, which is intractable in many
cases, making the BD metric useless in practice many times. Nevertheless, there
are several scoring functions that are a particular case of the BD metric that have
proven to be effective, overcoming this difficulty. The BDe is an specific case of the
BD scoring function. With the purpose of making the BD function more useful in
practice, the BDe metric includes two extra assumptions.

6. The first one is the likelihood equivalence; i.e., two DAGs are equivalent if they
encode the same joint probability distribution.

Bayesian Network Models 19

7. The second one is the structure possibility. It assumes that for any DAG G,
its probability is greater than 0 (P (G) > 0).

These assumptions, in combination with the other five assumptions made in the
BD metrics, make the BDe metric more tractable in practice than its predecessor,
but it keeps requiring some knowledge that is not simple to find. The function
that represents the BDe function is the same than the used for BD, but with the
assignment N ′ijk = N ′ · P (Xi = xik, Pa(Xi) = wij|G), where N ′ is a parameter
representing the equivalent sample size for the domain. The equivalent sample size
is the sum of all the hyperparameters of the Dirichlet prior distribution conditioned
to the network structure.

Another popular Bayesian metric is the K2 (Cooper and Herskovits, 1991, 1992),
that is simpler than the previous two. The K2 is also a specific case of the BD
function. In particular, it is the result of assigning N ′ijk = 1 in the BD metric.
Equation (2.2) represents the K2 scoring function.

P (B, D) = P (B)×
n∏
i=1

qi∏
j=1

(
(ri − 1)!

(Nij + ri − 1)!
×

ri∏
k=1

(Nijk)!

)
(2.2)

2.3.2 Information-theory metrics

This kind of metrics are based in the use of a measure of the data compression of
the dataset D obtained with a DAG G, that represents the structure of the learned
BN. The main idea of this kind of methods is to find the optimal BN B that encodes
the data D.

One way of obtaining the optimal compression of D given B is maximizing the
log-likelihood (LL) of B conditioned to D. The LL scoring function is defined as
follows:

LL(B|D) =
n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log

(
Nijk

Nij

)
(2.3)

As it is shown in Carvalho (2009), adding an arc to B never decreases the LL
value, so the use of this function alone usually causes overfitting in the learned
model. There are a fair number of scoring metrics based on the LL function that

Bayesian Network Models 20

include a penalty term for the complexity of the network. Equation (2.4) represents
this kind of metrics.

LP (B|D) =
n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log

(
Nijk

Nij

)
− Penalty(B, D) (2.4)

Some of the most popular scoring metrics that use this strategy are the minimum
description length (MDL) (Bouckaert, 1993; Lam and Bacchus, 1994), the Bayesian
information criterion (BIC) and the Akaike information criterion (AIC) (Akaike,
1974). These functions use |B|, that is, the number of parameters of B, as a measure
of the complexity of the network. |B| is defined by:

|B| =
n∑
i=1

(ri − 1)qi (2.5)

On the one hand, when scoring BNs with the BIC function, that is based on
the Schwarz Information Criterion (Schwarz, 1978), coincides with the MDL score
(De Campos, 2006). The penalty term for both MDL and BIC functions is given
by:

Penalty(B, D) =
1

2
log (N)|B| (2.6)

On the other hand, the AIC score is slightly different, and its penalty term is
represented by:

Penalty(B, D) = |B| (2.7)

An interesting feature of the information-theory metrics is that the network likeli-
hood and the complexity penalty are obtained independently, and the value of both
of them are computed explicitly. As we will see in the further chapters, this prop-
erty makes it easier to combine the original scoring function with a new complexity
measure of the network.

Bayesian Network Models 21

2.4 Learning the structure of Bayesian networks

In the past years there has been a huge interest in the creation of new methods for
learning the structure of BNs from data. Although many different algorithms have
been proposed, there are three main approaches that include most of them. The first
one is to consider the learning process as a constrain satisfaction problem, trying
to get the conditional independences between the variables by using a statistical
hypothesis test, and then selecting the model that fits better the dependences and
independences obtained in the tests. Two methods that belong to this family are the
parents and children (PC) (Spirtes et al., 2000) and the light mutual min (LMM)
(Mahdi and Mezey, 2013) algorithms. These techniques do not use an explicit score
metric to test the likelihood between the network and the data, and instead they
use statistical tests to get the skeleton of the network and then they orientate the
edges by recovering the v-structures (Xu → Xv ← Xw) of the network.

The second approach treats the learning process as an optimization problem.
These methods, that are called score+search methods, search the BN structure that
maximizes a scoring function given the available data. The most popular techniques
used for learning the structure of BNs in the space of DAGs are greedy. These
methods use heuristic information of the subsequent states in each step of their
procedure, and they can be computationally expensive for big sets of variables. An
example is the K2 algorithm (Cooper and Herskovits, 1991, 1992), that goes through
each node in a predefined order, adding the best parent until no more improvements
can be made or a threshold is reached. Other popular greedy methods are those
using hill-climbing (HC) to solve the optimization problem. HC methods explore
the search space in a finite number of steps starting from an initial solution. In each
step the algorithm considers local changes, selecting the best solution, and it stops
when none of the new solutions improves the current one.

The HC method, and unconstrained learning methods for learning BNs in general,
are super-exponential in the number of variables of the learned model. This supposes
that for big or high-dimensional datasets the learning process is intractable. There
are some approaches that include constraints in the search process. This is the case
of the constrained hill-climbing (CHC) algorithm (Gámez and Puerta, 2005), that
is described in Algorithm 2.4. It restricts progressively the number of neighbours to
be explored and evaluated, and uses a set of forbidden parents associated to each
node that are initialized to empty at the beginning and updated during the search
process depending on the metric difference for each local change tested. The main

Bayesian Network Models 22

problem of the CHC method is that the use of the forbidden parents list can cause an
early convergence to a local optimum, and it does not assure the return of a minimal
I-map. The algorithm receives as an input an initial BN provided by the user, which
structure can be a graph without arcs if we are going to learn the network from
scratch, and it assumes that the scoring function must be maximized.

Algorithm 2.4 CHC(B, D)

Input: BN B over X = {X1, X2, . . . , Xn}, Data D
Output: BN B′
1: let Sold be a list over i = 1, 2, . . . , n such that Sold[i] = score(Xi, Pa(Xi), D)
2: let B′ be a copy of B
3: let FP be a list of n empty lists . Forbidden parents list
4: OKToProceed := True
5: while OKToProceed = True do
6: . The method bestPredCHC is defined in Algorithm 2.5
7: let Bnew and Snew be the returned values of bestPredCHC(B, D, Sold, FP)
8: if

∑n
i=1 Snew[i] >

∑n
i=1 Sold[i] then

9: B′ ← Bnew
10: Sold ← Snew
11: else
12: OKToProceed := False
13: end if
14: end while
15: return B′

The iCHC and 2iCHC algorithms (Gámez et al., 2011) use an iterative procedure
where CHC is applied multiple times, allowing a more probable convergence to a
global optimum and assuring the return of a minimal I-map. Algorithm 2.6 describes
the 2iCHC method.

An alternative to the greedy score+search methods are the stochastic search meth-
ods. They usually reduce the computational cost of the learning process, but the
results that they provide are not always consistent. Simulated annealing is widely
used because it adds some intelligence to the stochastic search, trying to reach satis-
factory global solutions that are close the global optimum. Wang et al. (2004) used
the parallel two-level simulated annealing (Xue, 1993) method for learning BNs.
This algorithm uses two levels for each candidate, a lower level and an upper level.
The changes on the solutions at each step are made on the upper level. The lower
level purpose is to improve the local optimization, so the acceptance of the new
solutions depends on the value of the lower level objective function.

Bayesian Network Models 23

Algorithm 2.5 bestPredCHC(B, D, Sold, FP)

Input: BN B, Data D, score Sold, Forbidden parents FP

Output: Best BN Bnew, Best score Sbest
1: let changes be the list of local changes that could be made to B
2: let l be the length of the list of scores Sold
3: let Bbest be a copy of B
4: let Sbest be a copy of Sold
5: for change in changes do
6: let Bnew be a copy of B
7: let Snew be a copy of Sold
8: if change is the addition Xa → Xb then
9: add Xa to Pa(Bnew, Xb)

10: Snew(Xb)← score(Xb, Pa(Xb), D)
11: if Snew(Xb) < Sold(Xb) then
12: add Xb to FP (Xa)
13: add Xa to FP (Xb)
14: end if
15: else if change is the deletion of Xa → Xb then
16: delete Xa from Pa(Bnew, Xb)
17: Snew(Xb)← score(Xb, Pa(Xb), D)
18: if Snew(Xb) > Sold(Xb) then
19: add Xb to FP (Xa)
20: add Xa to FP (Xb)
21: end if
22: else if change is the reversal of Xa → Xb then
23: delete Xa from Pa(Bnew, Xb)
24: add Xb to Pa(Bnew, Xb)
25: Snew(Xb)← score(Xb, Pa(Xb), D)
26: Snew(Xa)← score(Xa, Pa(Xa), D)
27: if Snew(Xb) < Sold(Xb) or Snew(Xa) > Sold(Xa) then
28: add Xb to FP (Xa)
29: add Xa to FP (Xb)
30: end if
31: end if
32: if

∑n
i=0 Snew[i] >

∑n
i=0 Sbest[i] then

33: Bbest ← Bnew
34: Sbest ← Snew
35: end if
36: end for
37: return Bbest,Sbest

Bayesian Network Models 24

Algorithm 2.6 2iCHC(B, D)

Input: BN B over X = {X1, X2, . . . , Xn}, Data D
Output: BN B′
1: B0 ← CHC(B, D)
2: B′ ← CHC(B0, D)
3: return B′

The third approach combines the conditional independence tests and the score+search
process to obtain the structure of the BN. These methods are called hybrid methods.
The max-min hill-climbing (MMHC) (Tsamardinos et al., 2006) is a very popular
hybrid method that uses HC for the local search. It first uses statistical hypothesis
tests to find the dependencies between the variables and builds the skeleton of the
network (edges without orientation) using the max-min parents and children algo-
rithm (MMPC). Then, it orientates the arcs of the network using the HC algorithm.

All these methods, in combination with the scoring functions mentioned before,
focus on improving the accuracy of the learned network, producing sometimes over-
fitting. As it was said before, some metrics like MDL and AIC include a penalization
for the representation complexity of the network using the number of parameters of
the model. The representation complexity and the inference complexity are some-
times very different for the same model (Beygelzimer and Rish, 2004). This can
produce that a model with a reduced number of parameters can be exponentially
slower than another with a similar representation complexity and a similar fit. So in
practice, performing exact inference in the models learned using this type of meth-
ods is usually computationally expensive, and sometimes intractable when the size
of the BN is too large. The most common solution is to use approximate inference
in these situations, reducing the inference accuracy of the model.

2.5 Learning thin Bayesian networks

When learning BNs from data, many unnecessary dependences are usually stored
in the model, increasing the complexity of the network and therefore slowing down
the exact inference process. The main motivation of the learning process of BNs is
to obtain fitted representations of the data that, when performing inference, obtain
results that are accurate with the probability distribution implicit in the data. As we
saw before, an accurate model can have a huge inference complexity that can make
exact inference intractable, specially if it contains many unnecessary arcs. Exact

Bayesian Network Models 25

inference is always desirable because, although approximate methods are widely
used to deal with these type of situations, they include an error that can produce a
relevant deterioration of the answers provided by the learned model.

A possible solution to learn models that allow exact inference is to use an esti-
mation of the inference complexity in the learning process, with the objective of
obtaining fitted models with a tractable inference complexity. Usually, the answers
given by an approximate model that uses exact inference are better than the an-
swers given by an slightly better fitted model that performs approximate inference.
For example, Lowd and Domingos (2010) compared the use of exact inference in
approximate models with the use of approximate inference in the original model.
The difficulty for this approach is that obtaining a good measure of the inference
complexity of a model is not straightforward.

For some of the most popular exact inference methods, such as JTs and some
closely related variable elimination techniques, the inference complexity is exponen-
tial in the size of the largest clique of the tree. This property is called treewidth,
and it is a good indicator of the inference complexity for probabilistic models. In
the last years there have been proposed some methods that learn JTs from data
using the treewidth of the models to reduce the inference complexity and to make
exact inference tractable. The low-treewidth junction trees are usually called thin
junction trees (Bach and Jordan, 2001). There are some approaches (Chechetka and
Guestrin, 2008; Elidan and Gould, 2009) that learn JTs using a bounded treewidth.
Vats and Nowak (2014) divided the learning process in multiple subproblems over
the separators of the JTs. In order to learn thin junction trees, Shahaf and Guestrin
(2009) used the graph cuts algorithm to select the best separator in each iteration.
Flores (2005) studied the incremental compilation of JTs, and the changes that the
addition, reversal or deletion of an arc in a BN could produce on a JT.

A different approach that is not related to JTs was presented by Lowd and Domin-
gos (2008). It uses the incremental compilation of arithmetic circuits to obtain a
tractable model. The ACs are closely related to the work presented in this master
thesis, so a detailed review of this model is included in Chapter 3.

Chapter 3

Network Polynomials

3.1 Introduction to network polynomials

The probability distribution implicit in any BN can be also represented as a multi-
linear function over two types of variables, indicators and parameters:

• Indicators: The evidence indicators I(Xi = xi) are Boolean functions that
receive an instance xi of a variable Xi. They return 1 if xi is in the set of
evidences or if the value of Xi is unknown, and 0 otherwise.

• Parameters: The network parameters P (Xi = xi|Pa(Xi) = πi) for each
variable instance xi and each configuration of its parents πi.

This multi-linear function is known as the network polynomial (Darwiche, 2003),
and it is defined by the next expression:

P (X1 = x1, . . . , Xn = xn) =
n∑
i=1

∏
xi,πi∈ΩXi

I(Xi = xi)P (Xi = xi|Pa(Xi) = πi) (3.1)

Where we use xi, πi ∈ ΩXi
to represent each configuration of a variable and its

parents xi, πi for the variable Xi.

This function represents the joint probability over a set of variables
X = {X1, . . . , Xn}, so the probability of any instance of the variables of the network
can be computed with this formula by setting the indicators to the required values.

27

Network Polynomials 28

The instances of the variables are set by assigning the values 1 or 0 to the indicator
variables.

Network polynomials allow answering any arbitrary marginal or conditional prob-
abilistic query in linear time in the size of the polynomial, but the size of the poly-
nomial is exponential in the number of variables of the network.

A B

P(A)
T F
0.6 0.4

P(B|A)
A T F
T 0.7 0.3
F 0.2 0.8

Figure 3.1: Bayesian network BN1.

For example, the network polynomial related to the BN shown in Figure 3.1 can
be represented as follows:

P (A,B) = I(A = True)I(B = True)P (A = True)P (B = True|A = True)

+ I(A = True)I(B = False)P (A = True)P (B = False|A = True)

+ I(A = False)I(B = True)P (A = False)P (B = True|A = False)

+ I(A = False)I(B = False)P (A = False)P (B = False|A = False)

(3.2)

If we need to ask the network polynomial for the probability of the evidence e =

(A = True,B = False), the evidence indicators I(A = True) and I(B = False)

should be set to 1 and the indicators I(A = False) and I(B = True) should be set
to 0. The resulting function is:

P (A = True,B = False) = P (A = True) · P (B = False|A = True) = 0.6× 0.3

= 0.18

If we need to ask for a marginal probability such as P (A = False), the only
indicator set to 0 should be I(A = True), and all the other indicators should be set
to 1. For this query, the resulting function is:

Network Polynomials 29

P (A = False) = P (A = False)P (B = True|A = False) + P (A = False)P (B =

False|A = False) = 0.4× 0.2 + 0.4× 0.8 = 0.4

Some other important features of the NPs are the properties of their partial deriva-
tives. The function of a NP can be derived with respect to the indicators of the
network or the parameters. Deriving the polynomial with respect to evidence indi-
cators allows to compute all the partial derivatives with respect some evidence e,
and therefore all the evidence instantiations that differ from the evidence indicator
in only one variable. This can be useful to solve the maximum a posteriori problem
by approximation using local search (Park and Darwiche, 2001; Park, 2002). For ex-
ample, let us consider the partial derivative of P (A,B) with respect to the indicator
I(A = False):

∂P (A,B)

∂I(A = False)
= I(B = True)P (A = False)P (B = True|A = False)

+ I(B = False)P (A = False)P (B = False|A = False)

We have seen before that the value of P (A,B) at e = (A = True,B = False) is
0.18. Evaluating ∂P (A,B)/∂I(A = False) in e would return the value of
P (A = False, B = False), that is:

P (A = False, B = False) = P (A = False)P (B = False|A = False)

= 0.4× 0.8 = 0.32.

The value of ∂P (A,B)/∂I(A = False) at e = (A = True,B = False) is given by:

∂P (A = True,B = False)

∂I(A = False)
= 0× 0.4× 0.2 + 1× 0.4× 0.8 = 0.32

The partial derivatives with respect to the parameters of the network compute
the deviation of the function produced by small changes in the parameters. This
can be applied to sensitivity analysis. For example, with the purpose of setting
bounds to state in which situations the changes in the parameters are relevant,
Chan and Darwiche (2001) analysed the partial derivatives of probabilistic queries
with respect to the parameters to study the sensitivity of these queries to changes
in the parameters.

Network Polynomials 30

3.2 Arithmetic circuits

Although network polynomials have many desirable characteristics for representing
BNs, their size is a huge practical issue given that they grow exponentially with
the number of variables, making inference nearly intractable for common-size net-
works. Trying to overcome this difficulty, Darwiche (2003) proposed an alternative
representation of the network polynomials, using arithmetic circuits.

ACs are a popular model for computing polynomials. The formula represented
by any network polynomial can be captured in an AC, allowing a more compact
representation that uses the distributive properties of the polynomials to reduce
the size of the model and therefore the inference complexity. Also, it is interesting
to mention that any JT can be interpreted as an AC that factorizes a network
polynomial (Park and Darwiche, 2004), so ACs subsume JTs.

ACs are DAGs in which the inner nodes are addition and multiplication nodes
and the leaves are numeric variables or constants. The evaluation of the circuits is
straightforward and linear in the number of nodes of the graph. The circuit can be
evaluated by computing the operations represented by each interior node from the
values of its children, starting from the leaves.

For example, Equation (3.2) can be simplified using the distributive law to refor-
mulate the polynomial, as it is shown in Equation (3.3). The new factorization of the
polynomial reduces its complexity, leading from the 15 operations needed to evaluate
Equation (3.2) to the 11 operations required to evaluate Equation (3.3). This kind
of formulas can be easily represented by arithmetic circuits. The arithmetic circuit
that encodes Equation (3.3) is shown in Figure 3.2.

P (A,B) = I(A = True)P (A = True)× (I(B = True)P (B = True|A = True)

+ I(B = False)P (B = False|A = True))

+ I(A = False)P (A = False)× (I(B = True)P (B = True|A = False)

+ I(B = False)P (B = False|A = False))

(3.3)

The reduction of the network polynomial size obtained by their compilation to ACs
can be huge for polynomials over medium or big sets of variables, making it possible
to represent some network polynomials in linear size in the number of variables,

Network Polynomials 31

+

××

++

× ×××

P(A=True)I(A=True) P(A=False) I(A=False)

P(B=True|A=False)I(B=True)P(B=True|A=True) P(B=False|A=True) I(B=False) P(B=False|A=False)

Figure 3.2: Arithmetic circuit AC1

allowing an inference complexity also linear in the number of variables. As it was
stated by Darwiche (2003), ACs can answer any probability query that could be
answered by a JT, that are the most popular framework for exact inference in BNs.

ACs also provide some useful properties related to the derivatives of the NPs that
can help with the resolution of varied problems. As NPs, ACs can be evaluated or
derived in linear time with the size of the circuit, making the complexity of inference
linear in the size of the circuit and allowing obtaining the partial derivatives of the
network polynomial with respect to the variables or the parameters of the network
also in linear time. Darwiche (2003) proposed a method that, using a bottom-up
evaluation of the circuit and a top-down propagation of the values, obtains all the
partial derivatives of an AC given an evidence in linear time with the size of the
circuit. In the previous section we showed some of the advantages of using the partial
derivatives of NPs.

The MPE problem can be solved exactly in linear time using a simple reformulation
of an AC. To do this, we would need to use maximizer nodes in the place of the
addition nodes of the AC. The resultant model is called maximizer circuit. The
maximizer circuit can return all the possible instances of the MPE for any evidence
e required, and also the probability of the MPE for evidence e (Darwiche, 2009).
The maximizer circuit that corresponds to the AC used in the previous example is
shown in Figure 3.3.

Network Polynomials 32

max

××

maxmax

× ×××

P(A=True)I(A=True) P(A=False) I(A=False)

P(B=True|A=False)I(B=True)P(B=True|A=True) P(B=False|A=True) I(B=False) P(B=False|A=False)

Figure 3.3: Maximizer circuit for AC1

3.3 Learning arithmetic circuits

The initial use of ACs in graphical models was for the compilation BNs, separating
the offline and the online processes and providing an efficient framework for exact
inference. The BNs can be compiled via JTs or by variable elimination to exploit
the global structure of the network, but Darwiche (2003) also presented a method to
compile the network exploiting its local structure. Learning ACs directly from data is
a very challenging task. Darwiche uses the arithmetic circuits as a complementary
representation obtained by the compilation of the original model (the BN). The
method LearnAC was introduced in Lowd and Domingos (2008). It was the first
approach that learns an AC directly from data. LearnAC starts from scratch, with an
initial AC that represents the product of the marginal distributions P (X1, . . . , Xn) =∏

i

∑
xi∈ΩXi

I(Xi = xi)·P (Xi = xi), and then starts a greedy search process applying
the best splits in each iteration to add the dependences between variables. The
purpose of the LearnAC method is to include the inference complexity of the network
in the score metric, and use it to learn tractable models. This score is described in
Equation (3.4).

Network Polynomials 33

score(C, D) = LL(C|D)− kene(C)− kpnp(C) (3.4)

Where:

C: Arithmetic circuit

D: Training data sample

LL(C|D): Log-likelihood of the training data

ne(C),np(C): Number of arcs and parameters of the circuit respectively

ke,kp: Penalty terms per arc and parameters respectively

The pseudocode of LearnAC is shown in Algorithm 3.1. The key of this algo-
rithm is the splitting procedure, that updates the circuit incrementally. An split
S(C, P,Xi) conditions the parameters in P in the variable Xi, which in a Bayesian
network can be interpreted as arc additions. The experimental results presented
by Lowd and Domingos (2008) show that the circuits obtained by learnAC have
a tractable inference complexity, and exact inference in the obtained AC is more
efficient than approximate inference using Gibbs sampling in BNs learned by other
popular methods.

Algorithm 3.1 LearnAC(X , D)

Input: set of variables X = {X1, X2, . . . , Xn}, Data D
Output: Arithmetic circuit C
1: let C be an arithmetic circuit representing the product of marginals.
2: OKToProceed := True
3: while OKToProceed = True do
4: let Cbest be a copy of C
5: OKToProceed := False
6: for each valid split S(C, P,Xi) do
7: C ′ ← SplitAC(C, S(C, P,Xi))
8: if score(C ′, D) > score(Cbest, D) then
9: Cbest ← C ′

10: OKToProceed := True
11: end if
12: end for
13: if OKToProceed = True then
14: C ← Cbest
15: end if
16: end while
17: return C

Network Polynomials 34

There are some other interesting works related to ACs learning. In Lowd and
Rooshenas (2013), the LearnAC algorithm was adapted to learn Markov networks
instead of BNs as ACs. The work presented by Lowd and Domingos (2010) stud-
ied the compilation of BNs with a very high treewidth, where the AC compilation
proposed by Darwiche (2003) is intractable. Trying to overcome this difficulty they
presented three new methods that apply approximate compilation, allowing exact
inference in the approximate model. These algorithms sample from the original net-
work to obtain data samples and then they apply the LearnAC algorithm to learn
an AC.

3.3.1 Example of split

The splitting procedure is the main key of learnAC method. Let us focus on the AC
shown in Figure 3.4. It represents the polynomial P (A,B,C) = (

∑
a∈ΩA

I(a)P (a)) ·
(
∑

c∈ΩC
I(c)P (c) · (

∑
b∈ΩB

I(b)P (b|c))). The addition of the arc B → A to the BN
corresponds to the split S(C, {P (A = True), P (A = False)}, B). So the parameters
of A are conditioned to variable B, and now there must be a summation over all
the instances of B above the parameters of A in the AC. The splitting procedure of
LearnAC obtains an efficient factorization of the network polynomial. The resultant
AC is shown in Figure 3.5, and the polynomial represented by the updated AC is
P (A,B,C) =

∑
b∈ΩB

I(b)(
∑

a∈ΩA
I(a)P (a|b)) · (

∑
c∈ΩC

I(c)P (c)P (b|c)).

It must be noted that Figure 3.5 only shows the part of the AC where the indicator
of B is I(B = True). The other part of the circuit is identical to the part shown,
but using B = False instead of B = True in all the parameters or indicators related
to variable B. In Figure 3.4 and Figure 3.5 we use T to refer to True and F to refer
to False.

Network Polynomials 35

A C B

×

+ +

× ×

I(A=T) P(A=T) P(A=F) I(A=F)

× ×

P(C=T) + + P(C=F)

I(C=T) I(C=F)

× ×× ×

P(B=T|C=T) I(B=T) P(B=T|C=F) P(B=F|C=F)I(B=F)P(B=F|C=T)

Figure 3.4: LearnAC example. BN (top) and AC (bottom) before split.

C B A

×

+ +

× ×

I(A=T) P(A=T|B=T) P(A=F|B=T) I(A=F)

× ×

P(C=T)P(B=T|C=T) P(B=T|C=F)P(C=F)

I(C=T) I(C=F)

I(B=T)

+

× I(B=F)

. . .

Figure 3.5: LearnAC example. BN (top) and AC (bottom) after split.

Chapter 4

Polynomial Trees

One of the disadvantages for the representation of BNs as ACs is that they are not a
framework dedicated to probability distributions (Jaeger et al., 2006), because they
can represent any kind of polynomials, including those that do not encode a network
polynomial. For the task of learning a probabilistic model from data, it is essential
to operate over a delimited search space, and the search space of arithmetic circuits
is not bounded to the space of probability distributions. This fact makes the task
of learning ACs directly from data very difficult. As we saw in Chapter 3, state-
of-the-art methods for learning ACs from data like LearnAC are greedy methods
that proceed by conditioning variables of the network to other variables. This is
done by splitting the parameter nodes corresponding to the conditioned variable
into the conditioning variable. The operations that LearnAC considers in each step
are limited, including only the arc additions that produce a valid split of the current
circuit. It would be very challenging to create flexible algorithms for learning ACs
capable of doing and evaluating any possible movement during the search, including
all the arc additions, deletions or reversals that maintain the integrity of the network.
State-of-the-art methods for learning BNs usually consider all these possibilities.

Another disadvantage of the ACs is their lack of expressiveness. They are thought
as a complementary model for BNs, but given that they can have a huge number
of nodes and edges, it is extremely unintuitive to identify the conditional depen-
dences between the variables of the network by only looking at the representation
of the circuit, or to combine the graphical information of an AC with the graphical
information provided by a BN.

37

Polynomial trees 38

The purpose of this master thesis is to find a new representation of the network
polynomials that keeps the main properties of the ACs using a simple representation,
easy to understand and highly compatible with the graphical representation of BNs.
To achieve these goals, we propose a new graphical model complementary to BNs for
representing discrete probability distributions, which we call polynomial trees (PTs).
As ACs, each PT encodes a compact network polynomial and is associated to a BN.
A PT consists of the next elements:

1. A set of nodes XP , including a root node ∗ and a node Xi ∈ X for each variable
of the probability distribution.

2. An indicator variable I(Xi) associated to each node Xi ∈ X . Each indicator
can take the value of any state of the variable Xi and the value None if it is
not set.

3. A set of directed arcs that represent the operation dependences and ordering
over all the variables of the network, forming a tree structure that connects all
the nodes of the network, where the root node ∗ is the ancestor.

4. An associated Bayesian network B over X . B is composed of a DAG repre-
senting the dependences in the network and of a set of parameters for each
node Xi ∈ X .

Basically, the complete graphical representation of a PT should consist of a DAG
representing the dependences in the network and a tree representing the inference
operation order. It is important to mention that there are usually multiple valid PTs
for each BN, because there are multiple possible orders to perform exact inference
on each network, so a difficulty for learning PTs would be to find those trees that
require a lower number of operations per inference query.

As an example, let us focus on the structure of the BN BN2, that is shown in
Figure 4.1. The network has 9 variables, and we will assume that all the variables
are Boolean, and therefore they can only take the values True or False.

Figure 4.2 shows a PT that represents a valid operating order for BN2. It is
possible to distinguish a DAG (in black), that shows the dependences between the
variables of the network, and a tree (in red) that shows the operations chain used
to perform exact inference in the PT. The root node ∗ represents the first operation
to be executed in the inference procedure.

Polynomial trees 39

Figure 4.1: Structure of the Bayesian network BN2.

Figure 4.2: Combination of BN and PT for BN2 (left), and only the PT (right).

PTs are a complementary model for BNs, and each PT is associated to a BN.
The soundness of a PT is the property that assures that any probabilistic query
that could be answered by a BN B can be answered with the same response by its
associated PT P . As we will see in the next section, the inference process proposed
for PTs consists of a top-down process for the propagation of the indicators and a
bottom-up process for the computation of the probabilities. In order to compute the
parameters of a node Xi, it is necessary that the indicators related to the parents
of Xi in B are set, and this will only happen if all the nodes in Pa(B, Xi) are also
predecessors of Xi in P . The next paragraphs are the formal definitions of the
soundness of any node in a PT and the soundness of the PTs respectively.

Polynomial trees 40

Definition 6. Let P be a PT over XP = {∗} ∪ X with an associated Bayesian
network B over X . A node Xi ∈ X is sound if and only if ∀Xj ∈ Pa(B, Xi),
Xj ∈ Pred(P , Xi).

Definition 7. Let P be a PT over XP = {∗} ∪ X with an associated Bayesian
network B over X . P is sound if and only if ∀Xi ∈ X , Xi is sound.

4.1 Inference in polynomial trees

Bayesian networks do not include an explicit exact inference procedure, and there
are several different methods dedicated to this task, as it was shown in Chapter
2. Unlike BNs, ACs do represent a polynomial that can be used to perform exact
inference explicitly in the circuit. The same happens with PTs, given that they
encode a polynomial in a very compact representation, and this polynomial can be
used to answer any joint probability query. It is straightforward to compile any PT
into an AC, given that the evaluation of PTs proposed here uses a sums of products
over the indicators of the tree and the parameters of its corresponding BN, and these
operations can be easily captured by an AC. Nevertheless, there are multiple times
where an AC cannot be compiled into a PT, given that the space of ACs is wider
than the space of PTs.

In this section we propose a method for performing exact inference in PTs. This
method evaluates the polynomial encoded in a PT given a set of evidences, and it
is closely related to the AC evaluation. The algorithm proceeds by first, executing
a top-down process for the propagation of the indicators in the tree, and then it
performs a bottom-up process where it computes the probability of the polynomial
represented in the tree given the configuration of the indicators.

The concept of indicators for PTs is slightly different from the concept of indicators
for ACs. While in ACs there is a binary indicator I(Xi = xi) for each instantiation
xi of variable Xi, here the indicators are simplified. There is only one indicator
I(Xi) associated to each variable of the tree, and I(Xi) can take any value xij of
Xi and the value None. If we set I(Xi) = xij in a PT, it would be the same as
setting I(Xi = xij) = 1 and I(Xi = xik) = 0,∀xik of Xi, xik 6= xij in an AC. Setting
I(Xi) = None would correspond to setting I(Xi = xij) = 1 for any instantiation
xij of Xi.

Polynomial trees 41

The algorithm proceeds as follows. First, it receives as an input the indicators of
the query that is going to be evaluated by the polynomial. Let us use a set of indi-
cators containing the indicator of each variable in the PT. For example, supposing
that we need to evaluate the query P (A = True,B = False) in the PT shown in
Figure 4.3, the initial set of indicators would be:

I = {I(A) = True, I(B) = False, I(C) = None, I(D) = None}

As it was shown before, there is an indicator for each variable, and each indicator
can take the value of any instantiation of its corresponding variable or the value
None, that indicates that the value of the indicator is not set. For each variable
passed as an evidence to the tree the value of the corresponding indicator is set to
the value of the evidence. Otherwise, the indicators related to any variable that
is not in the evidence set takes the value None. In the example, variables A and
B are passed as evidence in the query P (A = True,B = False), so the values of
their indicators are set to I(A) = True and I(B) = False respectively. Variables
C and D do not appear in the evidence set of the query, so their values are set to
I(C) = None and I(D) = None initially.

P(D)
T F
0.6 0.4

P(A)
T F
0.8 0.2

P(B|A)
A T F
T 0.3 0.7
F 0.5 0.5

P(C|A)
C T F
T 0.9 0.1
F 0.4 0.6

Figure 4.3: Example. A PT and the parameters of its corresponding BN.

Given an indicators set I, then the probability of I in the PT can be computed
using Equation (4.1) for the initial step and Equation (4.2) for the inductive steps.
The first step is to evaluate the root node ∗, as it is described in Algorithm (4.1).
The probability of I for ∗ can be obtained by evaluating each of its children given
I, and computing the final value as the product of all the values returned by these
evaluations.

Polynomial trees 42

query(B,P , I) =
∏

Xi∈Ch(P,∗)

queryNode(B,P , Xi, I) (4.1)

In the example, the root node ∗ has two children, nodes A and D, so the result of
evaluating ∗ is query(B,P , I) = queryNode(B,P , D, I) · queryNode(B,P , D, I)

Algorithm 4.1 query(B,P , I)

Input: BN B, PT P , set of indicators I
Output: Probability of I in P
1: let ∗ be the root node of P
2: P := 1
3: for Xi ∈ Ch(P , ∗) do
4: value := queryNode(B,P , Xi, I)
5: P := P · value
6: end for
7: return P

The rest of the nodes can be evaluated using the process described by Algorithm
4.2. The operations needed to obtain the returned value are represented in Equation
(4.2). Basically, if the value of the indicator I(Xi) corresponding to variable Xi is
not set (Xi = None), the result is equal to the sum of evaluating Xi, setting its
indicator I(Xi) to each of its possible instantiations. Otherwise, the returned value
is the parameter that corresponds to the current configuration of variable Xi and
its parents in the indicators set multiplied by the result of evaluating each children
of Xi. That is,

queryNode(B,P , Xi, I) =
∑

xi∈ΩCi

P (Xi = xi|Pa(B, Xi) = πXi
)

×
∏

Xj∈Ch(P,Xi)

queryNode(B,P , Xj, IXi
)

(4.2)

Where:
• Ci: If I(Xi) 6= None, then Ci = {I(Xi)}, otherwise Ci is a set containing all

the possible instances of Xi.
• πXi

: Set with the value of each parent of Xi in I.
• IXi

: Set of indicators obtained after setting the value of I(Xi) to xi in I .

Polynomial trees 43

Algorithm 4.2 queryNode(B,P , Xi, I)

Input: BN B over X = {X1, . . . , Xn}, PT P , node Xi, set of indicators I
Output: Partial probability of I in P from the node Xi

1: if I(Xi) = None then
2: let Ci be a set containing all the possible instantiations of Xi

3: else
4: Ci ← {I(Xi)}
5: end if
6: Pr := 0
7: for c ∈ Ci do
8: let πXi

be the configuration in I of Pa(B, Xi)
9: Paux := P (Xi = c|Pa(B, Xi) = πXi

)
10: let Ic be a copy of I
11: Ic(Xi)← c
12: for Xj ∈ Ch(P , Xi) do
13: value := queryNode(B,P , Xj, Ic)
14: Paux := Paux · value
15: end for
16: Pr := Pr + Paux
17: end for
18: return P

4.1.1 Example. Inference in polynomial trees

Let us imagine that we needed to evaluate node A in the PT used in this example,
where we need to get the probability P (A = True|B = False). The algorithm would
proceed as follows. Knowing that the set of indicators is I = {I(A) = True, I(B) =

False, I(C) = None, I(D) = None} and therefore I(A) 6= None, variable Ci would
be set to {I(A)}, so Ci = {True}. The value returned by queryNode(B,P , A, I)

would be P (A = True) · (queryNode(B,P , B, IA) · queryNode(B,P , C, IA)). The
complete process that should be executed in order to evaluate the PT of Figure 4.3
given the set of indicators I = {I(A) = True, I(B) = False, I(C) = None, I(D) =

None} is shown below.

Polynomial trees 44

Step 1

I = {I(A) = True, I(B) = False, I(C) = None, I(D) = None}

queryNode(B,P, ∗, I) = queryNode(B,P, D, I) · queryNode(B,P, A, I)

Step 2

I = {I(A) = True, I(B) = False, I(C) = None, I(D) = None}

ID1
= {I(A) = True, I(B) = False, I(C) = None, I(D) = True}

ID2
= {I(A) = True, I(B) = False, I(C) = None, I(D) = False}

queryNode(B,P, D, I) =

queryNode(B,P, D, ID1
) + queryNode(B,P, D, ID2

) =

P (D = True) + P (D = False) = 0.6 + 0.4 = 1

Step 3

I = {I(A) = True, I(B) = False, I(C) = None, I(D) = None}

IA = {I(A) = True, I(B) = False, I(C) = None, I(D) = None}

queryNode(B,P, A, I) =

P (A = True) · (queryNode(B,P, B, IA) · queryNode(B,P, C, IA)

Step 4

IA = {I(A) = True, I(B) = False, I(C) = None, I(D) = None}

queryNode(B,P, B, IA) = P (B = False|A = True) = 0.7

Step 5

IA = {I(A) = True, I(B) = False, I(C) = None, I(D) = None}
IC1

= {I(A) = True, I(B) = False, I(C) = True, I(D) = None}
IC2

= {I(A) = True, I(B) = False, I(C) = False, I(D) = None}

queryNode(B,P, D, IA) =

queryNode(B,P, C, IC1
) + queryNode(B,P, C, IC2

) =

P (C = True|A = True) + P (C = False|A = True) = 0.9 + 0.1 = 1

Polynomial trees 45

Step 6

IA = {I(A) = True, I(B) = False, I(C) = None, I(D) = None}

queryNode(B,P, A, I) =

P (A = True) · queryNode(B,P, B, IA) · queryNode(B,P, C, IA) =

0.8× 0.7× 1 = 0.56

Step 7

I = {I(A) = True, I(B) = False, I(C) = None, I(D) = None}

queryNode(B,P, ∗, I) =

queryNode(B,P, D, I) · queryNode(B,P, A, I) =

1× 0.56 = 0.56

4.2 Evaluating the complexity of polynomial trees

The PT representation is also an intuitive indicator of the inference complexity for
the polynomial that it encodes. One of the main advantages of PTs is that it is
simple to obtain exactly the maximum inference complexity of the model. In most
state-of-the-art methods for learning thin probabilistic models the treewidth is used
as an estimation of the inference complexity. Obtaining the treewidth of a graph
is an NP-complete problem, so in most methods it is estimated (Beygelzimer and
Rish, 2004). Another strategy that was reviewed in Chapter 2 is the incremental
compilation of junction trees, that allows obtaining the exact value of the treewidth
in linear time, but these methods are usually very computationally requiring and
sometimes they use a very constrained search space that could affect the faithfulness
of the model.

Using PTs, it is possible to obtain exactly the maximum number of operations that
must be computed to solve any joint query asked to the network in linear time in
the number of variables of the network. This makes the evaluation of PTs tractable
for learning networks of any size. The method used in this report for the complexity
evaluation of PTs, defined by Algorithm 4.3, works by evaluating the tree recursively.
It starts in the root node, and in each step it gets the complexity of the sub-tree that
has the current node as its root. This complexity is equal to the number of possible

Polynomial trees 46

instances of the current node multiplied by the sum of evaluating the complexity
of each of its children. The value of the complexity for each node is represented in
Equation (4.3).

evalNode(P , Xi) = |Xi| ·

1 +
∑

Xj∈Ch(P,Xi)

1 + evalNode(P , Xj)

 (4.3)

Where |Xi|: denotes the number of different possible instances of Xi.

Algorithm 4.3 evalNode(P , Xi)

Input: Polynomial tree P , current node Xi

Output: Evaluation of the complexity of P
1: eval = 0
2: for Xj ∈ Ch(P , Xi) do
3: eval := eval + 1 + evalNode(P , Xj)
4: end for
5: let len be the number of possible instantiations of Xi

6: return len · (1 + eval)

4.2.1 Example. Evaluating the complexity of a polynomial
tree

The next example shows the process performed by Algorithm 4.3 for evaluating the
complexity of a PT. In particular, it computes the maximum number of operations
that could be computed by P , where P is the PT shown in Figure 4.3. The operations
computed in each step of the example, that are represented in Figure 4.4 are:

Step 1. evalNode(P , ∗) = |∗ |+(1+(evalNode(P , D)+1)+(evalNode(P , A)+1))

Step 2. evalNode(P , D) = |D| = 2

Step 3. evalNode(P , A) = |A| · (1+(evalNode(P , B)+1)+(evalNode(P , C)+1))

Step 4. evalNode(P , B) = |B| = 2

Step 5. evalNode(P , C) = |C| = 2

Step 6. evalNode(P , A) = |A|·(1+(evalNode(P , B)+1)+(evalNode(P , C)+1)) =

2 · (1 + (2 + 1) + (2 + 1)) = 14

Step 7. evalNode(P , ∗) = |∗|+(1+(evalNode(P , D)+1)+(evalNode(P , A)+1)) =

1 · (1 + (1 + 2) + (1 + 14)) = 19

Polynomial trees 47

Step 1 Step 2 Step 3 Step 4

Step 5 Step 6 Step 7

Figure 4.4: Example of the inference complexity calculation for P

4.3 Incremental compilation of polynomial trees

Some of the main advantages of using PTs for learning BNs is that the complexity
of the model can be evaluated in linear time and that it provides a complementary
model where it is straightforward to perform exact inference. This produces that
the models learned by the incremental compilation of PTs will usually have a good
performance for exact inference. There are multiple strategies to learn PTs, a possi-
bility is to first learn the BN and then compile the complete network into a PT, as
it was proposed in Darwiche (2003) for learning ACs, but it does not fulfil our goal,
that is learning thin models from data. Another possibility is to compile a PT for
each network candidate during the search, this would solve the previous problem,
but it would demand too much computation, making the search extremely ineffi-
cient or even intractable for trees over large sets of variables. This paper proposes a
method for learning PTs by the incremental compilation of the changes applied to
BNs, allowing a low complexity evaluation framework and a feasible performance.
Next, we introduce the concept of optimality in PTs.

Definition 8. A polynomial tree P over {∗} ∪ X is optimal if it is sound and it
encodes the polynomial with the minimum number of operations needed to compute
the most expensive query that it can answer. The most expensive query in P is the
one where the indicator of each variable in X is set to None.

Polynomial trees 48

Although in the next sections we propose a method for learning PTs that uses
an scoring function in particular, the main idea of this master thesis is to provide
a framework that can be applied to any score+search method in combination with
different metrics used for learning BNs. The PT obtained after the learning process
must be sound, and it is desirable that it is close to the optimal PT. For this purpose
we need to consider three types of operations:

• Addition of new arcs.

• Elimination of arcs.

• Reversion of arcs.

This section includes the methods required to compile incrementally these oper-
ations in PTs, allowing the incremental learning of the trees in parallel with the
process for learning the structure of the BN. All the methods proposed assure that
any learned PT is sound, but the obtained models may be far from an optimal PT.
To overcome this difficulty we also include an optimization method with the purpose
of obtaining desirable PTs with a tractable computational complexity.

4.3.1 Arc addition

The addition of an arc in a BN is straightforward, but in a PT the compilation
process is not so simple, and it depends on the current configuration of the PT. There
are three main scenarios that we need to consider, depending on the configuration
of the tree in each step. Lets consider any addition operation (Xout → Xin) that
should be compiled in a PT P and included in its corresponding BN B. We will refer
to Xout as the output node and Xin as the input node. The scenarios that could be
involved in any arc addition are the following:

• Scenario 1. Xout ∈ Pred(P , Xin): This is the simplest scenario. The addition
of an arc from Xout to Xin does not suppose any changes in P , because with
the change the tree keeps being sound and its optimality is not affected.

• Scenario 2. Xin ∈ Pred(P , Xout): This scenario is the most complex one.
The operation supposes a restructuring of the nodes between Xin and Xout

in order to get a sound P , and an optimization process should be applied to
obtain a satisfactory tree.

Polynomial trees 49

• Scenario 3. Xout /∈ Pred(P , Xin) and Xin /∈ Pred(P , Xout): In this scenario,
the node Xout and its predecessors must be also predecessors of Xin in P .
Then, an optimization process should be applied.

Imagining that we are learning the BN and the PT shown in Figure 4.5, Let us
focus on some arc additions that cover the three different scenarios. In each example
we show the resulting BN after applying the addition of the arc, and the resulting
PT after compiling the change in the tree. The obtained PTs are sound but they
may be far from optimal, given that we do not include the optimization process in
these examples. Figure 4.6 corresponds to the addition of the arc A → E. In this
case A is currently a predecessor of E in the PT (scenario 1), so no changes in the
tree are required. Figure 4.7 corresponds to the addition of E → A. This change
implies a reconfiguration of the network given that A is currently a predecessor of
E in the PT (scenario 2), and now E must be a predecessor of A and the tree must
keep its soundness. The last example corresponds to the addition of the arc C → F .
Given that the only predecessor in common between C and F is the root node ∗
(scenario 3), then C and all its predecessors must be placed as predecessors of F to
maintain the soundness of the tree.

Figure 4.5: Examples of BN (left) and PT (right) respectively.

The method proposed in this paper for the incremental compilation of arc additions
in PTs is described by Algorithm 4.4, and it proceeds as follows. The first step of
the algorithm is to update the connections of the BN B, adding and arc from Xout

to Xin (line 5). After that, the changes will only affect to the PT P . The next
step is to identify the scenario that we are facing at the time, and for that it is
necessary to get the first common predecessor Xpred of Xout and Xin in the tree. If
Xpred is the node Xout, then Xout is currently a predecessor of Xin, and we are in
scenario 1. If Xpred is the node Xin, then Xin is a predecessor of Xout, and we are

Polynomial trees 50

Figure 4.6: Example of arc addition for scenario 1. BN (left) and PT (right).

Figure 4.7: Example of arc addition for scenario 2. BN (left) and PT (right).

in scenario 2. Otherwise, neither Xout or Xin are predecessors of each other and we
are facing scenario 3.

In scenario 1 , no actions are required to maintain the soundness and optimality
of P .

In scenario 2 (line 7), it is necessary to swap the positions of the nodes Xout and
Xin in the tree. The algorithm gets the list of nodes that are between Xout and
Xin (line 8), that we will call CN for now on. Given that the nodes in CN may
be predecessors of Xin in B, they will need to be reorganized in most cases. For
this reason, the algorithm uses a list to store the nodes belonging to CN that are
predecessors of Xin in B (line 10). We will refer to this list as dL. The algorithm
will also store the last nodes belonging to CN that have been visited during the
procedure. The last node visited that belongs to Desc(B, Xin) will be assigned to
Cin, and the last node visited that is not in Desc(B, Xin) will be assigned to Cout.

Polynomial trees 51

Figure 4.8: Example of arc addition for scenario 3. BN (left) and PT (right).

The algorithm will iterate over the nodes belonging to CN (line 15), starting from
the shallowest one and finishing in the deepest one. Before the first iteration, Cin
is initialized to Xin (line 11) and the parent of Xin is assigned to Cout (line 12). In
each iteration, the dependences in the BN of the visited node, which we will refer to
as Xj, will be checked (line 18). If Xj has any of the nodes belonging to dL as one
of its parents (line 23), which would mean that it is a descendant of Xin in B, then
the parent of Xj would be set to Cin, and Xj would be assigned to Cin and added
to dL. Otherwise (line 27), the parent of Xj would be set to Cout, and Xj would be
assigned to Cout.

It is also necessary to consider the dependences of each branch hanging from the
node (line 28). IfXj is not a predecessor ofXin in the BN and any node of the branch
that hangs from Xj does, the soundness of P would be compromised, because the
nodes of the branch would not have Xin as one of their predecessors in the network.
To overcome this difficulty, the branch will pass to hang from the node stored in Cin
instead. Applying these steps to the tree would always produce sound trees, but in
some cases they can be far from optimal, so an optimization step is required.

In scenario 3 (line 40), node Xout is a predecessor of Xin in B but it is not in
P . To maintain the soundness of P , node Xout and therefore its predecessors in P
must be reorganized. It is enough to set Xout and its predecessors in the PT as
direct predecessors of Xin by first, setting Xout as the parent of Xin, and setting the
previous parent of Xin in P as the parent of the shallowest predecessor of Xout in P
that is also a descendant of Cout in P . As it happens with scenario 2, this procedure

Polynomial trees 52

Algorithm 4.4 addArc(B,P , Xout, Xin) - Part I
Input: BN B, PT P , output node Xout, input node Xin

Output: Updated BN B′ and PT P ′
1: let P ′ be a copy of P
2: let B′ be a copy of B
3: let Xpred be the first common predecessor of Xout and Xin in P
4: let Cpred be the child of Xpred that is a predecessor of Xin in P
5: append Xout to Pa(B′, Xin)
6: . Scenario 1 requires no actions
7: if Xpred = Xin then . Scenario 2
8: let CN be the nodes that are descendants of Xin and predecessors of Xout in P ,

ordered from the shallowest to the deepest
9: CN ← concatenate((Xin),CN , (Xout))

10: dL← list(Xin) . list for Xin and its descendants in B′ that belong to CN

11: Cin ← Xin . Current tail of the list dL
12: Cout ← Pa(P ′, Xin) . Last visited node that is not a descendant of Xin in B′
13: remove Cout from Pa(P ′, Xin)
14: let l be the length of CN

15: for j := 1, . . . , l − 1 do
16: Xj ← CN [j]
17: flag ← False
18: for Xk ∈ Pa(B′, Xj) do . Check if Xj is a descendant of Xin

19: if Xk ∈ dL then
20: flag ← True
21: end if
22: end for
23: if flag then . Update Cin and dL
24: append Xj to dL
25: Pa(P ′, Xj)← Cin
26: Cin ← Xj

27: else . Update Cout and set the parent of each children of Xj

28: for Xk ∈ Ch(P ′, Xj) do
29: if Xk 6= CN [j + 1] then
30: Pa(P ′, Xk)← Cin
31: end if
32: end for
33: Pa(P ′, Xj)← Cout
34: Cout ← Xj

35: end if
36: end for
37: set Cin as the parent in P ′ of all the nodes in Ch(P,Xout).
38: Pa(P ′, Xout)← Cout . Set the parents of the input and the output nodes

Polynomial trees 53

Algorithm 4.4 addArc(B,P , Xout, Xin) - Part II
39: Pa(P ′, Xin)← Xout

40: else if Xpred 6= Xin then . Scenario 3
41: Pa(P ′, Cpred)← Pa(P ′, Xin)
42: Pa(P ′, Xin)← Xout

43: end if
44: return B′,P ′

ensures that the resultant tree is always sound but it may be sometimes far from
optimal.

It is important to remark that the compilation of an edge addition will never affect
to the soundness of P . The proof is provided in Lemma 1 in Appendix A.

4.3.2 Arc deletion

The second operation that we need to consider is the arc deletion. On the one
hand, it is straightforward to obtain a sound PT incrementally after an arc deletion
in the BN, because it is enough to maintain the current configuration of the tree.
On the other hand, a huge reduction in the complexity of the PT may be achieved
optimizing the PT without the deleted arc.

The algorithm for arc deletion is extremely simple (see Algorithm 4.5). The only
task required is to update the BN removing the old connection (Xout → Xin). An
optimization process should be applied to reduce the complexity of the tree. Figure
4.9 is an example of compiling the deletion of arc A→ F in the BN and PT shown
in Figure 4.5. There are no changes applied to the PT and it keeps being sound
regarding to the new BN, but a model with a lower inference complexity could be
obtained optimizing the tree.

As it is proved in the Lemma 2 in Apendix A, the method deleteArc never alters
the soundness of a PT.

Algorithm 4.5 deleteArc(B,P , Xout, Xin)

Input: BN B, PT P , output node Xout, input node Xin

Output: Updated BN B′ and PT P ′
1: let B′ be a copy of B
2: remove Xout from Pa(B′, Xin)
3: return B′, P

Polynomial trees 54

Figure 4.9: Example of an arc deletion. Initial BN (left) and PT (right).

4.3.3 Arc reversal

Arc reversal can be easily applied combining the deletion and addition of the reverse
arc. Imagine that we need to reverse arc Xout → Xin. The algorithm proposed in
this report first removes arc Xout → Xin. After this step we will be facing scenario 2
for the addition of arc Xin → Xout, so it is enough to apply the algorithm described
before for the addition of a new arc in these scenarios. The complete method for the
addition of new PTs is described in Algorithm 4.6. Figure 4.10 shows the effects of
compiling the reversal of arc A→ F in the BN and PT shown in Figure 4.5.

Algorithm 4.6 reverseArc(B,P , Xout, Xin)

Input: BN B, PT P , output node Xout, input node Xin

Output: Updated BN B′ and PT P ′
1: P0,B0 ← deleteArc(B,P , Xout, Xin)
2: P ′,B′ ← addArc(B0,P0, Xin, Xout)
3: return B′,P ′

By Lemma 3 in Appendix A, the arc reversal compilation method never affects
the soundness of a PT.

4.3.4 Polynomial tree optimization

So far, we have proposed the methods that are necessary to compile a PT while
learning BNs in parallel. The problem is that the PTs obtained after applying one
of these methods can have an inference complexity much higher than the optimal PT.
This means that an optimization process is required in order to obtain satisfactory
PTs, in a way that during the learning process good solutions are not rejected because

Polynomial trees 55

Figure 4.10: Example. Arc reversal. BN and PT respectively.

of a poor incremental compilation of the trees. Although the first objective of this
process is to obtain optimal trees, it is necessary to consider that a PT should be
computed for every candidate in each step of the learning process, and therefore the
optimization algorithm will be also applied for each candidate of the tree. It is then
essential to use an efficient and accurate method that allows obtaining satisfactory
PTs requiring a feasible computational cost.

The method proposed in this master thesis for the optimization of PTs, which is
defined by Algorithm 4.7, visits a node per iteration. It receives as input the nodes to
optimize XOPT , the maximum number of iterations nSteps and the parameter alpha,
that is described below. The purpose of nSteps and alpha is to set a threshold in
the computational cost of the optimization process, while allowing a satisfactory
optimization. The algorithm consists of the next two phases:

• Phase 1: In each iteration of the first phase the deepest node belonging to
XOPT that can reduce the complexity of the PT is pushed up. If there is no
node which pushing it up supposes a reduction of the complexity of the tree,
then the algorithm stops.

• Phase 2: In each iteration of the second phase the shallowest node belonging
to XOPT that can reduce the complexity of the PT is pushed up. As it happens
in phase 1, the algorithm stops if there are no available movements that reduce
the complexity of the tree.

Parameter alpha represents the portion of effort that the algorithm spends in
Phase 1. The number of iterations in Phase 1 is set to nSteps × alpha, while the
number of iterations in Phase 2 is set to nSteps× (1− alpha). If we face a problem

Polynomial trees 56

where the learning time has a low relevance, it would be better if the parameter
nSteps is set to a big number, and alpha should be close to 1. This would suppose
a better fit for each candidate of the tree.

The key of the optimization process is to find the right local movements that
improve the network in each iteration. The procedure used here to explore possible
changes in one node is defined by Algorithm 4.8. The method pushUpNode tries to
swap the position of the node to be optimized Xi with its parent Pa(P , Xi). This
method involves movements for the nodes Xi and Pa(P , Xi) and the children of
both of them. Each child of Xi or Pa(P , Xi) that is not Xi is the ancestor of a
branch hanging from Xi or Pa(P , Xi) that could compromise the soundness of the
tree, so the dependences of all the nodes in each branch must be considered.

Let B and P be the BN and PT received as an input by pushUpNode and P ′ the PT
that it returns. We will sometimes refer to Pa(P , Xi) as Pi and to Pa(P , Pa(P , Xi))

as Pp. Let us use the section of the PT shown in Figure 4.11 as an example to show
the operations performed by pushUpNode. In the first step of the procedure, all the
arcs that join Xi and its parent with the branches hanging from them are deleted.
The arc that joins Pa(P , Xi) with its parent is also deleted. This step is represented
in Figure 4.12.

In the second step of the algorithm (Figure 4.13) the new parent of Xi is set, so
Pa(P , Pa(P , Xi)) is the parent of Xi in P ′. In the third step (Figure 4.14), the
arcs from Xi and Pa(P , Xi) to the unassigned branches are added. The branches
that contain any node that is a descendant of Pa(P , Xi) in the BN must now hang
from Pa(P , Xi), while the rest of the branches should hang from Xi to reduce the
inference complexity of the tree.

The last step required is to assign the new parent of Pa(P , Xi). Here, there are
two options, depending on if Pa(P , Xi) or any of its descendants in P is also a
descendant of Xi in B. If this holds, then it is necessary to set Xi as the new parent
of Pa(P , Xi), as shown in Figure 4.15. Otherwise, Pa(P ′, Xi) keeps its old parent
from P (Figure 4.16).

Polynomial trees 57

Algorithm 4.7 optimize(B,P ,XOPT , nSteps, alpha) - Part I
Input: BN B, PT P , nodes to optimize XOPT = {X1, . . . , Xn},

maximum number of iterations nSteps, portion of down steps alpha
Output: Optimized PT P ′

1: let P ′ be a copy of P
2: let flagsChange be an empty list
3: let depths be an empty list
4: let X ′ := {X ′1, . . . , X ′n} be a copy of XOPT
5: . Initialization of change flags and depth flags.
6: for Xi ∈ X ′ do
7: append True to flagsChange
8: let depth be the depth of Xi in P ′
9: append depth to depths

10: end for
11: nStepsDown := bnSteps× alphac . Number of down steps.
12: iteration = 0
13: while iteration < nSteps do
14: bestNode← None
15: if iteration < nStepsDown then
16: let bestNode be the shallowest node X ′j where flagsChange[j] = True
17: else
18: let bestNode be the deepest node X ′j where flagsChange[j] = True
19: end if
20: if bestNode = None then
21: return P ′
22: end if
23: parent← Pa(P ′, bestNode)
24: P ′, f lag ← pushUpNode(B,P ′, bestNode)
25: if flag = True then . Update flags.
26: iteration := iteration+ 1
27: if parent ∈ X ′ then
28: flagChange[parent] := False
29: end if
30: for Xj ∈ Ch(P ′, parent) do
31: if Xj ∈ X ′ then
32: flagChange[Xj] := True

Polynomial trees 58

Algorithm 4.7 optimize(B,P ,XOPT , nSteps, alpha) - Part II
33: else
34: X ′ ← X ′ ∪ {Xj}
35: append True to flagChange
36: let depth be the depth of Xj in P ′
37: append depth to depths
38: end if
39: end for
40: else
41: flagChange[bestNode] := False
42: end if
43: end while

Algorithm 4.8 pushUpNode(B,P , Xi) - Part I
Input: BN B, PT P , node to be moved Xi

Output: PT P ′, flag that indicates if a change was made
1: let P ′ be a copy P
2: Pi ← Pa(P ′, Xi)
3: . If the parent node is a parent of Xi in the BN return False
4: if Pi ∈ Pa(B, Xi) then
5: return P , False
6: end if
7: let dscs be an empty list
8: let branches be an empty list
9: . Check if the branches hanging from Xi contain descendants of Pi in B

10: for Xj ∈ Ch(P ′, Xi) do
11: let dsc be True if Xj or any of its descendants P ′ is a descendant of Pi in

B and False otherwise
12: append dsc to dscs
13: append Xj to branches
14: end for
15: . Check if the branches hanging from Pi contain descendants of Pi in B
16: for Xj ∈ Ch(P ′,Pi) do
17: let dsc be True if Xj or any of its descendants P ′ is a descendant of Pi in

B and False otherwise
18: append dsc to dscs
19: append Xj to branches
20: end for
21: . Set the parents of each branch belonging to branches
22: Pa(P ′, Xi)← Pa(P ′,Pi)
23: let len be the length of branches

Polynomial trees 59

Algorithm 4.8 pushUpNode(B,P , Xi) - Part II
24: for j = 1, . . . , len do
25: if dscs[j] = True then
26: Pa(P ′, branches[j])← Pi
27: else
28: Pa(P ′, branches[j])← Xi

29: end if
30: end for
31: if Pi is a predecessor of Xi in B then
32: Pa(P ′,Pi)← Xi

33: end if
34: . Compare the complexity of the old network and the new one
35: eOld := evalNode(P ,Pi)
36: eNew := evalNode(P , Xi)
37: if eNew < eOlds then
38: P ← P ′
39: return P ′, T rue
40: else
41: return P , False
42: end if

As it is demonstrated in Lemma 4 in Appendix A, pushUpNode method, and
therefore optimize method presented in this section does not alter the soundness of
any PT.

4.4 Learning polynomial trees from data

The previous section described a group of methods that allow the incremental com-
pilation of PTs considering the addition, deletion and reversal of arcs in the BNs.
Therefore, we have the tools required to learn PTs in parallel with BNs. The frame-
work provided for the incremental compilation of PTs has been made with the ob-
jective of making it flexible and adaptable to most of the score+search methods
known to date. It is straightforward to add the compilation step to any method
that applies local changes during the search process, such as greedy search methods
or stochastic methods.

The methods for incremental compilation were created with the purpose of obtain-
ing satisfactory trees efficiently in each compilation step. This approach matches
perfectly with greedy methods like K2 and HC, but some stochastic or evolutionary
methods may require a more refined optimization process given that a large amount

Polynomial trees 60

Pp

Pi

Xi

. . .
b1 b

2 . . .

. . .
b3 b

4 . . .

b
5
...

..
.

Figure 4.11: Section of a PT

Pp

Pi

Xi

. . .
b1 b

2 . . .

. . .
b3 b

4 . . .

b
5
...

..
.

Figure 4.12: Step 1

Pp

Xi Pi

..
.
b 1

b
5
. . .

...
b

3

b
4
. . .

b
2 . . .

..
.

Figure 4.13: Step 2

Pp

Xi Pi

..
.
b 1

b
5
. . .

...
b

3

b
4
. . .

b
2 . . .

..
.

Figure 4.14: Step 3

Polynomial trees 61

Pp

Xi

Pi

. . .
b1 b

5 . . .

. . .
b3 b

4 . . .

b
2
...

..
.

Figure 4.15: Step 4a

Pp

Xi Pi

. .
.
b 1

b
5
. . .

...
b

3

b
4
. . .

b
2 . . .

..
.

Figure 4.16: Step 4b

of changes over the same candidate could create a noticeable gap between the opti-
mal PT for the candidate and the current one. The computational time required for
a refined optimization of PTs should be tractable for methods that manage a rela-
tively small number of candidates, but it would carry an expensive computational
cost for greedy methods that explore all the possible local changes in each iteration
of the algorithm. In this section, a method for learning PTs is proposed.

4.5 Scoring function

The objective of the metric proposed in this work for learning PTs is to measure
the accuracy and the inference complexity of the model. The method evalNode

introduced in the previous sections returns the maximum number of operations nop
required to answer any joint query in a PT. This is a very appropriate inference
complexity indicator, and here we use it as a penalization term in the scoring func-
tion.

We use the log-likelihood metric to measure the accuracy of the model. Al-
though other information-theory or Bayesian metrics could be used instead, the
log-likelihood fits specially well with our inference complexity indicator. The reason

Polynomial trees 62

is that most metrics include an implicit or explicit penalization for the representa-
tional complexity of the learned model, while log-likelihood does not include any
penalization. This property of log-likelihood, that usually causes overfitting in the
learned models, is desirable here because we penalize log-likelihood with the com-
plexity of inference.

Although using nop penalizes implicitly the number of parameters in a network,
if an arc addition Xout → Xin is compiled in a PT P , and Xout is currently a
predecessor of Xin in P (scenario 1 of addArc), then the penalization of nop to this
change is too low, which could suppose the addition of unnecessary arcs. Therefore,
a penalization to the number of parameters is also included in the scoring function.
The score is defined in Equation (4.4).

scorePT (B,P , D) = LL(B, D)− kn · log (N) · nop − kp · log (N) · |B| (4.4)

Where the parameters kn and kp represent the weight of nopt and of the number
of parameters |B| =

∑n
i=1(ri − 1)qi respectively for the model penalization.

4.6 Hill-climbing for polynomial trees

For this master thesis, we have adapted the HC algorithm, which is widely used for
learning the structure of BNs in the space of DAGs. In particular, we have used a
version of HC that is close to the 2iCHC method, using a forbidden parents list in
two iterations. We call this method hill-climbing for polynomial trees (HCPT). It
proceeds as follows. First, the BN and PT are initialized assuming full independence
among the variables. In the case of the initial PT P0, the full independence is
represented by the tree where all the nodes in the network hang from the root node,
encoding the products of marginals P (P0) =

∏n
i=1

∑ri
j=1 P (Xi = xij)I(Xi = xij).

Then, in each step the same local changes are applied to the BN and the PT for
each candidate, using the incremental compilation methods explained before. Each
candidate is evaluated using the scoring function described in the previous section,
that measures the accuracy of the candidate, penalizing those PTs with a large
inference complexity.

Polynomial trees 63

The method presented in Algorithm 4.9 is similar to the 2iCHC algorithm, that
learns the structure of BNs using a forbidden parents (FP) list to constrain the
search space. HCPT performs two iterations of Algorithm 4.10 to achieve a better
convergence to the probability distribution of the data. The algorithm searches
among all possible additions, deletions and reversals of arcs in each iteration and
applies the change that maximizes the score of the model. The procedure responsible
of finding the best candidate in each iteration is bestPredHCPT (Algorithm 4.11).

The FP list used in HCPT is updated in a different way from the used in 2iCHC.
This decision was made due to the inclusion of the inference complexity in the metric
scorePT . In 2iCHC, if the addition of an arc Xa → Xb worsens the score or the
deletion of an arc Xa → Xb improves the score, then Xa is included to FP (Xb)

and Xb is included to FP (Xa). Using scorePT , the addition or deletion of an arc
Xa → Xb can carry an extremely different computational cost than doing the same
operation with the arc Xb → Xa, so it would not be correct if we constrain both
movements when only one of them has a worse score.

Now, it is essential to know that the algorithm HCPT learns a sound PT, so it can
be used afterwards to perform inference without the risk of crashing. Given that
HCPT starts from scratch and only uses algorithms addArc, reverseArc, deleteArc
and optimize to make changes in the learned PT and BN, then by Theorem 1 the
PTs learned by HCPT are always sound. Theorem 1 is demonstrated in Appendix
A.

Theorem 1. Let Alg be any algorithm for learning in parallel a PT P and a BN
B from scratch that, to make any change in P or B during the learning process,
only uses the methods addArc, reversArc, deleteArc or optimize. A PT P ′ is always
sound regarding to a Bayesian network B′ if P ′ and B′ are the output of Alg.

Algorithm 4.9 HCPT (X , D)

Input: Set of nodes X = {X1, X2, . . . , Xn}, Data D

Output: BN B′, PT P ′

1: let B be the empty network over X
2: let P be the product of marginals over X
3: B0, P0 ← HCPT1(B,P , D)
4: B′,P ′ ← HCPT1(B0, P0, D)
5: return B′,P ′

Polynomial trees 64

Algorithm 4.10 HCPT1(B,P , D)

Input: BN B over X = {X1, X2, . . . , Xn}, PT P over X ∪ {∗}, Data D

Output: BN B′, PT P ′

1: Sold ← scorePT (B,P , D)
2: let B′ be a copy of B
3: let FP be a list of n empty lists
4: OKToProceed := True
5: while OKToProceed = True do
6: Bnew,Pnew, Snew ← bestPredHCPT (B,P , D, Sold, FP)
7: if Snew > Sold then
8: B′ ← Bnew
9: P ′ ← Pnew

10: Sold ← Snew
11: else
12: OKToProceed := False
13: end if
14: end while
15: return B′,P ′

Polynomial trees 65

Algorithm 4.11 bestPredHCPT (B,P , D, Sold, FP)

Input: BN B, PT P , Data D, score Sold, forbidden parents FP

Output: Best BN Bbest, Best PT Pbest, Best score Sbest
1: let changes be the list of local changes that could be made to B
2: let Bbest be a copy of B
3: let Pbest be a copy of P
4: let Sbest be a copy of Sold
5: for change in changes do
6: let Snew be a copy of Sold
7: if change is the addition Xa → Xb then
8: Bnew,Pnew ← addArc(B,P , Xa, Xb)
9: Snew ← scorePT (Bnew,Pnew, D)

10: if Snew < Sold then
11: add Xa to FP (Xb)
12: end if
13: else if change is the deletion of Xa → Xb then
14: Bnew,Pnew ← deleteArc(B,P , Xa, Xb)
15: Snew ← scorePT (Bnew,Pnew, D)
16: if Snew > Sold then
17: add Xa to FP (Xb)
18: end if
19: else if change is the reversal of Xa → Xb then
20: Bnew,Pnew ← reverseArc(B,P , Xa, Xb)
21: Snew ← scorePT (Bnew,Pnew, D)
22: if Snew < Sold then
23: add Xb to FP (Xa)
24: end if
25: end if
26: if Pnew > Pbest then
27: Bbest ← Bnew
28: Pbest ← Pnew
29: Sbest ← Snew
30: end if
31: end for
32: return Bbest,Pbest,Sbest

Chapter 5

Experimental Results

The purpose of this chapter is to show and discuss the results obtained for inference
and learning using PTs. In particular, using the method HCPT presented in the
previous chapter. The idea is to compare the impact of including the PT framework
to the original method, in this case 2iHC, and compare the accuracy of inference
in both models, checking if exact inference in the model learned by HCPT is now
tractable.

For this, it is necessary to choose a group of datasets for learning and testing
the networks. The datasets used in this report were generated from varied real-
world BNs. Using well known BNs allows having always a satisfactory number of
samples for the learning and testing processes and reduces the risks of obtaining
biased results.

The BNs used for generating the training and testing datasets were all obtained
from the bnlearn repository:

• ALARM is a medium size network. It is the representation of a monitoring
system (Beinlich et al., 1989).

• HEPAR II is a large network for the diagnosis of liver disorders (Onisko, 2003).

• WIN95PTS is a large network for handling printer troubleshooting in Windows
95.

The basic properties of each BN are shown in Table 5.1, while the statistics of the
datasets generated (using PLS) from them are shown in Table 5.2.

67

Experimental Results 68

ASIA HEPAR II WIN95PTS
Number of nodes 37 70 76
Number of arcs 46 123 112
Number of parameters 509 1453 574
Average Markov blanket size 3.51 4.51 5.92
Average degree 2.49 3.51 2.95
Maximum in-degree 4 6 7

Table 5.1: Basic properties of the BNs used for the experiments.

ASIA HEPAR II WIN95PTS
Training samples 25000 25000 25000
Test samples 40000 40000 40000

Table 5.2: Sizes of the datasets generated for the experiments.

5.1 Test methodology

To evaluate the inference process with the new method, we need an indicator of the
accuracy of the learned model. The KL-divergence (Kullback and Leibler, 1951) is
specially useful for obtaining the divergence between two probability distributions,
where one is considered as the True model P and the other is considered an approxi-
mation Q of this model. The formula of the KL-divergence for discrete distributions
is shown in Equation (5.1).

DKL(P ||Q) =
∑
x

P (x) log
P (x)

Q(x)
(5.1)

As computing the KL-Divergence is intractable for the learned models and the
datasets used in this master thesis, we have used the normalized mean log probability
(NMLP) as an approximation to measure the inference accuracy. The mean log
probability (without normalization) was used in Lowd and Domingos (2008) with
the same purpose. The NMLP is obtained using a set of 500 samples from the test
data. From each sample a conditional probability query with randomly selected
query and evidence variables is generated. The query and evidence variables take
the values of their configuration in the sample, and it is asked to P and Q to measure
the inference accuracy of Q regarding to P . Equation (5.2) defines the value of the
NMLP (P ||Q) for m queries.

Experimental Results 69

NMLP (P ||Q) =
1

m

m∑
i=1

∣∣∣∣log
P (q(i)|e(i))
Q(q(i)|e(i))

∣∣∣∣ (5.2)

As a complementary inference accuracy indicator, we have also used the mean
square error (MSE) between the results obtained performing inference in Q and P .
The MSE for m queries is defined in Equation (5.3).

MSE(P ||Q) =
1

m

m∑
i=1

(P (q(i)|e(i))−Q(q(i)|e(i)))2 (5.3)

Where q(i) is the instantiation of Q in sample i, and e(i) is the instantiation of E
in sample i.

The queries asked to original distribution P are estimated using the test datasets,
by computing the probability of the query variables among all the samples in the test
datasets that match with the configuration of the evidence variables. The queries
asked to Q are obtained by performing inference in the learned model. In this report
we compare the results obtained with exact inference in the polynomials trees learned
by the HCPT algorithm with the results obtained with approximate inference in
the BNs learned by 2iCHC.

For approximate inference, we use the likelihood-weighting algorithm to estimate
the probability of the queries. It is interesting to compare both the accuracy and
the inference time for the different methods. For this purpose we use three different
sampling sizes for the likelihood weighting: quick (200 samples), medium (1000
samples) and slow (2000 samples). This allows comparing the efficiency and accuracy
of the new method against very fast inference procedures and other that are slower
but achieve a better convergence to the target probability distribution.

5.2 Learning Results

First, we compare the results obtained after the learning process for each proce-
dure. The networks obtained by the incremental compilation of PTs are learned
by the HCPT method, and they are compared with the BNs learned by the 2iCHC
algorithm in combination with the MDL scoring function. The 2iCHC is an state-of-
the-art algorithm that allows learning large BNs in a tractable time with an accuracy

Experimental Results 70

that is close to the HC algorithm. For the HCPT method, the parameters kn and
kp were set to 0.5 and 0.15 respectively.

As it is shown in Chapter 4, HCPT is an adaptation of the 2iCHC algorithm. Given
that the main purpose of the work is to provide a framework for the incremental
compilation of PTs that could be easily applied in most score+search methods, it is
of special interest to compare HCPT with 2iCHC. For each network, we show the
log-likelihood per sample of each model against the test dataset, the number of arcs
of the network, the maximum number of parameters for a variable (maxParents),
the average number of parameters per variable (avgParents), the total number of
parameters in the network (nParents), and the time required by the learning method
to learn the network. See Tables 5.3-5.5.

ALARM HC HC_PT
Log_Likelihood −10.47 −10.75
arcs 50 49
maxParents 3 3
avgParents 1.351 1.324
nParams 270 248
Time 0 h 11 m 0 h 7 m

Table 5.3: Learning results for ALARM

WIN95PTS HC_PT HC
Log_Likelihood −9.97 −9.04
arcs 120 118
maxParents 4 7
avgParents 1.579 1.553
nParams 313 489
Time 0 h 52 m 1 h 1 m

Table 5.4: Learning results for WIN95PTS

HEPAR II HC_PT HC
Log_Likelihood −32.69 −32.59
arcs 123 88
maxParents 4 3
avgParents 1.757 1.257
nParams 446 284
Time 0 h 27 m 0 h 33 m

Table 5.5: Learning results for HEPAR II

Experimental Results 71

Although the faithfulness of the models is studied with the inference results, we
use the likelihood between the networks and the test data as a first indicator. It was
expected that the likelihood of the models was better for those networks learned by
2iCHC than the ones learned by HCPT, given that HCPT penalizes the movements
that cause a relevant increment in the inference complexity of the network. The
results show that the differences in the likelihood are small. The number of param-
eters is smaller in ALARM and WIN95PTS for HCPT, mainly because the weight
of the inference complexity in the score is set in a way that it favours learning thin
models for a very efficient inference process. The number of parameters in HEPAR
II is higher for HCPT. The number of parameters is a representational complexity
measure, and a model with a lower representational complexity can have a higher
inference complexity.

The times required for the learning process are similar for both 2iCHC and HCPT.
Although in general they are slightly better for HCPT, it is mainly because it learns
thinner models, and if the weight of the inference complexity was decremented the
learning time of HCPT should be higher. Nevertheless, this shows that the time
fraction used for the incremental compilation and the evaluation of PTs is small
compared with the time spent by the scores.

5.3 Inference Results

In this section we compare the inference results obtained with exact inference over
the models learned using the HCPT method against the inference results obtained
with approximate inference over the BNs learned with the 2iCHC algorithm. We
use the LW algorithm for approximate inference.

We generate sets of queries from the test dataset. The queries are then computed
in each model and the results are compared with the probability of the queries in
the test dataset using the NMLP and the MSE as the measure of inference accuracy
between the learned models and the test data.

The results for each network are presented in tables. Each table contains the
results for a network and a fixed number of query or evidence variables, and shows
the following information:

Experimental Results 72

• Method: Methods used to learn the PT and BN. In the case of the algorithms
learned with 2iCHC there is also a specification of the number of samples used
for approximate reasoning.

• Num Q / Num E: Number of query and evidence variables respectively.

• NMPL: Normalized mean log probability.

• MSE: Mean square error.

• Mean time: Mean time per query in seconds.

We also include a chart to show graphically the inference accuracy results shown in
the tables. Tables 5.6-5.7 and Figures 5.1-5.4 show the inference results for ALARM
network, Tables 5.7-5.8 and Figures 5.5-5.8 correspond to the inference results for
HEPAR II network, and Tables 5.9-5.10 and Figures 5.9-5.12 show the inference
results for WIN95PTS network.

Experimental Results 73

Method Num E (%) NMLP MSE Mean Time (s)
HC_Quick 10 0.066 0.01 0.1214
HC_Quick 15 0.079 0.019 0.1179
HC_Quick 20 0.088 0.019 0.1157
HC_Quick 25 0.1 0.032 0.1136
HC_Medium 10 0.06 0.009 0.6065
HC_Medium 15 0.073 0.018 0.5997
HC_Medium 20 0.085 0.02 0.589
HC_Medium 25 0.092 0.031 0.5817
HC_Slow 10 0.06 0.009 1.2315
HC_Slow 15 0.071 0.017 1.2141
HC_Slow 20 0.086 0.019 1.1965
HC_Slow 25 0.089 0.031 1.1828
HC_PT 10 0.028 0.001 0.054
HC_PT 15 0.026 0.002 0.0493
HC_PT 20 0.04 0.005 0.0455
HC_PT 25 0.027 0.004 0.0415

Table 5.6: Inference in ALARM. 15 % query variables

Method Num Q (%) NMLP MSE Mean Time (s)
HC_Quick 10 0.097 0.022 0.117
HC_Quick 15 0.084 0.02 0.1173
HC_Quick 20 0.081 0.022 0.1191
HC_Quick 25 0.058 0.012 0.119
HC_Medium 10 0.092 0.021 0.5958
HC_Medium 15 0.084 0.019 0.5988
HC_Medium 20 0.08 0.023 0.6222
HC_Medium 25 0.057 0.01 0.5998
HC_Slow 10 0.087 0.021 1.2077
HC_Slow 15 0.082 0.018 1.2102
HC_Slow 20 0.08 0.022 1.2159
HC_Slow 25 0.055 0.01 1.2179
HC_PT 10 0.036 0.004 0.0527
HC_PT 15 0.031 0.003 0.0493
HC_PT 20 0.03 0.004 0.0463
HC_PT 25 0.024 0.002 0.0448

Table 5.7: Inference in ALARM. 15 % evidence variables

Experimental Results 74

Figure 5.1: Inference in ALARM. NMLP for 15 % query variables

Figure 5.2: Inference in ALARM. NMLP for 15 % evidence variables

Experimental Results 75

Figure 5.3: Inference in ALARM. MSE for 15 % query variables

Figure 5.4: Inference in ALARM. MSE for 15 % evidence variables

Experimental Results 76

Method Num E (%) NMLP MSE Mean Time (s)
HC_Quick 10 0.048 0.0 0.2274
HC_Quick 15 0.053 0.006 0.2266
HC_Quick 20 0.058 0.006 0.2277
HC_Quick 25 0.071 0.018 0.2235
HC_Medium 10 0.036 0.0 1.1488
HC_Medium 15 0.049 0.006 1.1431
HC_Medium 20 0.059 0.005 1.1435
HC_Medium 25 0.073 0.017 1.129
HC_Slow 10 0.036 0.0 2.3094
HC_Slow 15 0.044 0.006 2.2848
HC_Slow 20 0.059 0.005 2.2939
HC_Slow 25 0.071 0.017 2.2582
HC_PT 10 0.026 0.0 0.047
HC_PT 15 0.041 0.006 0.044
HC_PT 20 0.051 0.005 0.0439
HC_PT 25 0.061 0.015 0.0399

Table 5.8: Inference in HEPAR II. 15 % query variables

Method Num Q (%) NMLP MSE Mean Time (s)
HC_Quick 10 0.063 0.003 0.2252
HC_Quick 15 0.051 0.001 0.2258
HC_Quick 20 0.051 0.001 0.2251
HC_Quick 25 0.034 0.0 0.2303
HC_Medium 10 0.052 0.002 1.1413
HC_Medium 15 0.049 0.001 1.145
HC_Medium 20 0.048 0.001 1.1386
HC_Medium 25 0.039 0.0 1.1615
HC_Slow 10 0.051 0.002 2.282
HC_Slow 15 0.047 0.001 2.5577
HC_Slow 20 0.046 0.001 2.3005
HC_Slow 25 0.037 0.0 2.3501
HC_PT 10 0.041 0.002 0.0454
HC_PT 15 0.039 0.0 0.0448
HC_PT 20 0.042 0.001 0.0425
HC_PT 25 0.045 0.0 0.0447

Table 5.9: Inference in HEPAR II. 15 % evidence variables

Experimental Results 77

Figure 5.5: Inference in HEPAR II. NMLP for 15 % query variables

Figure 5.6: Inference in HEPAR II. NMLP for 15 % evidence variables

Experimental Results 78

Figure 5.7: Inference in HEPAR II. MSE for 15 % query variables

Figure 5.8: Inference in HEPAR II. MSE for 15 % evidence variables

Experimental Results 79

Method Num E (%) NMLP MSE Mean Time (s)
HC_Quick 10 0.032 0.008 0.3113
HC_Quick 15 0.034 0.018 0.3113
HC_Quick 20 0.042 0.021 0.3088
HC_Quick 25 0.043 0.036 0.304
HC_Medium 10 0.029 0.007 1.5614
HC_Medium 15 0.033 0.016 1.5578
HC_Medium 20 0.04 0.021 1.5397
HC_Medium 25 0.043 0.037 1.5429
HC_Slow 10 0.028 0.007 3.1263
HC_Slow 15 0.032 0.016 3.1595
HC_Slow 20 0.038 0.02 3.2639
HC_Slow 25 0.041 0.037 3.026
HC_PT 10 0.019 0.002 0.0985
HC_PT 15 0.022 0.005 0.0926
HC_PT 20 0.028 0.008 0.0914
HC_PT 25 0.024 0.016 0.1173

Table 5.10: Inference in WIN95PTS. 15 % query variables

Method Num Q (%) NMLP MSE Mean Time (s)
HC_Quick 10 0.045 0.016 0.3117
HC_Quick 15 0.033 0.013 0.3132
HC_Quick 20 0.027 0.011 0.3134
HC_Quick 25 0.023 0.008 0.3143
HC_Medium 10 0.039 0.014 1.5575
HC_Medium 15 0.029 0.012 1.5594
HC_Medium 20 0.028 0.01 1.566
HC_Medium 25 0.021 0.007 1.5696
HC_Slow 10 0.038 0.014 3.0867
HC_Slow 15 0.028 0.011 3.0872
HC_Slow 20 0.029 0.01 3.085
HC_Slow 25 0.023 0.007 3.075
HC_PT 10 0.024 0.005 0.1253
HC_PT 15 0.02 0.004 0.0961
HC_PT 20 0.02 0.003 0.1443
HC_PT 25 0.017 0.003 0.1457

Table 5.11: Inference in WIN95PTS. 15 % evidence variables

Experimental Results 80

Figure 5.9: Inference in WIN95PTS. NMLP for 15 % query variables

Figure 5.10: Inference in WIN95PTS. NMLP for 15 % evidence variables

Experimental Results 81

Figure 5.11: Inference in WIN95PTS. MSE for 15 % query variables

Figure 5.12: Inference in WIN95PTS. MSE for 15 % evidence variables

Experimental Results 82

To analyse the results, we need to consider both the inference time and the in-
ference accuracy of the models. Given that our model focus on both learning and
inference, it is essential to see if the new model can produce both efficient and ac-
curate answers. The results obtained for the different datasets are similar, so it is
possible to draw some conclusions that all the test have in common.

1. First, it is possible to see that the models learned with HCPT have a tractable
inference complexity, given that the time required to evaluate each query is
lower than all the time required for LW methods. The inference time required
for quick LW is about three times the inference time required for the PT, and
the time inference time required for slow LW is about 30 times the inference
time required for the PT.

2. Second, comparing the accuracy levels obtained with the different methods, it
is possible to see that the inference error measured by NMLP or MSE is almost
always smaller when we use exact inference over PTs than when we use the
LW algorithm. The only exception is the results provided by the NMLP using
25 % of the variables of the HEPAR II network as query variables. Given that
the NMLP is not defined when the result returned by the inference procedure
is 0, when the number of query variables is too large many query samples can
be rejected, and therefore the results may be spoiled.

In this experiments, the performance obtained by PTs has matched our expec-
tations. The method works well in time and accuracy, showing that using exact
inference over thin models can produce good results, and that the use of incremen-
tal compilation in PTs for learning BNs from data achieves a relevant reduction on
the inference complexity of the model providing also accurate answers.

Chapter 6

Conclusions and Future Research

This master thesis has the objective of creating a compact model for the representa-
tion of network polynomials that we call PTs. The new model is used as a comple-
mentary representation for BNs, and its main purpose is to provide a tractable exact
inference framework, allowing also an efficient evaluation of the inference complexity
of the model.

First, we presented the model properties, and the inference and evaluation proce-
dures for PTs. Then, we presented the methods required for the incremental compi-
lation of PTs, and finally, a method for learning PTs from data. The main motivation
for learning PTs was to learn models with a low inference complexity, allowing ex-
act inference in some situations where otherwise (using other learning methods) it
would be intractable. The methods presented also provide a flexible framework that
allows an easy adaptation of most of the state-of-the-art score+search methods for
learning BNs and facilitates the creation of new methods for learning PTs.

From the experimental results presented in this report, we can conclude that:

• The incremental compilation of PTs does not suppose a relevant increment in
the time required for the learning process.

• The models learned with HCPT lose a bit of faithfulness but achieve a huge
reduction in the inference complexity.

• The time required to perform exact inference in the PTs learned by HCPT is
clearly smaller than the time required to perform approximate inference using
LW in the BNs learned by score+search methods.

83

Conclusions and Future Research 84

• The answers provided by the PTs learned with HCPT are most of the times
more accurate than the answers provided by approximate inference methods
in BNs learned by score+search methods.

Although the results obtained in this master thesis are satisfactory, there is a huge
potential of improvement and further research work related to PTs. One of the
main difficulties of learning ACs was that its complex representation made the task
of learning extremely challenging. PTs have a much simpler representation, so the
changes in the structure of the model are easier and less expensive. The creation of
new learning methods for PTs should be challenging but feasible.

Future research work may focus on improving the incremental compilation and
optimization methods presented in this master thesis. These methods were created
using heuristics and a further research in the properties of the PTs could help with
the creation of methods that obtain more accurate models and more efficiently.
Another interesting topic related to learning PTs would be studying the parameter
values for the scoring function presented in this master thesis. Here, the parameters
were set using the best values obtained in a limited set of tests, so a further analysis
is desirable.

Given that PTs encode network polynomials, and their similarities with the AC
model, it should be simple to adapt some useful methods used for ACs to PTs. For
example, it would be interesting and relatively simple to create methods for obtaining
the partial derivatives of the network polynomials encoded in PTs. The partial
derivatives are very useful for diverse problems such as obtaining all the marginal
probabilities of the polynomial given an evidence or for sensitivity analysis. Another
interesting task would be to study the use of PTs for solving abduction problems, in
particular the MPE and the MAP problem. The MPE problem could be easily solved
by changing the sums for maximizers in the inference procedure query presented in
Chapter 4.

Finally, it would be very useful to learn PTs in combination with undirected graph-
ical models instead of BNs, so there may be future work related to this topic.

Appendix A

Proof of Theorem 1

The work presented in this master thesis depends heavily on Theorem 1. Basically,
it assures that the use of incremental compilation of PTs in combination with any
Bayesian network structure learning algorithm that starts from scratch and makes
local changes in the network by the addition, deletion or reversal of directed arcs
will produce sound PTs. This is essential, because if a PT is not sound it means
that there will be cases where the indicators of the parents of a node in the tree will
not be set, and the inference process will fail.

The purpose of this appendix is to prove Theorem 1, to assure that all the PTs
obtained with the learning methods proposed in this master thesis are sound, and
they obtain PTs that are capable of answering any joint probability query that could
be asked to its corresponding BN.

A.1 Properties of the Polynomial trees and notation

In order to prove Theorem 1, let us first mention the properties of the PTs that are
essential for this task.

A PT P over XP = {∗} ∪ X is a compact representation of a network polynomial
corresponding to a BN B over X . Obviously, P is a tree, so any node Xi ∈ X has
exactly one parent in P , with the exception of the root node ∗, that is the ancestor
of all the other nodes and has no parents.

All the lemmas presented next are based on Definition 7. It essentially says that
P is sound regarding to B if ∀Xi ∈ X all the parents of Xi in B are also predecessors

85

Appendix A. Proof of Theorem 1 86

of Xi in P . If this property is fulfilled, and given that P has a tree structure, then
any joint probability query that could be answered by B can also be answered by P .

Let us consider that the changes made to P and B during the learning process
are produced by the application of the methods addArc, reverseArc, deleteArc or
optimize. For the first three, it is necessary to check that the result of applying one
of these operations to B and P will produce a sound PT P ′. The method optimize
changes the representation of P without changing the probability distribution that
it represents, so no changes are applied to B. Therefore, we will need to prove that
the PT P ′ is sound regarding to the old network B.

The notation used in this appendix is presented next:

• Xout → Xin: Arc from Xout to Xin, where Xout is the output node and Xin is
the input node.

• B: Current BN.

• B′: BN obtained after adding, reversing, or deleting an arc Xout → Xin in B.

• P : Current PT.

• P ′: PT obtained after modifying P .

• M : First common predecessor of Xout and Xin in P . In other words, the
deepest node in P such that M ∈ Pred(P , Xout) and M ∈ Pred(P , Xin).

• Dout: Desc(P , Xout).

• Din: Desc(P , Xin).

Lemma 1. Let P be a PT over XP = {∗} ∪ X and B be a Bayesian network
over X . If P is sound regarding to B, then the PT P ′ obtained after applying
addArc(B,P , Xout, Xin) is also sound regarding to B′, where B′ is the result of adding
the arc Xout → Xin to B, and the addition of Xout → Xin to B does not produce a
cycle in B′.

Proof. According to Definition 7, we know that P ′ will be sound regarding to B′

after the addition of Xout → Xin if for any Xi ∈ X , all the nodes Xj ∈ Pa(B′, Xi)

are predecessors of Xi in P ′. Lemma 1 assumes that P is sound regarding to B, so
it will be enough to check that the node Xin has Xout as one of its predecessors in

Appendix A. Proof of Theorem 1 87

P ′ and that the nodes involved in the recompilation of the network have not lost
any predecessor that were one of their parents in B.

To prove Lemma 1, it is necessary to observe the three different cases that can
occur when compiling an arc addition Xout → Xin in P . These cases depend on the
position of Xout and Xin in P .

Case 1 (Scenario 1 of addArc): Xout ∈ Pred(P , Xin).

In this case no operations are applied to P by addArc(Xout, Xin), so P ′ = P .
Therefore, P ′ is sound regarding to B. Xin is the only node that does not have the
same parents in B and B′. Given that the parents of Xin in P ′ are Pa(P ′, Xin) =

Pa(P , Xin), and Xin ∈ Pred(P ′, Xout), then P ′ is sound regarding to B′.

Case 2 (Scenario 2 of addArc): Xin ∈ Pred(P , Xout).

S0

Xin

S1

Xout

Rm+1

. . .
Rn

R1

. . .
Rl

Rl+1

. . .
Rm

Figure A.1: Case 2 of Lemma 1.
Before addArc(B,P, Xout, Xin).

S0

Sout

Xout

Xin

Sin R

Figure A.2: Case 2 of Lemma 1.
After addArc(B,P, Xout, Xin).

This case is the most complex addition, because it covers a big amount of move-
ments from P to P ′ and part of the tree must be reconfigured. The strategy to prove
the soundness of P ′ will be to group the nodes and check the soundness of those
involved in any change in P ′ or B′.

First, lets define some sets of nodes that we will use during the proof:

• Let S0 be the set of nodes in X , such that ∀Xi ∈ S0, Xi /∈ Desc(P , Xin) and

Xi 6= Xin.

• Let S1 be the set of nodes in X , such that ∀Xi ∈ S1, Xi ∈ Desc(P , Xin) and

Xi ∈ Pred(P , Xout)

Appendix A. Proof of Theorem 1 88

• Let Sin be the set of nodes Xi ∈ S1 such that Xi ∈ Desc(B, Xin).

• Let Sout be the set of nodes Xi ∈ S1 such that Xi /∈ Desc(B, Xin). This set of
nodes includes all the nodes in S1 that also belong to Pred(B, Xout), because
otherwise the addition of the arc Xout → Xin in B would produce a cycle in
B′.

• Let R = {R1,R2, . . . ,Rn} be the branches that hang from the nodes in
{Xout} ∪ S1 ∪ {Xin} and that do not contain Xout or any predecessor of Xout

in P .

It is trivial that all the nodes in S0 keep being sound, because all of them have
the same predecessors in P and P ′ and they are not affected with the addition of
Xout → Xin in B′.

After applying addArc(Xout, Xin) all the nodes in Sout keep their deepness order,
which means that ∀Xk, Xl ∈ Sout, if Xk was a predecessor of Xl in P then it is also
a predecessor of Xl in P ′. The same happens for all the nodes in Sin.

For every node Xi ∈ {Xin} ∪ Sin the predecessors of Xi are Pred(P ′, Xi) =

Pred(P , Xi) ∪ {Xout} ∪ Sout. Given that every Xi keeps in P ′ all the predecessors
that it had in P , and that Xout ∈ Pred(P ′, Xin), then every node Xi ∈ {Xin} ∪ Sin
is sound in P ′.

For every node Xi ∈ {Xout} ∪ Sout the predecessors of Xi are Pred(P ′, Xi) =

Pred(P , Xi) \ ({Xin} ∪ Sin). Given that no node in {Xin} ∪ Sin is a predecessor of
Xout in B′ if B′ is a valid network, then every node Xi ∈ {Xout} ∪ Sout is sound.

Lastly, we have to consider the branches in R. To do that, it is necessary to
mention that each branch Ri ∈ R will hang in P ′ from the deepest node Xj in P ,
such that Xj ∈ Sin ∪{Xin}, and ∀Xk ∈ Ri, Xj ∈ Pred(P , Xk). This means that for
every node Xi ∈ R the predecessors of Xi in P ′ are Pred(P ′, Xi) = Pred(P , Xi) ∪
{Xout} ∪ Sout. Therefore, all the nodes in R are sound in P ′.

We have checked that all the nodes in X are sound in P ′, and therefore P ′ is sound
regarding to B′ for this case.

Appendix A. Proof of Theorem 1 89

Case 3 (Scenario 3 of addArc): Xout /∈ Pred(P , Xin) and Xin /∈ Pred(P , Xout).

S0

M

Pout Pin

S1

Sout Sin

Xout Xin

Dout Din

Figure A.3: Case 3 of Lemma 1.
Before addArc(B,P, Xout, Xin).

S0

M

Pin

Pout

S1

Sout

Sin

Xout

Xin

Dout

Din

Figure A.4: Case 3 of Lemma 1.
After addArc(B,P, Xout, Xin).

First, lets define some sets of nodes that we will use during the proof of this case:

• Let Pout be the set of nodes in X , such that ∀Xi ∈ Pout, Xi ∈ Pred(P , Xout)

and Xi ∈ Desc(P ,M).

• Let Pin be the set of nodes in X , such that ∀Xi ∈ Pin, Xi ∈ Pred(P , Xin) and

Xi ∈ Desc(P ,M).

• Let Sout be the set of nodes in X , such that ∀Xi ∈ Sout, Xi /∈ {Xout} ∪
Desc(P , Xout) and ∃Xj ∈ Pout | Xi ∈ Desc(P , Xj).

• Let Sin be the set of nodes in X , such that ∀Xi ∈ Sin, Xi /∈ {Xin} ∪
Desc(P , Xin) and ∃Xj ∈ Pin | Xi ∈ Desc(P , Xj).

• Let S0 be the set of nodes in X , where ∀Xi ∈ S0, Xi /∈ Desc(P ,M) and

Xi 6= M .

• Let S1 be the set of nodes in X , where ∀Xi ∈ S1, Xi ∈ Desc(P ,M) and

∀Xj ∈ Pout ∪ Pin, Xi /∈ {Xj} ∪Desc(P , Xj).

The method addArc(Xout, Xin) removes the connections M → Mout (Mout is the
child of M that belongs to Pout), and Pa(P , Xin) → Xin in P ′. Then it adds the
arcs Pa(P , Xin) → Mout and Xout → Xin in P ′. Only node Xin has a new parent
in B′. The only nodes that could have their predecessors changed in P ′ are Xout,

Appendix A. Proof of Theorem 1 90

Xin, and the nodes belonging to Pout, Sout, Dout or Din. The rest of the nodes have
exactly the same predecessors in P ′ as they had in P , so they are also sound in P ′.

For any nodeXi ∈ Pout∪Sout∪{Xout}∪Dout, we have Pred(P ′, Xi) = Pred(P , Xi)∪
Pin. Therefore any node Xi has at least the same predecessors in P ′ as it had in P ,
so every Xi is sound in P ′.

For any node Xi ∈ {Xin} ∪ Din, we have Pred(P ′, Xi) = Pred(P , Xi) ∪ Pout ∪
{Xout}. Therefore any node Xi has at least the same predecessors in P ′ as it had in
P , and Xout ∈ Pred(P ′, Xin), so every Xi is sound in P ′.

All the nodes in X are sound in P ′ after applying Case 2 of addArc, so P ′ is also
sound.

Lemma 2. Let P be a PT over XP = {∗} ∪ X and B be a Bayesian network
over X . If P is sound regarding to B, then the PT P ′ obtained after applying
deleteArc(B,P , Xout, Xin) is also sound regarding to B′, where B′ is the result of
removing the arc Xout → Xin from B.

Proof. The method deleteArc(Xout, Xin) only removesXout from Pa(B, Xin). There-
fore, in B′ Xout is no longer a parent of Xin. In P there are no changes applied, so
P ′ = P . The predecessor of any node Xi ∈ X in P ′ are the same that they were in
P . We have then that Pred(P ′, Xi) = Pred(P , Xi). As there are no additional arcs
in B′, then P ′ is sound regarding to B′.

Lemma 3. Let P be a PT over XP = {∗} ∪ X and B be a Bayesian network
over X . If P is sound regarding to B, then the PT P ′ obtained after applying
reverseArc(B,P , Xout, Xin) is also sound regarding to B′, where B′ is the result of
reversing the arc Xout → Xin in B, and Xin → Xout does not produce a cycle in B′.

Proof. The operations performed in reverseArc(B,P , Xout, Xin) to P can be divided
into two steps, an arc deletion and Case 3 of an addition. The reversal consists then
of the deletion of arc Xout → Xin and the addition of the arc Xin → Xout.

Let us consider that we use an intermediate state to make the transition from P
to P ′ and from B to B′. The PT and the BN will be called Pm and Bm respectively
in the intermediate state.

Appendix A. Proof of Theorem 1 91

1. Bm,Pm ← deleteArc(B,P , Xout, Xin).

2. B′,P ′ ← addArc(Bm,Pm, Xin, Xout). This operation corresponds to Case 3 of
Lemma 1, because Xout is a predecessor of Xin in Pm.

We can conclude that Pm is sound regarding to Bm (Lemma 2), and that P ′ is
sound regarding to B′ (Lemma 1).

Lemma 4. Let P be a PT over XP = {∗} ∪ X and B be a Bayesian network
over X . If P is sound regarding to B, then the PT P ′ obtained after applying
optimize(B,P ,XOPT) is also sound.

Proof. Unlike the algorithms related to the application of local changes in B, the
optimization process has the objective of modifying the structure of P , but without
changing the probability distribution that it represents, which means that to prove
this lemma it is necessary to demonstrate that P ′ is sound regarding to B.

As it is shown in Algorithm 4.7, the method optimize(B,P ,XOPT) consists of
a sequence of changes to P . Let Pi ∈ {P ,P1,P2, . . . ,Pn,P ′} be each interme-
diate state from P to P ′. Every PT Pi is the result of applying the method
pushUpNode(B,Pi−1, Xopt), where Xopt is the variable to optimize in each change.
Lets take P ′a as the result of applying pushUpNode(B,Pa, x), where Pa can be any
sound PT in {P ,P1,P2, . . . ,Pn}. Proving that any P ′a is sound regrading to B would
also prove Lemma 4.

S0

M S1

Px

RP

Xopt

Ropt

Figure A.5: Pa.

S0

M S1

Xopt

Px RP

Ropt

Figure A.6: Case 1.

S0

M S1

Px

RP

Xopt

Ropt

Figure A.7: Case 2.

Appendix A. Proof of Theorem 1 92

First, lets define a some nodes and set of nodes used during this proof:

• Xopt: Node to optimize.

• Px: Parent of Xopt in Pa.

• M : Parent of Px, that is the first common predecessor of Xopt and Px.

• S0: Contains all the nodes Xi ∈ X , such that Xi /∈ Pred(Pa,M) and Xi 6= M .

• S1: Contains all the nodes Xi ∈ X , such that Xi ∈ Pred(Pa,M) , Xi 6= Px,
and Xi is Xi /∈ Pred(Pa, Px).

• R: Set of branches hanging from Px or Xopt, such that ∀Xi ∈ B, Xi 6= Xopt.

• RP : Set of branches {RP1 ,RP2 , . . . ,RPk
} ∈ R, such that ∀RPi

∈ RP , ∃Xi ∈
RP such that Px ∈ Pred(Pa, Xi).

• Ropt: Set of branches {RX1 ,RX2 , . . . ,RXl
} ∈ R, such that ∀RXi

∈ Ropt,
RXi

/∈ RP .

The strategy now is to prove that all the nodes in P ′a are sound regarding to B
by checking the changes in their predecessors lists. Let us divide the nodes in Pa
in three groups to prove that every node of P ′a is sound regarding to B. the sets of
nodes will be SM = {M} ∪ S0 ∪ S1, SOPT = {Xopt} ∪ Ropt and SP = {Px} ∪ RP .
This three sets contain all the nodes in Pa, so ∀Xi ∈ Pa, Xi ∈ SM ∪ SOPT ∪ SP .

1. ∀Xi ∈ SM , Pred(P ′a, Xi) = Pred(Pa, Xi), so Xi is sound in P ′a.

2. ∀Xi ∈ Sout, Pred(P ′a, Xi) = Pred(Pa, Xi) \ {Px}. As Px cannot be a parent of
Xi in B (otherwise there would be a cycle in B), Xi is sound in P ′a.

3. For the set of nodes SP , there are two possible cases depending on if there is
a node in SP that is a descendant of Xopt in B.

Case 1: ∃Xi ∈ SP such that Xi is a descendant of Xopt in B.

∀Xi ∈ SP , Pred(P ′a, Xi) = Pred(Pa, Xi) ∪ {Xopt}, so the node Xi in P ′a is
sound regarding to B.

Case 2: @Xi ∈ SP such that Xi is a descendant of Xopt in B.

∀Xi ∈ SP , Pred(P ′a, Xi) = Pred(Pa, Xi) \ {Xopt}. As Xi cannot be a descen-
dant of {Xopt} in B, the node Xi in P ′a is sound regarding to B.

Appendix A. Proof of Theorem 1 93

We have proved that all the nodes in P ′a are sound if Pa was sound, so P ′a is sound.
We can conclude that if P is sound regarding to B, all the PTs in
{P1,P2, . . . ,Pn,P ′} are also sound, so P ′ is sound.

Theorem 1. Let Alg be any algorithm for learning in parallel a PT P and a BN B
from scratch that, to make any change in P or B during the learning process, only
uses the methods addArc, reverseArc, deleteArc or optimize. A PT P ′ is always
sound regarding to a BN B′ if P ′ and B′ are the output of Alg.

Proof. By induction.

Base case: When learning a PT and a Bayesian network from scratch, the ini-
tial models assume full independence between the variables. Let B0 be the initial
Bayesian network over X = {X0, X1, . . . , Xn} and let P0 be the initial PT over
X ∪ {∗}. We have that ∀Xi ∈ X , Pa(B0, Xi) = ∅, so Xi has no parents in B0,
which means that we can say that all the nodes in Pa(B0, Xi), that are none, are
also predecessors of Xi in P0. Therefore, P0 is sound regarding to B0.

Induction step: Let us consider that we start from a PT P and a BN B such
that P is sound regarding to B. Let P ′ and B′ be the resultant PT and Bayesian
network obtained after applying a change to P and B respectively.

All the changes that could be applied to get P ′ and B′ are made by the methods
addArc, reverseArc, deleteArc or optimize, so P ′ and B′ are the result of applying
one of these four methods to P and B.

Case 1: If addArc is applied, P ′ is sound regarding to B′ by Lemma 1.

Case 2: If deleteArc is applied, P ′ is sound regarding to B′ by Lemma 2.

Case 3: If reverseArc is applied, P ′ is sound regarding to B′ by Lemma 3.

Case 4: If optimize is applied, there are no changes in B, so B′ = B. Also P ′ is
sound regarding to B by Lemma4. So, given that B′ = B, P ′ is sound regarding to
B′.

We can conclude that in all the possible cases P ′ is sound.

Bibliography

Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans-
actions on Automatic Control 19 (6), 716–723.

Bach, F. R. and M. I. Jordan (2001). Thin junction trees. In Advances in Neural
Information Processing Systems, pp. 569–576.

Beinlich, I. A., H. J. Suermondt, R. M. Chavez, and G. F. Cooper (1989). The
ALARM monitoring system: A case study with two probabilistic inference tech-
niques for belief networks. In Proceedings of the 2nd European Conference on
Artificial Intelligence in Medicine, pp. 247–256. Springer-Verlag.

Beygelzimer, A. and I. Rish (2004). Approximability of Probability Distributions.
In Advances in Neural Information Processing Systems, pp. 377–384.

Bouckaert, R. R. (1993). Probabilistic network construction using the minimum de-
scription length principle. In Symbolic and Quantitative Approaches to Reasoning
and Uncertainty, pp. 41–48. Springer.

Carvalho, A. M. (2009). Scoring functions for learning Bayesian networks. INESC-ID
Tec. Rep. 54/2009 .

Chan, H. and A. Darwiche (2001). When do numbers really matter? In Proceedings
of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pp. 65–74.
Morgan Kaufmann Publishers Inc.

Chechetka, A. and C. Guestrin (2008). Efficient principled learning of thin junction
trees. In Advances in Neural Information Processing Systems, pp. 273–280.

Chevrolat, J., F. Rutigliano, and J. Golmard (1994). Mixed Bayesian networks: A
mixture of Gaussian distributions. Methods of Information in Medicine 33 (5),
535–542.

95

Bibliography 96

Chickering, D. M. (1996). Learning Bayesian networks is NP-complete. In Learning
from Data, pp. 121–130. Springer.

Cooper, G. F. (1990). The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence 42 (2), 393–405.

Cooper, G. F. and E. Herskovits (1991). A Bayesian method for constructing
Bayesian belief networks from databases. In Proceedings of the Seventh Con-
ference on Uncertainty in Artificial Intelligence, pp. 86–94. Morgan Kaufmann
Publishers Inc.

Cooper, G. F. and E. Herskovits (1992). A Bayesian method for the induction of
probabilistic networks from data. Machine Learning 9 (4), 309–347.

Dagum, P. and M. Luby (1993). Approximating probabilistic inference in Bayesian
belief networks is NP-hard. Artificial Intelligence 60 (1), 141–153.

Darwiche, A. (2003). A differential approach to inference in Bayesian networks.
Journal of the Association for Computing Machinery 50 (3), 280–305.

Darwiche, A. (2009). Modeling and Reasoning with Bayesian Networks. Cambridge
University Press.

De Campos, L. M. (2006). A scoring function for learning Bayesian networks based
on mutual information and conditional independence tests. The Journal of Ma-
chine Learning Research 7, 2149–2187.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 1–38.

Elidan, G. and S. Gould (2009). Learning bounded treewidth Bayesian networks. In
Advances in Neural Information Processing Systems, pp. 417–424.

Flores, M. J. (2005). Bayesian networks inference: Advanced algorithms for trian-
gulation and partial abduction . Ph. D. thesis.

Fung, R. M. and K.-C. Chang (1989). Weighing and integrating evidence for stochas-
tic simulation in Bayesian networks. In Uncertainty in Artificial Intelligence, pp.
209–220.

Bibliography 97

Gámez, J. A., J. L. Mateo, and J. M. Puerta (2011). Learning Bayesian networks
by hill climbing: efficient methods based on progressive restriction of the neigh-
borhood. Data Mining and Knowledge Discovery 22 (1-2), 106–148.

Gámez, J. A. and J. M. Puerta (2005). Constrained score+ (local) search meth-
ods for learning Bayesian networks. In Symbolic and Quantitative Approaches to
Reasoning with Uncertainty, pp. 161–173. Springer.

Geiger, D. and D. Heckerman (1994). Learning Gaussian networks. Uncertainty in
Artificial Intelligence, 235–243.

Geiger, D., T. Verma, and J. Pearl (1990). Identifying independence in Bayesian
networks. Networks 20 (5), 507–534.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and
their applications. Biometrika 57 (1), 97–109.

Heckerman, D., D. Geiger, and D. M. Chickering (1995). Learning Bayesian net-
works: The combination of knowledge and statistical data. Machine Learn-
ing 20 (3), 197–243.

Henrion, M. (1988). Propagation of uncertainty by probabilistic logic sampling in
Bayesian networks. In Uncertainty in Artificial Intelligence, Volume 2, pp. 149–
164.

Hrycej, T. (1990). Gibbs sampling in Bayesian networks. Artificial Intelli-
gence 46 (3), 351–363.

Jaeger, M., J. D. Nielsen, and T. Silander (2006). Learning probabilistic decision
graphs. International Journal of Approximate Reasoning 42 (1), 84–100.

Korb, K. B. and A. E. Nicholson (2003). Bayesian artificial intelligence. cRc Press.

Kullback, S. and R. A. Leibler (1951). On information and sufficiency. The Annals
of Mathematical Statistics , 79–86.

Lam, W. and F. Bacchus (1994). Learning Bayesian belief networks: An approach
based on the MDL principle. Computational intelligence 10 (3), 269–293.

Lauritzen, S. L. and D. J. Spiegelhalter (1988). Local computations with probabil-
ities on graphical structures and their application to expert systems. Journal of
the Royal Statistical Society. Series B (Methodological), 157–224.

Bibliography 98

Lowd, D. and P. Domingos (2008). Learning arithmetic circuits. In Proceedings of
the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence.

Lowd, D. and P. Domingos (2010). Approximate inference by compilation to arith-
metic circuits. In Advances in Neural Information Processing Systems, pp. 1477–
1485.

Lowd, D. and A. Rooshenas (2013). Learning Markov networks with arithmetic
circuits. In Proceedings of the Sixteenth International Conference on Artificial
Intelligence and Statistics, pp. 406–414.

Mahdi, R. and J. Mezey (2013). Sub-local constraint-based learning of Bayesian
networks using a joint dependence criterion. The Journal of Machine Learning
Research 14 (1), 1563–1603.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller
(1953). Equation of state calculations by fast computing machines. The Journal
of Chemical Physics 21 (6), 1087–1092.

Onisko, A. (2003). Probabilistic causal models in medicine: Application to diagno-
sis of liver disorders. Ph. D. thesis, Institute of Biocybernetics and Biomedical
Engineering, Polish Academy of Science, Warsaw.

Park, J. D. (2002). MAP complexity results and approximation methods. In Pro-
ceedings of the Eighteenth conference on Uncertainty in artificial intelligence, pp.
388–396. Morgan Kaufmann Publishers Inc.

Park, J. D. and A. Darwiche (2001). Approximating MAP using local search. In
Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence,
pp. 403–410. Morgan Kaufmann Publishers Inc.

Park, J. D. and A. Darwiche (2004). A differential semantics for jointree algorithms.
Artificial Intelligence 156 (2), 197–216.

Pearl, J. (1986). Fusion, propagation, and structuring in belief networks. Artificial
Intelligence 29 (3), 241–288.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan Kaufmann.

Pearl, J. (1995). Causal diagrams for empirical research. Biometrika 82 (4), 669–688.

Bibliography 99

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statis-
tics 6 (2), 461–464.

Shachter, R. D. and C. R. Kenley (1989). Gaussian influence diagrams. Management
Science 35 (5), 527–550.

Shachter, R. D. and M. A. Peot (1989). Simulation approaches to general proba-
bilistic inference on belief networks. In Uncertainty in Artificial Intelligence, pp.
221–234.

Shahaf, D. and C. Guestrin (2009). Learning thin junction trees via graph cuts. In
International Conference on Artificial Intelligence and Statistics, pp. 113–120.

Spirtes, P., C. N. Glymour, and R. Scheines (2000). Causation, prediction, and
search, Volume 81. MIT press.

Tsamardinos, I., L. E. Brown, and C. F. Aliferis (2006). The max-min hill-climbing
Bayesian network structure learning algorithm. Machine Learning 65 (1), 31–78.

Vats, D. and R. D. Nowak (2014). A junction tree framework for undirected graphical
model selection. The Journal of Machine Learning Research 15 (1), 147–191.

Wang, T., J. W. Touchman, and G. Xue (2004). Applying two-level simulated
annealing on Bayesian structure learning to infer genetic networks. In Proceedings
of the 2004 IEEE Computational Systems Bioinformatics Conference, pp. 647–
648. IEEE Computer Society.

Xue, G.-L. (1993). Parallel two-level simulated annealing. In Proceedings of the 7th
international conference on Supercomputing, pp. 357–366. Association for Com-
puting Machinery.

Yi, W. and Z. Li (2011). Processing of missing values using Gibbs Sampling. In
Proceedings of the Third International Conference on Measuring Technology and
Mechatronics Automation-Volume 02, pp. 927–930. IEEE Computer Society.

	Resumen
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Graphical models and Bayesian networks
	1.2 Motivations
	1.3 Notation
	1.4 Structure of the report

	2 Bayesian Network Models
	2.1 Bayesian networks
	2.2 Inference in Bayesian networks
	2.2.1 Exact inference
	2.2.2 Approximate inference

	2.3 Scoring metrics
	2.3.1 Bayesian metrics
	2.3.2 Information-theory metrics

	2.4 Learning the structure of Bayesian networks
	2.5 Learning thin Bayesian networks

	3 Network Polynomials
	3.1 Introduction to network polynomials
	3.2 Arithmetic circuits
	3.3 Learning arithmetic circuits
	3.3.1 Example of split

	4 Polynomial Trees
	4.1 Inference in polynomial trees
	4.1.1 Example. Inference in polynomial trees

	4.2 Evaluating the complexity of polynomial trees
	4.2.1 Example. Evaluating the complexity of a polynomial tree

	4.3 Incremental compilation of polynomial trees
	4.3.1 Arc addition
	4.3.2 Arc deletion
	4.3.3 Arc reversal
	4.3.4 Polynomial tree optimization

	4.4 Learning polynomial trees from data
	4.5 Scoring function
	4.6 Hill-climbing for polynomial trees

	5 Experimental Results
	5.1 Test methodology
	5.2 Learning Results
	5.3 Inference Results

	6 Conclusions and Future Research
	A Proof of Theorem 1
	A.1 Properties of the Polynomial trees and notation

	Bibliography

