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Axisymmetric Long Liquid Bridges in 
a Time-Dependent Microgravity Field 

This paper deals with the dynamics of liquid bridges when sub­
jected to an oscillatory microgravity field. The analysis has 
been performed by using a one-dimensional slice model, al­
ready used in liquid bridge problems, which allows to calculate 
not only the resonance frequencies of a wide range of such fluid 
configurations but also the dependence of the dynamic response 
of the liquid bridge on the frequency on the imposed perturba­
tions. Theoretical results are compared with experimental ones 
obtained aboard Spacelab-Dl, the agreement between theoreti­
cal and experimental results being satisfactory. 

1 Introduction 

A liquid bridge is an idealization of the fluid configuration 
appearing in the crystal growth technique known as floating 
zone melting. The liquid bridge configuration, as sketched in 
Fig.l, consists of a mass of liquid held by surface tension 
forces between two parallel, coaxial, solid disks. Many me­
chanical aspects of the liquid bridge problem have been ex­
tensively studied either from a theoretical or an experimental 
point of view; a short review of the state of art of theoretical 
analyses can be found in [1] whereas experimental results 
have been obtained from experiments performed in Earth-
based laboratories [1, 2, 3, 4, 5], aboard TEXUS sounding 
rockets [6], and in space platforms like Spacelab-1 [7] and 
Spacelab-Dl [8, 9, 10, 11]. Concerning this last Spacelab 
Mission, and experiment (WL-FPM-04, Floating Liquid 
Zones, FLIZ), dealing with the behaviour of long liquid 
bridges under mechanical disturbances in a low gravity en-
viroment, was carried out by the German payload specialist 
Dr. R.Furrer. The nominal experiment sequence envisaged 
consists of liquid injection, disk vibration and rotation of 
both disks. The overall performance of this experiment was 
excellent and most of the experimental results obtained have 
been reported elsewhere [9, 10, 11]. A peculiar aspect ob­
served during FLIZ experiment was that the effect of g-jitter 
was much higher than in Spacelab-1. In spite of the fact that 
the Payload Specialist asked for the other crew-members to 
keep quiet and was granted from the Shuttle pilot a no-man­
euvers period, the long columns achieved in Spacelab-Dl 
were trembling, which, besides the handling problems, has 
provided valuable information on the behaviour of the liquid 
bridge when subjected to random perturbations. 
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Fig. 1. Geometry and coordinate system for the liquid bridge problem. 
In this plot a sketch of the spatial grid used in computations is also 
shown 

In this paper a theoretical model for the response of axi­
symmetric long liquid bridges in an oscillatory axial micro-
gravity field is presented. Although several studies related to 
the vibration of liquid bridges have been published [3,12,13, 
14, 15], these studies concern mainly with cylindrical or near 
cylindrical volume liquid bridges, while the model here pre­
sented accounts for effects like liquid volume far from the 
cylindrical one, different disks radius and a mean level of 
microgravity added to the oscillatory perturbation. In addi­
tion the model allows to calculate not only resonance fre­
quencies of such liquid configurations but also the frequency 
response of the liquid bridge under such kind of perturba­
tion. Finally, theoretical results are compared with those 
measured form the FLIZ experiment data. 

In the following, unless otherwise stated, all physical 
quantities are made dimensionless using the characteristic 
length R0 = (Ri + R2)/2 and the characteristic time 



(pRl/<j)V2, p being the liquid density and a the surface ten­
sion. 

2 Mathematical Model 

Let S(z) = R2(z) be the dimensionless equation of the liquid-
gas interface at rest. Since the problem is assumed to be axi-
symmetric S(z) will be a solution of 

(1) p0 = 4 (4S + Sz)"3/2 (2S + Si - SSZZ) + B0 z, 

where P0 is a constant related to the origin of pressures. 
Terms between parenthesis stand for the capillary pressure 
and B0 is the Bond number, which measures the steady mi-
crogravitational effects, B0 — pg0Rl/a, g0 being the steady 
microgravity level. In the following it is assumed that the 
time variation of microgravity can be expressed as 
£(0 = £o+s»(0» £ <1> t n e n B(t)=B0 + eb(t). Such depen­
dence on time of Bond number will affect the shape of the 
liquid bridge interface in such a way that the actual shape 
could be expressed as 

S(z,t) = S(z)+es(z,t). (2) 

To analyze the dynamics of the liquid bridge we assume 
the liquid bridge slenderness A = L/(2R0) to be large 
enough; say A >1.5. In such case the dynamic behaviour of 
the liquid bridge can be satisfactorily explained by using 
one-dimensional models like the slice one, widely used in liq­
uid bridge problems [1, 3, 9,13,16,17]. 

The slice model is based on a one-dimensional theory 
similar to the one used by Lee [18] in the study of the dynam­
ics of capillary jets. The main simplifications introduced by 
the slice model is that the axial velocity depends only upon 
the axial coordinate z and the time t. Under that assumption 
the set of nondimensional differential equations and bound­
ary conditions for the axisymmetric, non-rotating inviscid 
flow in cylindrical coordinates are drastically reduced [16]. 
Since the axial velocity does not depend on the radial coordi­
nate, the radial momentum equation becomes decoupled 
from the other equations and the study of the evolution of 
the liquid bridge may be accomplished by solving only the 
continuity equation and the axial momentum equation, i.e.: 

S,+ Qz=0, 

Q, + (Q2/S)Z = -SP„ 

(3) 

(4) 

where Q = SW, if'being the axial velocity which, as already 
stated, is assumed to be constant at each plane parallel to the 
disks (slice), and 

p = 4 (45 + §lyyl (25 + 5] - 55zz) + Bz. (5) 

The problem formulation must be completed with bound­
ary conditions at the disks (the liquid bridge remains an­
chored to the edge of the disks) 

S(±A, t) = (\±Hf, Q(±A, 0 = 0, (6) 

where H = (1 - K)/(\ + K), K = R,/R2, plus suitable initial 
conditions. 

Since the variables involved in the problem may be rewrit­
ten as 

S(z, t)=S(z) + ss(z, t) 

Q(z,t)=eq(z,t) 

P(z, t)=P0 + sp(z,t) 

B(t) = B0+eb(t) J (7) 

after substituting these expressions in (3)-(6), leaving appart 
e1 terms, there results 

s, + qz = 0, 

It = - Spz, 

s(±A, 0 = 0, q{±A, f) = 0. 

(8) 

(9) 

(10) 

Note that both terms in the product Spz in equation (9) de­
pend on the unperturbed equilibrium interface shape S(z) 
(see the Appendix for the expression of p(z, t)). 

To solve the problem a procedure similar to that used in 
[16] has been employed, eliminating the variable s between 
(8) and (9). Differentiation of (9) with respect to time gives 

q„ = - Spa, (11) 

and differentiation of continuity equation (8) with respect to 
z as many times as necessary yields 

$zt — qzz> Szzt — qzz (12) 

which allows us to eliminate the variable s and its derivatives 
appearing in the term pz, of equation (11). Then 

* , - ~Spz,= -S{4A~3/2 [{6D/A-4-S:;)s,+ 

(3D/A - 1 ) 5 A , - 5szz,](z- 56, = S{AA ~•'2 [(6D/A - 4 - Szz)qz + 

{iD/A-\)Szqzz-Sqzzz%-Sb,. (13) 

The boundary conditions are 

q(±A, 0 = 0, qz(±A, 0 = 0, (H) 

where the second of these conditions results from 
s(±A, 0 = 0, taking into account equation (8). Functions A 
and D are shown in the Appendix and in expressions (24) 
and (25) of this section. 

Assuming the Bond number dependence on time is 

b = ft sin at, (15) 

equation (13) suggests to look for q(z, t) solutions of the 
form 

q = u(z) cos cot (16) 

Therefore, after substituting (16) in (13), and eliminating time 
dependent factors, there results 

co2u +5(4^1-3/2 [(6D/A-4-S2z)uz+(iD/A-\)Szuzz 

-Suzzz]\z-BwS = 0, (17) 

u(±yl) = 0, uz(±A) = 0 (18) 

137 



3 Numerical Solution 

Equation (17), once the terms between brackets differentiat­
ed, yields 

Suzzzz + k}Uzzz + k2uzz +kiuz -A>/2a2u/{4S) Ai/2pm/4, 

u(±A)=uz(±A) = 0, 

where 

k3 = (2-3D/A)Sz -3SAZ/(2A), 

k2 = (3D/A-\) [3SZAZ/(2A)-Szz] -6D/A + SZZ 

+ 4-3{ADz-DAz)Sz/A
2, 

fc, = 3(6D/A - Szz -4)AZ/(2A) - b(ADz- DAZ)/A2 + SZZ, 

and 

A = 4S+S2, AZ=2SZ(2 + SZZ), 

D = 5(2 + Szz), Dz = Sz(2 + Szz) + SSZZZ. 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

To solve (19) an implicit finite-difference method has been 
used, with a centered five-point scheme for the evaluation of 
the spatial derivatives 

("z), = [ 8 ( H ; + , - « , - _ , ) -Uj+2+Uj_2]/(\2A) 

("zr)y =[16(Ky + i+ «!;_,) -Uj+2-Uj_2 - 30uj]/(12A2) 

(uzzz)j =[-2(«,+ 1 - « , _ , ; + uj+2-uj.2\/{2Ai) 

(«zzzz) j=[ -4(« j + 1 + « j - l ) + « j + 2 + " j - 2 + 6 « j l / ( 4 4 ) (26) 

where A = 2A/m, m being the number of equally spaced 
steps used in the numerical integration (see Fig. 1). Substitu­
tion of expressions (26) in (19) gives 

C_2,yUj_2+ C - y U j . , + QyUj + C y U j + , + CyUi+2 = - (Ajf2 00) / 4, 

(27) 

with 0<j<m, and 

C2U=[S/A2 -(k2)/U)/A2 +sgn(i)[(kiV(2A2) -(k,y\2]/A, (28) 
C,j = [-4Sj/A2 +Hk2)j/3]/A2 +sS,n(i){-(k3)j/A

2 -2 ( ,)j/3]/A, 
(29) 

Coj =[6Sj/A2-5(k2)j/2]/A2-(Aif
/Wa4Sj), (30) 

in these last expressions the subscript ;' has two possible val­
ues, 1 or — 1, and the function sgn (/') stands for the sign of i. 

Boundary conditions (see Fig.l) are 

H ( - / 1 ) = 0 — uo = 0 

u(A) = 0^um = 0 

uz(-A) = 0 ^ « _ 2 -8u^ , + 8i/1-«2 = 0 

uz(A) = 0-+um_2 -8um_i+8um+,-u„,+2 = 0 J (31) 

Therefore, there are m + 3 unknowns: m — \ unknows 
come from the liquid bridge (remember that ua = Q um = 0) 
and the four remainder correspond to the outher points 
needed to meet boundary conditions. On the other hand, 
there are m + 3 equations, m +1 result from expression (27) 
plus the two last of (31). In conclusion, the system to be 
solved results in (32) (see below): 

where 7J-= — {Ajfn^a/4. Equation (32) can be written in a 
more compact form as 

[M][W = [T\, 

so that the problem solution becomes 

(33) 

(34) 

Resonance frequencies are obtained from those values of 
co for which the determinant of the matrix [M] vanishes, 
|M|=0. In addition, once [U] is known, equation (16) gives 
q{z,t), and the continuity equation (8) allows to calculate 
s(z, t) from q(z, t). 

Obviously, a previous step needed to calculate [M] and [7] 
is to determine the unperturbed liquid bridge interface S(z), 
which depends on the liquid volume V, slenderness A, disks 
radius ratio K, and Bond number B0. A description of the 
procedure used to calculate S(z) can be found in [19]. 

4 Results 

Before the results obtained are presented, it would be conve­
nient to make some comments on the accuracy of the numer­
ical computation. A typical feature of problems where sur­
face-tension effects are present is the high order of the spatial 

Equation (32) 
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derivatives involved. In our particular case these derivatives 
have been calculated through a five-point scheme. Leaving 
apart the fact that the approximation in numerical evaluation 
of derivatives decreases as the order of differentiation in­
creases, there is a source of error associated with the five-
point scheme used which arises when these derivatives are 
evaluated close to the boundary points. In effect, this scheme 
introduces four outer points (two external points at each 
disk) in which the values of u must be calculated to meet 
boundary conditions. Since these outer values, which have 
no physical meaning, affect some terms of the matrix [M], 
the outer points introduce some spurious information in cal­
culations, whose effect decreases with the size A of the spa­
tial grid. Therefore, the first computations have been per­
formed aiming at establishing the optimum of this grid size, 
running a test case (A =2.6, V= 16.34, Bo = 0, K = \) several 
times and varying each time the number of steps m between 
the disks. The results obtained are plotted in Fig. 2, which 
shows that the resonance pulsation a>r increases with m but 
the rate of increase tends to zero for large values of m (the 
slope is practically zero at m = 60). The variation with m of 
the computation time is also presented in this plot. As it can 
be observed this computation time increases almost expo­
nentially with m. Therefore, choosing a value for m is a 
trade-off between accuracy and computing time. For all oth­
er computations the value m=40 has been used; this value 
gives, according to Fig. 2, a resonance frequency already 
99.7% of that obtained from m = 60 whereas computing time 
is more than three times smaller. 

The transfer function, defined as the module of the ratio 
of the maximum interface deformation to the perturbation 
amplitude, A = \(smax — smi„)/fi\, for a liquid bridge with 
A =2.6, K= 16.34, K = l an 5 o = 0, is shown in Fig. 3. This 
plot shows a phenomenon already observed aboard Space-
lab-1 and Spacelab-Dl: the liquid bridge is mainly affected 
by low frequency perturbations (Except in the vicinity of the 
resonance frequencies A{w) decreases quickly as ©increases. 
The higher the forcing frequency co the less deeply the waves 
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Fig. 2. Variation with the number m of steps of the spatial grid used in 
computations of the resonance pulsation (Om and the computation time 
tm of a liquid bridge with A = 2.6, V= 16.34, Bo = 0 and K= 1 
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Fig. 3. Transfer function, defined as the variation with the pulsation m 
of the module of the ratio of the maximum interface deformation to the 
perturbation amplitude, A= \(smax-smi„)/B\. The results correspond to 
the case A=2.6, V=16.34, K=l, Bo = 0 

Fig. 4. Variation with the liquid bridge volume V of the pulsation of 
resonance corresponding to the first mode a>r of liquid bridges between 
equal disks (K=l) in gravitationless conditions (Bo = 0). Numbers on 
the curves indicate the value of the slenderness A. The dashed line 
corresponds to liquid bridges with cylindrical-volume (V= 2nAj 
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Fig. 5. Influence on the pulsation of resonance 0)r of the disks radius 
ratio, K=R]/R2. The results correspond to the case A —2.6, Bo = 0. 
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on the liquid surface penetrate into the bulk of the liquid and 
therefore, the surface amplitude decreases considerably for 
higher modes). 

A mapping of fundamental axisymmetric resonance fre­
quencies (first mode) of liquid bridges between equal disks 
(K = \) in a zero mean-value gravitational field (Bo = 0) is 
shown in Fig. 4. As one could expect, for each value of the 
slenderness the value a>r = 0 being reached when the volume 
becomes that of minimum volume stability limit [19]. The 
dashed line in this plot corresponds to cylindrical volume liq­
uid bridges (V=2nA) whose resonance frequencies are well 
known, as already indicated in § 1. 

The influence on cor of K or B0 is shown in Figs. 5 and 6, 
respectively. In both cases the behaviour of the liquid bridge 
becomes similar, as K decreases (or B0 increases) cor becomes 
smaller, the reason being that the minimum volume stability 
limit increases as K +1 (the same applies when B0 + 0, [1,17, 
19]). 

Table I. Dimensionless resonance frequencies (f=2n(x)r) of liquid 
bridges between equal disks (K— 1) of slenderness A and dimensionless 
volume V, subjected to an axial microgravity field measured by the 
steady Bond number B0. The subscript e indicates experimental results 
obtained from the FLIZ experiment whereas the subscript n indicates 
numerical ones 

A 

2.571 
2.714 
2.854 
2.857 

K+0.05 

16.28 
16.82 
18.84 
17.92 

Bo 

0.009 
0.009 
0.009 
0.010 

(Ore 

0.30 
0.23 
0.19 
0.14 

mm± 0.002 

0.348 
0.259 
0.222 
0.177 

Fig. 6. Influence on the pulsation of resonance ar of the steady Bond 
number, B„. The results correspond to the case A = 2.6, K = l. Numbers 
on the curves indicate the value of the volume of the liquid bridge 

Finally, in Table 1, numerical results are compared with 
experimental ones obtained from the FLIZ experiment1'. Ex­
perimental results have been obtained from the analysis of 
some periods of the FLIZ sequence in which the liquid 
bridge was oscillating in spite of the absence of intentionally 
imposed perturbations during these periods. Previous studies 
published elsewhere [20] show that during the four analyzed 
periods the only perturbation acting on the liquid bridge can 
be nearly considered as a white noise, so that, in every case, 
the liquid bridge oscillates with its natural frequency. Com­
parison of both numerical and experimental results indicate 
that numerical results are some 20% higher than experi­
mental ones. Therefore, numerical results can be considered 
good enough if one takes into account that they have been 
obtained through a linear analysis of a simplified one-dimen­
sional model. 

1 To made dimensionless the experimental results, the following 
values have 
0.02 N m"1. 

been used, Ro=0.0175m, p = 920kg m" 

Appendix 

To save typing, let us introduce the functions 

A=4S + SlA=4S + S2
z 

D = S(2 + S22),D=S(2 + SZZ) 

so that expression (5) becomes 

P=4A-i/2(A-D)+Bz. (A.1) 



Introduction of the asymptotic expansions (7) in the ex­
pression for A and D yields: 

A=4S + S2
Z + 2E(2S + SZSZ)+0(E2) =A + ea + 0(E2) 

D = 5(2 + Szz) + e [(2 + Szz)s + Sszz] + 0(E2) =D + ed+ 0(E2) 

where 

a = 4S + 2Szsz 

d = (2 + SZ2)s + Sszz 

Then, expression (A.l) results 

P= P0+sp = A-i/2 U + ea/A + 0(e2)]"3/2-
• [A - D + e(a - d) + 0(E2)] + B0z + sbz = 4A ~y\A - D) 
+ B0z + s{AA-m[a~d-ia(A-D)/{2A)} +bz}+0(s2) 

Therefore, taking into account that P0 = 
AA~V\A — D) + B0z. and the expressions for a and d.At fi­
nally results 

p= &A-yl [(6D/A-4-Szz)s + QD/A-l)Szsz-Sszz] + bz 
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