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In this paper the influence of gravity on the solidification of a drop formed at the end of a rod is analyzed. Although similar 
studies (but ignoring gravity effects) already exist, a theoretical analysis including gravity effects allows one to improve the 
experimental procedure to measure on Earth relevant properties of crystals (mainly the receding contact angle <£,) which are of 
importance in shaped crystal growth processes. One of the main results here obtained are the shapes of the sohdified drops, which are 
strongly dependent on the value of <#>,. Therefore, fitting theoretical shapes to experimental ones is a wav to perform accurate 
measurements of <^. 

1. Introduction 

The study of the solidification process of a 
molten drop formed at the end of a rod has, at 
least, a double interest: in crystal growth and in 
fluid dynamics. This configuration appears in the 
simplest experiment which can be designed to 
grow a crystal from its melt (in absence of a 
crucible) and to determine the receding contact 
angle at an advancing interface between the melt 
and the growing solid [1] (other configurations 
have been employed in receding contact angle 
measurements [2,3], but they seem to be more 
complex from both experimental and theoretical 
points of view); on the other hand, the solidifica­
tion of a drop can be used to study the advance of 
a solid-liquid interface. Up to now. this problem 
has been analyzed leaving apart gravitational and 
other inertial forces [1] and, in spite of the sim­
plifying assumptions introduced in the mathemati­
cal model, theoretical results are in agreement 
with experimental ones obtained aboard Skylab-IV 
and Spacelab-1 [4.5]. Some other theoretical mod­
els did not succeed in fitting experimental results 
because of inappropriate initial conditions [6]. 

In this paper, the influence of gravity on the 
solidification of a liquid drop, mainly on the ex­
ternal shape of the resolidified material, is 
analyzed. As far as we know, some attempts have 

been made in connection with this problem, but in 
such studies gravity effects are only qualitatively 
discussed [7] and clear results are not offered. 

The interest of the model presented here rests 
on the capacity to analyze the experiments per­
formed on Earth, thus circumventing the scarce 
opportunity of space experiments. However, ex­
periments on Earth have their own drawbacks 
mainly due to the reduced size of the drops. 

In the following, we have posed the shape 
problem of the solidification process (section 2) 
and presented numerical results (section 3); in 
section 4, some experimental results on the de­
termination of the receding contact angle are in­
cluded. Finally, in the appendix, an analysis of the 
final stage of the solidification process is made by 
means of an asymptotic approximation of the 
non-linear problem. 

2. Shape problem 

To study the successive shapes adopted by the 
solid-liquid system shown in fig. 1, consisting of 
solidified material and the liquid drop anchored to 
the solidification front, the following widely used 
assumptions [1,2,6,8,9] are introduced: 
(1) The gravity field is directed along the symme­
try axis of the supporting rod, which is assumed to 



Fig. 1. Geometry and coordinate system for the drop crystalli­
zation problem: Z. R, axial and radial coordinates, respec­
tively; Zf, axial position of the solidification front; Rh, radius 
of the solidified crystal; Rfl, rod radius; <t>f. angle between the 
solidification front and the liquid-gas interface; <#>,. receding 

contact angle. 

be of circular cross-section. Then, the liquid-gas 
interface will be axisymmetric. 
(2) The solidification front remains flat; there­
fore, the shape and thermal problems become 
decoupled. This hypothesis is confirmed by ex­
periments reported below. 
(3) The deformations produced by inner motions 
of the melt are negligible. 
(4) The receding contact angle. <#>;, is assumed to 
be constant during the solidification process. 
(5) Volume variations due to temperature dif­
ferences are not accounted for. The volume varia­
tion at the phase change is assumed to happen 
suddenly at the solidification front. 

As a consequence of hypothesis (2). the varia­
tion with time of the front position does not 
appear in the shape problem because it is decou­
pled from the thermal problem, which describes 
such variation. 

Under these assumptions, the solidification 
process is characterized by the conservation of two 
variables at the solidification front Z = Zt (see 
fig. 1): the receding contact angle and the total 

mass [1], 

dRs/dZ=tan(<j>!-<pi~lir), (1) 

d K / d Z = -irpRl, (2) 

where Rs is the radius of the solid, Z the axial 
coordinate, V the volume of the remaining liquid 
drop, <j>, the angle between the liquid interface 
and the solidification front and p = ps/pL is the 
solid to liquid density ratio (at the melting point). 

The appropriate initial conditions are 

R,(0)-Ro> r ( 0 ) = r 0 , (3) 

where R0 is the radius of the supporting rod. 
Introducing rs = Rs/R0, z = Z/R0 and v = V/R\, 
the above expressions become 

d r s / dz = tan(<#>r-<(.;-JTT), (4) 

dv/dz = — wp/^2, (5) 

with 

rs(0) = l , o ( 0 ) = o 0 . (6) 

In absence of gravity, cj>f depends only on a = 
v/rs [!]• 'f gravity is considered, <j>s depends also 
on a new parameter, the Bond number Bo = 
p-LgR2

s/a = Bo0rs
2, where g is the acceleration of 

gravity, a is the liquid surface tension and Bo0 is 
the initial value of the Bond number. As the 
method to calculate <f>t for given values of a and 
Bo is well known (for instance, see ref. [10]), no 
additional details are presented here. 

3. Numerical results 

The system of eqs. (4) and (5) with conditions 
(6) has been integrated by using a fourth order 
Runge-Kutta method. For instance, the solidified 
shapes corresponding to particular pendant and 
sessile drop configurations (in the case of silicon, 
P = 0.93, <(>; = 11°) are shown in fig. 2. The param­
eters which characterize the solidification process 
are the material properties, p and 4>{. together 
with initial conditions. Bo0 and a0 (Bo0 > 0 means 
a pendant drop). Concerning the shape problem, 
the stability of the liquid drop remaining at the 
solid front during the solidification process de-



Fig. 2. Influence of gravity on the solidified shape (solid line) 
of a silicon crystal (*, = 11°, p - 0.93) growing from a drop. 
These shapes have been obtained numerically from eqs. (4) and 
(5) in the case v0 = 6.8 and |Bo01 = 0.7. Initial and inter­
mediate liquid interface shapes (dashed lines) are also shown. 

pends on the values of the initial conditions Bo0 

and a0. The process is stable when the liquid 
remains anchored to the solidification front and 
unstable when the drop breaks (unstable pendant 
drop) or " pours" over the edge of the solid (unsta­
ble sessile drop). 

For a given material, any solidification process 
can be represented as a curve in the stable region 
of the (Bo, a) plane, as shown in fig. 3 for the case 
of silicon (details on the stability limits of both 
pendant and sessile drops can be found in refs. 
[11,12]). Concerning fig. 3, the following points 
are of interest. 

Since a point (Bo, a) defines univocally the 
shape of a liquid drop, the subsequent evolution 
from each point is also unique, so that the differ­
ent solidification curves cannot cross each other, 
except perhaps at the end. 

There exists minimum values of initial condi­
tions (Bom, a m ) given by the condition 
<|>f(Bom, am ) = <#>;, for which ArJAz = - oo at the 
start of the process: initial points below that curve 
represent configurations which would violate the 
flat solidification front hypothesis. In the case of 
silicon, (<£; = 11°), the curve r/>f = <j>i is very close 

Fig. 3. Typical solidification evolutions (solid lines) calculated by solving eqs. (4) and (5) in the case of silicon (<£, = 11°. p = 0.93). 
Dashed lines indicate the angle of the liquid-gas interface <f>, at the drop support. Line AB and of = 1 8 0 ° correspond to slabilitv 
limits for pendant and sessile drops, respectively. Details concerning the final stage of the solidification process are shown in the 

insert. 



to the Bo axis (a <« 1) and an approximate ex­
pression can be deduced (see eq. (A.2)). This 
region of small volume does not seem to be of 
great interest, and is too difficult to be experimen­
tally attained except at the end of solidification. 

All stable evolutions end at the same point 
(0, ac), the end point of an evolution in zero 
gravity. This is the singular point of the system of 
eqs. (4) and (5), which will be analyzed below (see 
appendix). This analysis allows one to obtain the 
approximate shape of the solid and an estimation 
of 4>i from the slope of the solid at the apex. 

In the case Bo > 0, there is a region near the 
stability limit inside which trajectories are at­
tracted towards the stability limit. The size (width) 
of this region depends on <j>{ and p. The larger 0 ; , 
the larger the size of the reaion, the effect of p 
being the opposite, as shown in fig. 4. This region 
does not exist in the case of sessile drops (Bo < 0). 

In fig. 3 also the curves <f>f = constant are shown; 

Fig. 4. Influence of ihe receding contact angle <£; and the 
density ratio p in solidification evolutions. Numbers on the 
curves indicate the value of 6, and p. respectively. The fringe 
in the lower part shows the evolution followed in the experi­
ments (see also fig. 5). Line AB corresponds to the stability 

limit for pendant drops. 

these curves are of help to explain the curvature of 
the trajectories. In the case of silicon, the large 
curvature changes occur near the curve <(>, = 101° 
because the solidified shape presents a maximum 
or a minimum when crossing this curve. In sessile 
configurations the shape can have one maximum 
(if </>f(Bo0, a0)> 101"), whereas pendant config­
urations could have one maximum and one 
minimum. This is so because in the region Bo < 0 
the r>t curves are single-valued and s>t(Bo, a) 
monotonically decreases. In the Bo > 0 region 
these curves are double-valued. 

4. Experiments 

In order to make a simple illustration of the 
theoretical model, a few experiments have been 
performed. Water has been chosen as working 
fluid, for simplicity reasons. Although solidifica-
tions of both pendant and sessile drops have been 
performed, we only present the first case because, 
due to their elongated shapes, they are more suita­
ble for comparison with theoretical shapes. 

The setup consists of an aluminium rod (5 mm 
in diameter) which supports a liquid drop at one 
end, the second end being placed inside a re­
servoir. Once the drop is formed, liquid nitrogen is 
drawn in the reservoir so that heat from the rod is 
extracted by evaporation of nitrogen. Thus, when 
the melting temperature is reached at the drop 
support section, water begins to freeze and a solid­
ification front starts to move along the drop. 
Successive front positions are shown in fig. 5, 
where the existence of a really flat front is demon­
strated and it also shows a small translucid fringe 
ahead of it. 

Comparison between theoretical and experi­
mental results has been performed as follows: 
first, the initial and final forms have been digitized 
as shown in fig. 6. The volume of the initial drop 
has been directly calculated by numerical integra­
tion of digitized data obtaining c0 = V0/R

3
0 = 3.92. 

For this value of the dimensionless volume, the 
Bond number can be estimated by minimizing the 
distance between capillary curves (which, once the 
volume is known, only depends on Bo) and the 
experimental data as reported in [10], and the 



value Bo0 = 1.22 was obtained (which corresponds 
to a value of the surface tension of the order of 
0.05 N n T 1 ) . 

Once the initial conditions are determined, the 
shape of solidified material is computed for several 

values of 4>t. The value p = 0.932 has been used in 
computations; this value, which has been obtained 
from measurements of the drop volume at initial 
and final stages of the solidification process, is 2% 
higher than the value quoted in the literature 

Fig. 5. Successive front positions for pendant solidification of a water drop from a cylindrical rod. Shadows correspond to the imaee 
of the background illumination. 



Fig. 6. Curves represented in (a) correspond to the solidified 
shape of the pendant drop shown in (b). Black circles indicate 
experimental points measured in photographs (fig. 5). whereas 
solid (dashed) line indicate theoretical results for B o 0 - 1 . 2 4 

(t.20) and * , = 0 ° . 

p = 0.917, and the difference could be due to 
digitization errors. 

A method based on the least root-mean-square 
deviation between theoretical and experimental 
results has been employed to determine the value 
of <#>;. We define the standard deviation S f ^ ) as 

S2(<J»,V 
1 

N- T ^ (7) 

Table 1 
Values of the standard deviation S(<t>J between experimental 
and theoretical results for several values of the contact angle <£; 

S(4>,)-S(0°) 
S(0°) 

•f>i (deg) 

0 0.5 

0 
0.74 
2.14 
5.10 

0 
0.5 
1 
2 

In fact, although distilled water was employed, 
aluminium is known to be very difficult to clean. 
Other impurities could have come from the am­
bient air. 

As the experimental evolution seems to be obey 
the above mentioned hypothesis, it can be de­
duced that the surface tension remains constant 
along the process except perhaps at the end, near 
the apex. 

Comparison can be made with results from 
Surek and Chalmers [2]. In the final stage of their 
experiments the solidification process can be con­
sidered similar to that of a sessile drop. Samples F 
and H in fig. 3 of ref. [2] show the typical conical 
shape whose angle is predicted by the model pre­
sented here; from results reported in the appendix, 
the angle of the cone for silicon should be 90° -
(d>f — <#>;) = 50° (see fig. 2). Measured values in 
photographs of samples F and H of ref. [2] are 
45° and 49° respectively. 

where N is the number of experimental points 
taken into account and dj is the minimum dis­
tance (made dimensionless with the rod radius) 
between an experimental point and the theoretical 
curve obtained for a given value of <t>t. The mini­
mum value of £(<(>;) occurs at ^ = 0°, 5(0°) = 
4.3 X 10 ~3. The influence of c#>; is reported in table 
1. The error in experimental measurements, ob­
tained from magnified views, is of the order of 1% 
of the rod radius. 

At the end of the solidified drop, an apex 
appeared (whose angle according to the appendix 
indicates <j>i ~ 5°). This apex could be an spurious 
effect probably due to accumulation of impurities. 

5. Conclusions 

In this paper we describe a theoretical model 
for the growing of a crystal from an axisymmetric 
drop of its melt including gravity effects. This 
model can be used to fit experimental results as a 
means to determine, in the case of a crystal, the 
receding contact angle 4>t. As account has been 
taken of gravity, comparison of theoretical results 
with experiments performed on Earth can be made, 
avoiding the restriction of the other previous model 

[!]• 
Main results presented here show the influence 

on the solidification process of the parameters 



involved: the density ratio p and the receding 
contact angle <j>it as well as initial conditions (the 
volume of the melt and the Bond number). Both 
sessile and pendant liquid configurations have been 
considered. In the latter case, the existence of a 
region close to the stability limit has been found 
where the remaining liquid drop, initially stable, 
becomes unstable. The size of this region depends 
on the values of p and <f>;. 

Comparison between theoretical and experi­
mental results predicting a receding contact angle 
4>; = 0° for water has been presented. 

The configuration proposed here to measure 4>i 

seems to be simpler that some others employed 
before [2,3] which additionally were not supported 
by a theoretical model accounting for gravity ef­
fects [2]. In fact, the variation of the value of <f>; 

reported in ref. [2] could be due to the influence of 
gravity on the meniscus shape, since, in the config­
uration they used to measure 4>,, the value of the 
Bond number is close to 0.4, which does not seem 
to be small enough to neglect gravity effects. This 
estimation of Bo is obtained by taking R0 = 3 X 
10"3 m, p = 2530 kg m" 3 and a = 0.72 N m _ 1 . In 
this case, R0 is the typical radius of the molten 
zone at which measurements have been performed 
in ref. [2]. 

Finally, the asymptotic analysis shown in the 
appendix helps to understand the final steps of the 
solidification and allows one to obtain simple 
analytical expressions, valid for small values of the 
volume and the Bond number. 

Appendix, Asymptotic solutions 

The system of eqs. (4) and (5), written in vari­
ables Bo and a reads 

da _ - Trp + 3a/tan(c#>f- i^) __ _ 
(Bo/Bo0 

,1/2 

dBo _ (Bo Bo 0 ) ' / 2 

dz tan(<f>, - <)>;) ' 

(A.la) 

(A.lb) 

An asymptotic analysis of the drop shape gives 

a = imj>,(l + Bo/24), (A.2) 

valid either for pendant or sessile drops, if | Bo | 

< 1 and a < 1 (additional details can be obtained 
upon request from the authors). If | Bo | and a are 
small enough, using eq. (A.2) and the approxima­
tion tan(e£f - <>;) ~ (<#>,- <#>;), the following expres­
sion results 

da _ (4p - 3 - \p Bo) - Trpcj>i 

d Bo 2~Bo (A.3) 

Eq. (A.3) has a singular point at Bo = 0, a = ae = 
TTp4>I/(4p - 3), corresponding to the end of all 
trajectories (see fig. 3), which obviously is the 
same as the end point of the evolutions in zero 
gravity condition [1] (the exact value of ac is given 
by the solution of wp tan[£f(0, a e) - £,] = 3ae). 

To analyze the behavior of the different evolu­
tions near this point, we can translate the origin to 
ae, and stretch the coordinate Bo 

a = a f + <J, (A.4a) 

Bo = Lb, (A.4b) 

where L = 6(4p - 3)2/(irp:<J>i). Therefore, neglect­
ing O (ab) terms, eq. (A.3) becomes 

da _ 4p — 3 a — b , , 
— - — ^ _ . ( A . 5 j 

This analysis is only valid if a < 1 and ae < 1, so 
that p > 3/(4 — 770,). Also, owing to physical rea­
sons, a > 0. For instance, in the case of silicon this 
analysis gives ae = 0.78. whereas the value ac = 
0.79 results from computations. 

According to classical singular point theory, if 
p > 3/4 the singular point is a node and otherwise 
(p < 3/4) a saddle point. However, in this last 
case, the analysis is not valid because a is outside 
the applicability range (ae < 0). Thus, in the fol­
lowing we shall discuss the case p > 3/4 only. In 
this case, the solution of (A.5) is 

4p-
4 p - 5 

b + 
4 p - 3 
4P-51 

' (4p-3)/2 

(A.6) 

where 50 and 60 are either the initial conditions 
or the coordinates of any point over the curve. A 
good understanding of the family of curves is 
given by the direction of asymptotes of (A.6). 
These are the particular solutions of (A.6) for 
which the integration constant is 0 or oc, a = b(4p 



— 3)/(4p - 5), and 6 = 0. The curves (A.6) are 
tangent to one of the two asymptotes. As da/db 
= d<4p_5)/2, they are tangent to the a axis if 
p < 5/4 and to the other aymptote if p > 5/4. The 
sign of the slope of this asymptote depends on 
whether p is larger or smaller than 5/4. 

Once a(b) is determined, the approximate ex­
pression for dr 5 /dz is 

d7 = -(<t>r 

4 . 

<t>, 

4 p - 3 
77p 

b + 
3^i 

4 p - 3 
(A.7) 

which can be integrated (since b = rs
2 Bo0 /L) to 

obtain 

P2<t>, B o 0 
3 3 (4p - 3)(4p -

5 p<t>{ B o 0 

5) 

r4p-2 

4 p - 2 

3<h 
18 (4p-3)(4p-5) s 4 p - 3 s 

(A.8) 

The slope dz/drs at the end position, z = zc, is 
34»,/(4p - 3). 

In the cases p = 5/4 or <#>; = 0, eqs. (A.6) and 

(A.8) do not hold. However, suitable expressions 
can be deduced by performing the appropriate 
limits. 
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