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This paper proposes and analyzes the use of a nonrotating tethered system for a direct capture in Jovian orbit using 
the electrodynamic force generated along the cable. A detailed dynamical model is developed showing a strong 
gravitational and electrodynamic coupling between the center of mass and the attitude motions. This paper shows the 
feasibility of a direct capture in Jovian orbit of a rigid tethered system preventing the tether from rotating. Additional 
mechanical-thermal requirements are explored, and preliminary operational limits are defined to complete the 
maneuver. In particular, to ensure that the system remains nonrotating, a nominal attitude profile for a self-balanced 
electrodynamic tether is proposed, as well as a simple feedback control. 

Nomenclature 
magnetic field, T 
width of the tether, m 
motional electric field projected in the 
tether direction, V / m 
motional electric field, V / m 
modulus of osculating eccentricity of the trajectory 
osculating eccentricity vector 
electron charge, C 
total electrodynamic force on tether, N 
electrodynamic force on tether element, N 
perturbation force, N 
nondimensional function 
nondimensional function 
modulus of specific angular momentum of 
the trajectory, m 2 / s 
specific angular momentum of the trajectory, m 2 / s 
initial modulus of the specific angular 
momentum, m 2 / s _ 1 

nondimensional specific angular momentum 
thickness of the tether, m 
current along the tether, A 
averaged current along the tether, A 
inertia tensor of the tethered system, kg • m2 

dimensional first momentum of the current 
profile, A • m 
current on the orbital motion-limited regime, A 
moment of inertia perpendicular to tether 
direction, kg • m2 

nondimensional averaged current along the tether 
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nondimensional first momentum of the current profile 
angular momentum with respect to the center of mass, 
kg • m 2 / s 
tether length, m 
nondimensional tether length 
torques on the center of mass, N • m 
electrodynamic torque on the center of mass, N • m 
gravitational torque on the center of mass, N • m 
total mass of the tethered system, kg 
lower mass, kg 
upper mass, kg 
electron mass, kg 
tether mass, kg 
electron plasma density, 1/m3 

nondimensional functions 
tether perimeter, m 
inertial orientation of tether element 
Jupiter equatorial radius, m 
position vector of tether mass element, m 
position vector of the center of mass of the tethered 
system, m 
radius of perijove of initial hyperbolic orbit, m 
arc length of the tether, m 
time, s 
direction of unit vector from cathode to anode 
unit vector along radial direction 
unit vector along transversal direction 
inertial velocity of tether element, m / s 
relative velocity between tether and plasma, m / s 
plasma inertial velocity, m / s 
spacecraft inertial velocity, m / s 
arrival velocity at Jupiter, m / s 
longitude of periapsis, rad 
ratio tether to total mass of the system 
ratio between two characteristic times 
true anomaly, rad 
nondimensional parameter 
nondimensional parameter 
electron-to-ion-mass ratio 
dipole field strength, T 
Jupiter gravitational constant, m3 / s 2 

volumetric density of the tether, kg /m 3 

conductivity of the tether, l / ( i i • m) 
nondimensional time 
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TC = characteristic time, s 
<bp = tether plasma bias, V 
tp = angle between tether direction and radial direction, rad 
X = mass angle (describes mass distribution), rad 
y/ = angle between tether direction and inertial x axis, rad 
Q. = angular velocity of the siderial rotation of Jupiter, 1/s 
Q.t = nondimensional electric load 
£20 = volume of the tethered system, m3 

o) = angular velocity of the tethered system, 1/s 

I. Introduction 

T HE exploration of Jupiter and the Jovian system is a current 
priority for planetary scientists and space agencies. Increasing 

our knowledge on the Jovian system would help to understand the 
Solar System formation and the behavior of similar planets in 
extrasolar systems as well as to assess the habitability of its moons 
(Europa in particular) [1]. The exploration of Jupiter, however, also 
constitutes an engineering challenge. Missions to the outer planets 
have to face two important limitations that constrain their operability 
and their scientific payload: on one hand, the necessary propellant 
mass for the capture, and on the other hand, the scarcity of power 
generation. Both of these have had an important impact on the design 
of previous missions to Jupiter. The search for solutions to avoid these 
handicaps led to the proposal of the Jupiter Icy Moons Qrbiter (JIMO) 
mission, which enhanced the performance compared to former 
missions. JIMO would have used a small nuclear reactor to overcome 
the weak electrical power generation and to power ion electric 
thrusters, improving mission maneuvering. 

In this scenario, electrodynamic tethers can represent a suitable 
solution because they can address both limitations simultaneously. 
Moreover, they can also be used to study the Jovian magnetosphere. 
A complete and thorough analysis of a tether mission to Jupiter is 
presented in Sanmartin et al. [2-4] and Charro et al. [5]. There are also 
a number of works that explore the advantages of electrodynamic 
tethers in the Jovian system to produce power. In Pelaez and Scheeres 
[6,7], a new strategy to provide power in a permanent manner using 
electrodynamic tethers is fully described and analyzed for a Jovian 
orbit; in Bombardelli et al. [8], an electrodynamic tether system to 
produce power keeping the orbital energy unaltered is presented; 
and finally, in Curreli et al. [9], the power generation in the Jovian 
torus with an electrodynamic tether is analyzed, highlighting the 
advantages of the system. Related to the use of electrodynamic 
tethers in Jovian orbit, the possibility of using them as a primary 
propulsive system for the capture maneuver in Jupiter has been 
explored. In fact, the problem of using electrodynamic tethers to 
perform the capture maneuver has been studied in several articles. 
Gallagher et al. [10] presents a numerical computation of spacecraft 
trajectories assuming a given attitude for the tether and an ad hoc 
model of the current collection. Besides, they consider retrograde 
captures and provide a study of the possible thermal side effects on 
the cable. In turn, Sanmartin and Lorenzini [ 11 ] give a fully analytical 
estimation of an electrodynamic tether's performance and the main 
parameters involved in a prograde capture with an accurate model of 
the current collection as well as some simplifications concerning the 
geometry of the trajectory and the attitude of the tether. In this work, 
the concept of the drag sphere was presented, inside of which the 
tether produces drag and outside of which it can generate thrust. In 
van Dijk et al. [12], a complete study of the electrodynamic force 
capabilities of electrodynamic tethers in the Jovian environment is 
developed. The attitude is considered here in detail, though the results 
are applied only to circular orbits. Finally, Sanmartin et al. [2,3] 
analyze the performance of rapidly rotating tethers in the capture 
maneuver and study their operative limits due to excessive heating 
or bowing. Rapidly rotating tethers succeed in addressing the 
operational constraints of the capture maneuver. Nevertheless, many 
of the proposals to operate an electrodynamic tether in Jovian orbit 
require the tether to be nonrotating. Therefore, the possibility of 
completing the Jovian capture maneuver with an SBET could reduce 
the complexity of the mission and the delta-V budget. 

The aim of this paper is the analysis of the attitude dynamics of an 
electrodynamic tether in a capture maneuver and the capability to 
control the orientation of the tether with the electrodynamic forces 
alone. To achieve that goal, a comprehensive dynamical model is 
derived, gathering the relevance of the attitude dynamics in the 
capture as well as keeping the accuracy of the environmental models. 
The proposed capture method is based on the self-balanced 
electrodynamic tether (SBET) concept [ 13] to prevent the tether from 
rotating after the capture. The main characteristic of SBETs is that 
they avoid the instabilities associated with the attitude dynamics in 
inclined orbits. In the near-Earth environment, SBETs have proven 
their capability to stabilize electrodynamic tethers [14], combining 
high tether intensities with no perturbation torques and therefore with 
a stable attitude state. This property allows the tether to work aligned 
with the local vertical, which represents an important benefit in terms 
of current collection efficiency in addition to the desired attitude 
stability. In other words, the eletric power developed during the 
capture is enhanced by using a SBET. The consideration of the former 
criterion leads to the use of tethers without insulation, called bare 
tethers, given that this solution solves the problem of anodic contact 
in highly rarefied plasma [15]. In addition, the feasibility of using 
rigid nonrotating electrodynamic tethers to perform a direct Jovian 
capture maneuver is assessed in a broader sense, making rough 
estimations of the operational limits due to thermal and mechanical 
effects. 

The next section is devoted to describing the maneuver and the 
tethered system, comparing the models used with those applied in 
previous studies. The following sections are aimed to define in detail 
the complete dynamical model that is used in the analysis of the 
Jovian capture. Then, the control options of nonrotating tethers are 
explored in detail, arriving at the establishment of a control strategy. 
Last, a thermal analysis of the cable has been performed, following 
the previous analysis in Sanmartin et al. [3]. The high currents that the 
tether would provide produce the heating of the cable due mainly to 
ohmic effects. This element can be a limiting factor of the allowable 
current that can be borne. Considering this fact, the operational limits 
for nonrotating tethers are established. 

II. Description of the Tether Maneuver 
The electrodynamic tether generates drag only in a fraction of an 

arc of the whole trajectory. Because of this, the tethered system will 
follow a hyperbolic trajectory during the first part of the maneuver, 
within the validity of the patched conic approximation. This initial 
hyperbolic orbit can be defined completely by means of the arrival 
velocity v^, the radius of the periapsis, rp, and the orbital plane 
(by definition of the Jovian reference frame, a> + Q. = 0). All of 
the foregoing studies, as well as the present, have considered an 
equatorial plane for the capture maneuver because it represents the 
most effective solution in terms of the electrodynamic work that can 
be provided. Additionally, the initial relative velocities that have been 
considered vary from 5.64 km/s of the minimum-energy transfer 
from the Earth (ignoring the inclination of Jupiter's orbit with respect 
to the ecliptic) in Sanmartin et al. [2] to 6 km/s in Sanmartin and 
Lorenzini [11] and to 6.854 km/s of a previous concept space 
mission in Gallagher et al. [10]. In this article, we will consider arrival 
velocities of 1.0 and 1.2 times the velocity of the Hohmann transfer. 
On the other hand, the considered radius of periapsis varies from 1.01 
Rj (from a proposed mission Radio Science Observer) in Gallagher 
et al. [10] to 1.5 Rj in Sanmartin and Lorenzini [11]. In retrograde 
capture orbits, there are no constraints on this parameter, but in 
prograde orbit, it is necessary that the perijove is inside the drag 
sphere (generally speaking, because for hyperbolic orbits, the 
stationary radius is not well-defined). From the results of these 
articles, it can be deduced that the radius of periapsis is a decisive 
parameter in the design of Jovian capture trajectories. In the current 
work, we will explore the results obtained for the radius of periapsis 
between 1.0 Rj and 2.0 Rj. 

Regarding the computation of electrodynamic forces, it is 
necessary to establish a model for current collection. The interaction 
among a conductive tether, the ionosphere, and magnetic field of a 



SANJURJO-RIVO, SCHEERES, AND PELAEZ 

planet like Jupiter can lead to the generation of a current inside the 
cable. In a frame orbiting with the tether, there exists an electric field 
given by 

Em = (vsc ~ V ) x B (!) 

where vsc and vv\ are the inertial velocities of the spacecraft and the 
plasma, respectively. This field can drive a current inside the tether. 
The study of the mechanisms that determine the tether current 
collection is out of the scope of this analysis. Still, it should be 
clarified that the current through the cable will be different as a 
function of the anodic contactors used. There are basically two 
procedures to collect electrons: a balloon at the anodic end of the 
tether, where the collection follows the Parkers-Murphy current, or a 
bare tether [2,11,12], where the collection takes place in the orbital 
motion-limited (OML) regime, as long as some conditions regarding 
the transversal tether dimensions are fulfilled. In Gallagher etal. [10], 
a combination of both is considered. The bare tether has been chosen 
as the preferable option, as it has been discussed before. 

In the OML regime, the evolution of the current along the tether is 
governed by the following equation [16]: 

p, 2ec9p 
'OML = Ltnozec— 1/ ( 2 ) 

n y me 

where p t is the tether perimeter, n^ is the electron plasma density, ec 

is electron charge, me is the electron mass, and <b„ is the tether plasma 
bias. Therefore, current collection depends on the differential 
potential between the cable and the surrounding plasma, and hence it 
is necessary to compute its evolution considering the motional 
electric field along the cable, Em, and the ohmic losses due to the 
current. The statement of the full set of differential equations that 
model the current collection is presented in Sanmartin and Ahedo 
[15] and Martinez-Sanchez and Sanmartin [17]. The statement of this 
problem is completed with boundary conditions at both ends where a 
hypothetical load for power generation and the voltage drop at the 
cathodic end appear. As a result, a system of differential equations 
with boundary conditions must be solved to obtain the current and 
bias profile along the cable. 

Regarding the environment of Jupiter, the magnetic field is 
generally considered as a no-tilt dipole [2,12] whose characteristics 
are described in Divine and Garret [18]. Nevertheless, in Gallagher 
et al. [10], a more complex model [19] is followed. On the other hand, 
to determine the charge population, the work of Divine and Garret 
[18] is generally used. Still, in Gallagher et al. [10], a simplified 
version of a more extended model [20] has been considered. For a 
deep discussion about the Jovian environmental conditions related to 
the operation of electrodynamic tethers, see Sanmartin et al. [2]. 

The dumbbell model will be used to describe the tethered system. 
This model allows us to provide a first approximation of the system 
behavior. The tether is supposed to be a conductive rod with mass mt 

and length Lt, connecting two end masses m\ (the lower mass) and 
m2 (the upper mass). Instead of mx, m2, and m„ the parameters m, the 
total mass, j , and T have been used to describe the configuration of 
mass. Their definitions are as follows: 

m = nil + m2 + mt mt = ™r (3) 

mx = ml c o s 2 ( j ) - - j m2 = ml s i n 2 ( j ) - - j (4) 

The maximum and minimum values of % are reached when mx = 0 
and m2 = 0, respectively. Then, % is defined in the interval Ix^^, 
Zmta) whose values are given by 

Jmin = arcsin(- j j m i K = arccos(- j (5) 

In turn, the value of the moments of inertia with respect to the 
direction of the cable is assumed to be zero. For any other 
perpendicular direction, the value of the moment of inertia is Is. 
Expressed in terms of the parameters of the geometry of mass, Is is 
equal to 

Is=^mtLJ(3 sin2(2%)-2T) (6) 

The more restrictive assumption of the dumbbell model for the case of 
study is the hypothesis that the tether remains straight. Tethers relay 
on gravity gradient to produce passively the required tension to 
remain straight. The combination of a weak gravity gradient in 
Jupiter and high lateral forces makes a nonrotating tether unable to 
generate passively the required tension. Nevertheless, the required 
tension could be supplied actively with actuators on the tether ends. 

III. Motion of the Center of Mass 
In this section, a description of the dynamics of the center of mass 

is derived in terms of the osculating orbital elements of the trajectory. 
This characterization allows us to provide further insight on the 
maneuver as well as to develop an easy numerical implementation. 

Before exposing the detailed derivation of the dynamical equa­
tions, it is necessary to present the model used forthe electrodynamic 
force acting upon the tether. The electrodynamic force that appears on 
a tether element, F ^ , can be computed as 

Ffd = I(s, r,v,q, q)u(q) X B(s, r) (7) 

where I(s, r, v, q, q) is the current along the tether, B(s, r) is the 
magnetic field at the tether element, u (q) represents the unit vector in 
the direction from the cathode to the anode, s is the variable along the 
tether, and r, v, q, q is the state of the system (<jr and q stand for the 
variables used to represent the attitude of the tether). To simplify that 
expression, some hypothesis are made. 

1) Both the magnetic field and the velocity do not vary along the 
tether: B(s,r) « B(r), v(s,r) « v(r). 

2) The trajectory takes place in the equatorial plane, and the tether 
motion is contained in this plane. Therefore, u is a function only 
of an angle tp- Expressed in cylindrical coordinates: u = cos <pur 

+ sin tp Ug. A scheme of the angles involved in the analysis can be 
seen in Fig. 1. 

3) The current along the tether is computed as the average in a 
given instant: L,Im(r, v, tp) = f%I(^, r, v, tp) d£. 

4) The magnetic field is a nontitled dipole: B(r) = B(r)uz. The 
value of B(r) in Jupiter will be negative, due to the dipole orientation. 
Nevertheless, as it will be showed later, the electrodynamic force is 
proportional to B(r)2, and its sign only changes the direction of the 
current along the tether. 

Hence, the Lorentz force is written as 

^ed = LtB{r)Iw{r, v,tp) • (—cos tpug + sin <pur) (8) 

Fig. 1 Angles and vectors considered in the Jovian capture. 
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The averaged current along the tether can be modeled as a function of 
the state of the system using the OML regime model as it is presented 
in Sanmartin et al. [2]. According to this model, 

/ a v(r , v, t/>) = ocEm(r, v, <j))d,htiw(t\(r; v, (f>), Q.,) (9) 

where ac is the conductivity of the tether material, dt and ht are the 
width and the thickness of the tape, respectively, and iav is a function 
of zf(, which is a nondimensional value proportional to the tether 
length, and Q.„ which is a nondimensional value proportional to the 
electric load of the tether. The latter parameter is free and can be used 
as a control variable. In turn, Em is the motional electrical field 
projected on the tether direction, and its value is computed as 

EJr, v,<P)=u- [(» - V ) X B] = u • K 1 X B] 

= B(r)(vf cos 4> - vf sin <j>) (10) 

Imposing the dipole moment description of the magnetic field: 
B(r) = —^m(i?y/r)3,thefinalresultfortheelectrodynamicforceasa 
function of the position, velocity, and the angle tp (rnt = dthtLJpv, 
tether mass) is 

FeA(r, v, <p) = "-^AR6j • '-f • (vf cos $ - vf sin <p) 

«r) (11) 

Pv 

(—COS 

r 

sin , 

where F„ is the perturbation force, defined as the resultant of all the 
external forces acting in the system except for the main term of the 
gravitational potential. We will consider the electrodynamic force as 
the only perturbation force Fp = Fed. Under the assumptions 
enumerated in the previous paragraph, the Lorentz force has the form 
gathered in Eq. (14). This constitutes a system of fourth order. The 
numerical integration of this system would provide us with the 
evolution of rG(t) given the functions A and tp(t) and certain initial 
conditions. It can be noted that the attitude of the tether and the 
motion of the center of mass are not independent. 

The goal of this section is to derive a complete set of equations of 
motion in terms of the osculating values of h, e, 8, and a, where a is 
the longitude of the periapsis. To do that, we can express the modulus 
of the derivative of the specific angular momentum in terms of the 
electrodynamic force: 

dh 

d7 : 

Aiav^iCl + e cos 8f 

Hjm hl (17) 

On the other hand, considering the definition of the eccentricity 
e = —r/r — (h X v)/fij, and projecting its derivative with respect to 
time in the perifocal reference frame, we obtain 

de 

d7 
A;av (1 + e cos 8)6 

H2 P1P2COS , (18) 

Nevertheless, we are interested in expressing the dynamics in terms 
of the osculating orbital elements. Moreover, the description must be 
valid for all of the conies because the initial trajectory is a hyperbola 
and the final target trajectory is an ellipse. The radial and longitudinal 
velocity as well as the radius of all conies can be described as a 
function of the osculating orbit elements as follows: 

h 
sin 8 ur > 

COS 8)Ug (12) 

da 

dT 
A£av (1 + e cos 8)6 

V{P-i cos (j> sin 8 
fijin h 

where the functions V2
 a n d ^3 have been defined as 

e sin2 8 
V1{8,4,,e) 2 cos 8 • 

1 + e cos 8 
- — tan (b sin 8 

(19) 

(20) 

h2 

jij(l + e cos 8) 
(13) 

where e is the eccentricity, 8 is the true anomaly, and h is the 
specific angular momentum. For convenience, the specific angular 
momentum will be considered instead of the semimajor axis 
hereafter. Furthermore, if we take into account that the velocity of the 
plasma is upl = rQ.ug (for prograde trajectories), where Q. is the 
angular velocity of the sideral rotation of Jupiter, then the final 
expression for the electrodynamic force acting on the tether is 

hi. 7>i(l e cos 8)6 , 
-j3 (-COS 'mg + sin (j>uT) (14) 

where 

A = m1Mj^AR(} a n d 

Pv 

V\(8, h, tp, e) = cos (j> + e cos(8 + tp) 2 

Q.h3 cos tp 

[ilj(\ + e cos 8) 

(15) 

A. Dynamics 

The tether is considered to be rigid; therefore, we should analyze 
the motion of a rigid body with respect to a inertial frame Jx\yiZ\- Let 
rG = rG(i) be the position vector of the center of mass of the tether in 
the inertial reference frame Jx\y\ z\ • Hence, the equations of motion 
can be expressed as 

i 'G (16) 

PsiO.t.e) 
2 tan <j> cos 8 
- H 
e e tan 8 1 + e cos 8 

(21) 

At last, it is necessary to establish the relation between true anomaly 
and time. Differentiating the expression of the velocity in cylindrical 
coordinates, we reach the formula for the variation of the true 
anomaly with time: 

A8 _ n)(l + e cos 8)2 A£av(l + e cos 8f 

dt h3 [ijinh12 

where the function V4 is defined as follows: 

P1P4 (22) 

P4(8,<j>,e) • cos d> tan 8 Ci 
2 + e cos 8 

e cos 8 

(2 tan tp 
— (e + cos 8)1 —I cos 8 (23) 

Gathering the results in a system of equations, we have a new system 
of fourth order: 

Ah 

It 
Atav P i ( l + e cosfl)5 

HJMSC h n 

de 

~dt 

A£av (1 + e cos 8)6 

l*jMs, h1 V\Vi cos , 

da A£av (1 + e cos 8f 
— = — -yj V\V% cos tp sin 8 
dt pjMsc hn 

(24) 

(25) 

(26) 
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Ad 

~dt'' 

n){\ + e cos 0)2 

h3 

A; a v( l + e cos 0)6
 v v 

[ijinh12 (27) 

B. Nondimensional Formulation 
The use of nondimensional equations instead of the dimensional 

ones is desirable because it allows us to define the main parameters 
involved in the capture process. We will use hc = h0, the initial value 
of the specific angular momentum, as its characteristic value. 
Regarding the characteristic time, there are two possible choices: on 
one hand, the angular velocity of the sideral rotation of Jupiter, £2, and 
on the other hand, the time related to the orbital motion, TC = h3

Q /p2. 
We will use TC as the characteristic time calling the relation between 
both times y: y = £2TC. Using those variables, the nondimensional 
equations of motion can be expressed as follows: 

Ah 

ck 
-AL 

( l + e cos 0)5 

V\ cos (28) 

IV. Attitude Dynamics 
From the expressions obtained in the previous section, it can be 

noted that the attitude plays an important role in the motion of the 
center of mass. It is therefore compulsory to study the attitude 
behavior of the tethered systems. This paragraph is intended to 
present the attitude dynamics in a comprehensive way. 

The equation that governs the attitude dynamics is the equation of 
the angular momentum: 

dLo 

At 
M (38) 

where the angular momentum can be expressed as a function of the 
angular velocity and the inertia tensor: LG = IG°o). In turn, the 
angular velocity is related to the unitary vector u in the tether 
direction, assuming that the tether is a rigid body and remains 
straight: co = uXu + (co • u)u. Therefore, Eq. (38) can then be 
rewritten as 

1 
uXu = —M (39) 

de - (l + e cos 0f „, „, 
— = -Mw± ^ -V{PX cos , 

A8 ( l + e cos 8)2 - ( l + e cos 0f „, „, 
- = p A,aY ^ V,VA 

(29) 

da - ( l + e cos fff ^ ^ 
— = - A i a v ^ —V{Px cos 4> sin 0 (30) 
AT h12 

(31) 

where A = (m(o-c^i?5)/'(pvmT2
c}{fy is a nondimensional value. The 

initial conditions needed to integrate the system of Eqs. (28-31) are 

ft(0): 1; e(0) a(0) = 0 

and the initial true anomaly fulfilling the constraint (from Em 

(32) 

0): 

The torques considered in this work will be the gravity gradient and 
the electrodynamic torque. The momentum due to the gravity forces 
is analyzed in first place. It can be established as 

M„ - f i r - rG) X—rrAm rnX f Hi rAm (40) 

where r and rG are the position vector of each mass element and the 
center of mass of the tethered system, respectively, and Q.0 is the 
volume of the whole system. Considering r = rG + s with 
1*1 "^ kol ' m e first approximation of the gravity gradient is as 
follows: 

Ma rGX / ^ sAm^rGx(lG°rG) (41) 
\rG+s 

Expressing the vector u in the inertial reference frame, 
u = cos y/i + sin yrj, the vector product u X ii is a function of the 
angle y/: 

V\ = 0 => (cos tp + eo cos(fl0 + ̂ ) ) (1 + e0 cos 8Q) = y cos tp 

(33) 
uXu = iff k = —M (42) 

In some situations, it can be useful to express the system as a function 
of the true anomaly instead of the nondimensional time because that 
allows us to restrict the integration to the drag arc. Because T does not 
appear explicitly in the dynamic equations, the true anomaly will 
be used as the independent variable, provided that A8/AT is not 
canceled. This situation is extreme, undesirable, and unlikely to 
happen. Eventually, the final expression for the dynamic equations is 
found to be 

Ah 

Ad 
-AL. 

h(\ + e cos 0)3V\ cos tp 

' h9 - A£av(l + e cos 0fV{PA 

(34) 

On the other hand, naming rG = rGuT, the identity uT = 
(ur • u)u + u X (ur X u) yields 

IG °uT = Isu X (uT X u) = Is{uT — u(uT • «)} (43) 

The gravity torque can be therefore expressed as 

3^7 
M0 -Is(u X ur)(ur • u) (44) 

Taking into account that uT = cos(a + ff)i + sin(a + ff)j, the final 
expression for the equation of the angular momentum is stated as 

de ~ ( l + e cos 6fV{P1 cos 

A0 = -M* 

Aa 

Ad 
—AL 

V - A£av(l + e cos 6)AV{PA 

( l + e cos 6)AV{P-i cos (j> sin 8 

W - A£av(l + e cos 6fV{PA 

with the initial conditions: 

h(d0) = 1; e(0o) = e0; a(d0) = 0 

(35) 

(36) 

(37) 

\ji = —j-sin(fl + a — i//) cos(6* + a—i/r) (45) 

On the other hand, the electrodynamic torque due to the Lorentz force 
acting over the tether can be computed as 

/ 
Ja 

Med= / (SuxFfd)As (46) 

Considering the previous definition of the electrodynamic force 
[Eq. (14)] and assuming the same hypothesis used to simplified its 
expression in the previous analysis, we obtain 
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Med = ux(iix B) I slds f> 
Ja 

(47) 

With respect to the derivation of the force, there is a slight difference 
regarding the current, because the value of the integral is no longer the 
average value but the first momentum of the current profile. 

Dimensional: 

r2r / 
Ja 

si ds 

Nondimensional: 

I mi — ^cEmdthtimlQft) 

That yields the following relation: 

B(r)2— imlivg*1 c o s 4> ~ u r e l s m 4>)uz 
Pv 

(48a) 

(48b) 

(49) 

The value of the moment of inertia as a function of the parameters of 
the geometry of mass is gathered in Eq. (6). Introducing this 
expression and the term of the electrodynamic torque in the attitude 
equation, we can obtain the relation for the evolution of the angular 
velocity. 

Besides, as it was made for the motion of the center of mass, the 
equation of the attitude dynamics can be expressed in nondimen­
sional form. Using the same characteristic magnitudes, the results are 
gathered in the following lines. Describing the attitude by means of 
the inertial angle y/: 

d2y/ 

~dr2 = 

3 ( l + e c o s f l ) 3 . 
= sin(2(v/ 0 a)) 

2 h 

Kiml (1 + e cos Of 

( 3 s i n 2 ( 2 j ) - 2 D P 

or in terms of the angle <j>: 

d26 d2a 3 (1 + e cos 0f d2<j> 

dT2 dT2 

™m\ 

h° 

Pi 

sin(2</>) 

(50) 

( 3 s i n 2 ( 2 j ) - 2 D 

(1 + e cos Of 
V, 

where 

\2n2
mR6j(jcn) 

(51) 

(52) 

V. Control on Nonrotating Tethers 
Because of the strong coupling between attitude and center of mass 

motions, control of the former constitutes a matter of the first 
relevance. That is due to the fact that having the right orientation is 
compulsory to complete the capture maneuver successfully. In this 
section, the feasibility of obtaining the desired attitude without using 
external means (other than the gravitational and electrodynamic 
forces) is explored. 

A. Assessment of Control Authority 

The first question addressed is whether or not the electrodynamic 
torque is able to keep the attitude of the tether controlled. Therefore, 
the required control torque and the operational limits of the 
electrodynamic torque will be analyzed to eventually compare the 
both of them. 

/. Needed Torque 

The attitude dynamics are governed by Eq. (51) in terms of the 
angle tp- To evaluate the torque needed to maintain a prefigured 
attitude profile, we will consider the following function: 

5(T) 
(d2<p d^e 

IT2' 

cfia 

rfr2' 

3 (1_ 

2 

e c o s ff)3 

~T6 sin(2</>) 

KII ( T ) 

(1 + e(r) cos 0 (T ) ) 6 :P I ( / I (T ) , e(r), 6>(T)) 

According to Eq. (51), the needed torque can be written as 

(53) 

( 3 s i n 2 ( 2 j ) - 2 r ) S ( T ) (54) 

The function Q{z) can be obtained as a result of the integration of the 
equations of motion for a given attitude profile 4>{T). It should be 
noted that this expression is only valid for V\ > 0 (i.e., only along 
the arc where it is possible to generate drag). On the other hand, % 
and T are functions of the geometry of mass of the system. And 
consequently, the function Tj = (3 sin2(2j) — 2T) is computed 
given the values of the end masses mx and m2 and the tether mass mt. 
The values corresponding the self-balance configurations (with 
X G ~[40,50 deg]) vary between 1 and 3. Accordingly, the 
influence of this factor is not expected to be determinant in the 
controllability. 

On the other hand, the function Q{z) must be computed as a result 
of the integration of the equations of motion. A reference case is 
chosen to perform the aforementioned integration, characterized by 
the parameters gathered in Table 1. Additionally, an attitude profile 
should be established. We will consider three cases regarding the 
suitability from the point of view of the electrodynamic forces that 
can be generated: 1) tp = 0 (the tether is pointing continuously 
toward Jupiter), 2) y/ = 0 (the tether keeps a fix inertial orientation), 
and3)« • vTel = 0 (the tether is forced to be perpendicular to both the 
relative velocity to the plasma and the magnetic field). The results 
obtained are shown in the last paragraph of this section. 

2. Electrodynamic Torque 

In Eq. (54), the left term depends on the current profile along the 
tether. In fact, im\ is the nondimensional first order moment of the 
current respect to the center of mass, i.e., 

/ " ' ' ( & - 0i(0 d£ = tt c o s 2 ^ ^ , at) - U2(t„ Q,) 
Jo 

(55) 

where U^.O,) = / o ' i © d ^ , and U2(f„at) = / f c i (<f )d f To 
compute the values of U\ and U2, it is necessary to solve the two-
boundary-value problem for the current £(£) as it is exposed in 
Pelaez and Sanjurjo-Rivo [21]. With that formulation, U\ and U2 

are 

Ui(?t,a,) = l?t + <Pc-<PA 

Table 1 Maneuver and tether characteristics for the 
analyisis of the required torque 

(56) 

Manuever and tether parameters 

Periapsis radius (initial hyperbolic trajectory) 
Initial velocity 
Tether length 
Tether thickness 
Tether width 
Tether mass 
Spacecraft mass 
Mass angles 
Tether material 

Values 

1.42 tf, 
5.64 km/s 

100 km 
0.05 mm 
30 mm 
405 kg 
905 kg 
40 deg 

Aluminum 
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u1^t,£it) = (pcft + ^-A
i(\-iByii r°sinh5 /3(0 

Jo 
d? 

H 

1 f"T 

4/3 \ sinh5/3(0 
Jo 

d? (57) 

We are interested on the operational limits of the control, Q.t = 0 
and Q.t —• oo. In the first case, Q.t = 0, we have q>c = 0, €t = t,B, 
and therefore 

U2(t„0) 

Ul{€t,Q) = €t-<pA 

A 4 

(58) 

4 A> 
-^-iB)5/iJ sinh5 /3(0 df (59) 

In the second case, we have ic = 0 and vT = v0, and then 

V1{tt,^<x>) = tt+q>c-q>A (60) 

U2V„ ->• oo) y + ^ ( - ^ ( l - ! B ) 5 / 3 

: fv\inh5/3(0^( 
fl 

(61) 

In the next paragraph, the limits £mi (Q.t = 0) and imi (12, —• oo) are 
plotted in the same graphs as the needed values !°ejed as functions of 
€t and T. 

3. Comparison 
In Fig. 2, we compare the needed values of the electrodynamic 

torque and its limits of operation for the first of the attitude profiles 
proposed (i.e., the tether pointing continuously toward Jupiter). The 
needed values are represented by black squares while the limits of 
operation appear as black lines. 

The results obtained for the other two attitude profiles are similar to 
those shown in Fig. 2. The electrodynamic torque, which acts as 
control power, is small to counteract the gravitational torque. 
Furthermore, the electrodynamic torque is only available during the 
drag arc, and therefore there is no compensating torque outside the 
drag sphere. Therefore, a complete control of the tether attitude 
following an arbitrary predefined trajectory is not possible. 
Nevertheless, the tethered system would be able to complete the 
capture maneuver with negligible angular velocity with the feedback 
control, which is described next. 

B. Feedback Control 
/. Nominal Attitude Profile 

From the results exposed in Scheeres et al. [22] and Scheeres [23], 
the change in angular momentum during an equatorial flyby will only 
have a component along the z axis proportional to sin 2(OJ + £2). We 
can cancel this term by means of making the x axis of the tether fixed 
reference frame at the periapsis points toward the center of mass of the 
planet, where the x axis in the body fixed reference frame is defined to 
lie along the axis of minimum momentum of inertia. That is, the tether 
should be aligned with the local vertical in the periapsis passage. 

As a first step, we will analyze the motion of the tethered system 
when the electrodynamic forces are not present. Our objective will be 
to obtain a solution that fulfills the condition of keeping the tether 
without spin at the end of the flyby. The nondimensional form of the 
equation that governs the attitude in terms of an inertial angle y/ is 
Eq. (50). To get the necessary initial condition in the angle y/ to keep 
the tether nonrotating, Eq. (50) should be solved with the following 
boundary conditions: 

¥(do) = 0 

¥(8 = 0) = 0 

(62) 

(63) 

One relevant issue in this approach is where the initial condition is 
considered to be. Because the angle that defines the asymptote of the 
hyperbola is 8a = arccos(—1/e), where e is its eccentricity, the 
initial angle 80 must be a fraction of 8a. The solution can vary slightly 
when different values of 80 are considered. When we take 
6*o = 0.996*,,, the initial angle y/0, which provides no change of the 
angular momentum, is y/0 « —57.2 deg. In Fig. 3, the central line 
represents the solution along the whole trajectory in terms of the 
inertial angle and the nondimensional angular velocity. 

The result shows the profile of the inertial angle is antisymmetric 
respect to 8 = 0. Furthermore, the value of y/ is close to 0 in the 
neighborhood of the periapsis (being exactly zero in the periapsis), 
which represents a convenient profile in terms of the generation of 
electrodynamic force. In turn, the desired final value of the angular 
velocity has been obtained. Nevertheless, it experiences a large 
excursion reaching its minimum at the periapsis and being its profile 
symmetric respect to 8 = 0. 

Other aspects that should be assessed include the sensitivity of the 
solution that has been obtained. In Fig. 3, the evolution of the inertial 
angle and the nondimensional angular velocity is presented when the 
initial condition in yi is modified by 1% and compared to the nominal 
solution. The nominal solution (zero final angular velocity) is 
obtained with ^ o m m a l = —57.2 deg, while the other two lines are 
obtained with y/0 = LOli^0™1 and y/0 = 0.99y/j;ominal. From the 
results of Fig. 3, we can conclude that slight initial deviations from 
the nominal value in the initial angle yields an important difference in 
the final nondimensional angular velocity. 

- 0 . 5 - 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 0 0 . 1 0 . 2 0 .3 0 . 4 0 . 5 
T 

Fig. 2 Needed values of iml as a function of €t during the capture (black squares) and the control limits of iml (black lines); control law: <p = 0. 
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•sre ' 

Fig. 3 Comparison of the different evolution of the angular variables regarding the initial condition in y/. 

•aps 

Fig. 4 Comparison of the different evolution of the angular variables regarding whether the electrodynamic forces are present (dots) or not (line). 

Hereafter, the situation when electrodynamic forces are considered 
is analyzed. A comparison between the nominal solution and the 
capture trajectory is presented in Fig. 4. The initial angle y/0 is the 
same in both cases. The control variable Q., has been set to zero during 
the whole drag arc. 

As it can be noted in Fig. 4, the effect of the electrodynamic torque 
during the drag arc has an effect of the same order as the small 
perturbations in the initial value of the inertial angle yi. The 
electrodynamic torque can be controlled using the free parameter Q., 
as a control variable. In particular, we can cancel out the value of the 
electrodynamic torque adj usting the value of £2( to £2SBET, the value of 
the nondimensional load for a SBET [6,7,13]. In fact, because the 
electrodynamic perturbation torque no longer affects the attitude 
dynamics, this control strategy will lead to an inertial angle profile 
identical to that showed in Fig. 3 when the appropriate initial 
condition is chosen. Additionally, small variations of Q., around 
£2SBET can be performed to correct the attitude when the actual inertial 
angle differs from the nominal one. In the next paragraph, a feedback 
control is proposed to deal with these small corrections. 

2. Feedback Control Definition 

In this paragraph, we pose the problem of the control around the 
previously defined nominal trajectory. The nominal orbit is 
determined by the evolution of the state vector: y^ir) where: 
y = {h, e, a, 0, yi, y/} . On the other hand, the control variable 
£2f (Y) = iisBET f ° r m e whole nominal path. 

The dynamics of the system can be described as a system of 
differential equations with the following dependence: 

dj> 

d-r Hy) + im(at)5(y) (64) 

d(Sy) 

dr \dy~ 
I'av(iif) 

d_Q 

dy 
Sy + G{yNy^ 

oil, 
SO., 

(65) 

where Sy is the variation of the state vector, and SO., is the variation of 
the control variable. In a more compact form, we will have 

d(Sy) 

dr 
A(yN,Q.?)Sy + Z(yN,Q.f)8a, (66) 

The objective of the control is to chose SO., in such a way that the 
system will not be unstable. A first approximation consistd of using 
proportional control: SO., = cTSy. That approach yields 

d(Sy) 

dr 
[A(yN,Q.?)+Z(yN,Q.?)cT]Sy (67) 

The problem then can be formulated as the determination of c, in 
general a function of time, in such a way that the system becomes 
stable. 

3. One-Dimensional Feedback Control 

Nevertheless, given that the instability is related to the attitude of 
the tether, the simpler study of the linearized attitude dynamics is 
considered. It is expected that small variations of the control variable 
have a small impact on the motion of the center of mass. Thus, when 
the rest of the state variables are ignored, the linearized system can be 
written as 

(6$) = A'(yN, a?) fir + & (yN, Q^sa, (68) 

The linearization around the nominal trajectory leads to 
It turns out to be a second-order differential equation on Sy/. In this 
one-dimensional analysis, the proportional control law can be 
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Fig. 5 Variation of A.' (0) and B' (0) as a function of the true anomaly 0. 

expressed as SO., = K.' • Sy,. When the control law is considered in 
the previous equation, the resultant relation between the angular 
deviation from the nominal profile Sy, and its second derivative is 

(Sy,) = (A' + B'K,')8y, (69) 

Therefore, the condition that K.' must fulfill to provide stability to the 
attitude motion is stated as „4' + £> '/C' < 0 V T. The values of A' and 
B' depend on the nominal trajectory, and they have the following 
form: 

A'(T) 
ACiml(l + e0 c o s ( M ) 6 

,-13 
h0 

- sin(vo - do ~ ao) 

yh\ s i n ( i p 0 - 6 > 0 - a 0 ) ' 
- e0 sin(v/0 - a0) + " j—r 

1 + e0 cos(6>0) 

3(1 + e0 cos 6>0)
3 

cos(2(v/0 - 6>0 - a0)) (70) 

B'(T) = K, 
dimi (1 + e0 cos 0O)6 

da, ri3 h0 

cos(v/0 -0O- a0) 

+ e0 cos(y/0 - a0) -
yh\ cos(y0 -0O- aoy 

1 + e0 cos(fl0) 
(71) 

In Fig. 5, the functions A' and B' are plotted as a function of the true 
anomaly 8. We can note that the aspect of A' is convenient because it 
does not present positive values outside the part of the orbit where the 
electrodynamic torque is different from zero. Thus, the motion 
outside those limits is not unstable. However, the values of B' are 
significantly smaller than those of A', and therefore high gains 
should be used. Moreover, if we chose K.' in the following way: 

(Sy,) = A' 4 ~ } A ' \ Sy, B' = 0 

(Sy,) = A'Sy, B' + 0 

(74) 

(75) 

The linearized equations of motion for the attitude dynamics are 
integrated for different initial conditions (i.e., for different initial 
deviations from the nominal path). The results are shown in Fig. 7. It 
can be noted that deviations in angular momentum are of more 
concern than the deviation on initial angle. In fact, all initial angles 
that allow a linearized treatment are controlled, providing that the 
excursions on initial angular velocity are well constrained. 

VI. Thermal Analysis 
In Gallagher et al. [10], overheating of the tether turned out to be 

one of the limiting factors for Jupiter capture. To estimate the effect of 
the heating problem, a thermal analysis is carried out hereafter. The 
energy equation determining the temperature T(s) of an element of 
tether length Ss is 

31 • • • • 
dthtSs Xp,c,— = QfaSs + QA,SS + QSs + QASS — 2d,Ss 

at 

X etcBTA + d,h,Ss X K, a? (76) 

where d, and h, are the width and thickness of the tether tape, 
respectively; p„ c„ e„ and K, are the tether density, specific 
heat, emissivity, and thermal conductivity, respectively; aB is the 
Stefan-Boltzmann constant aB = 5.68 • 10~8 W / m 2 • K4); and the 
contributions to the thermal energy are the following. 

1) Internal heating power Q±Ss is made of two contributions [2], 
one due to the ohmic dissipation and other due to the impact of 
collected electrons: 

K,' 
0 

A'+\A'\ 
B' = 0 
B'^0 

(72) 

then the stability condition is fulfilled (while A' < 0 when B' = 0). 
Nevertheless, there exists a limit in this kind of control due to the 

fact Q., cannot be negative: £2f + SO., > 0. The nominal value of the 
nondimensional electric load is the self-balanced one, and then we 
rewrite the last expression as 8Q.t > — Q.s This condition 
represents a limit on the control authority forthis control law. In terms 
of the maximum controllable angle, we obtain 

SO., > -Q.K 

£2c 

\K'\ 
< Sy, < -

£2c 

\K'\ 
(73) 

The limits are represented in Fig. 6 as a function of the true anomaly. 
Within this limit, the attitude dynamics are governed by 

10 

bO 
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T3 

•^2 
-5 

V. 
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, 
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Fig. 6 Maximum value of Sy, that can be controlled with this control 
approach. 
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Fig. 7 Maximum absolute value of Sxy and final value of the deviation in angular velocity Sxy as a function of the initial deviations from the nominal path. 

2th<5s 
l{s)2 

Ss - < I > — ^ < 5 s 
as 

(77) 
KtTc # 7 ( 7 , T) KtTc 

LfPtC, drf LfPtC, 
10" (83) 

where cc is the resistivity of the tether, I(s) is the current, and O is the 
bias between plasma and tether. Note that the resistivity of the tethers 
and the current depend on the temperature. Nevertheless, as a first 
approximation, resistivity is to be considered constant. Using the 
nondimensional variables defined in the study of the current along the 
tether I(s) = Emocdthti, <b = q>EmL+ and s = £,L+, the result is 

ElcA.h, i2 +<p Ss (78) 

2) Jupiter infrared radiation g 4 ; the form of this contribution is [24] 

Q48s = 2dtSs X F°oBT)et (79) 

where F" is the view factor of the tether for Jupiter, and Tj is the 
black-body temperature of Jupiter. 

3) Sun radiation Q; the expression for the sun radiation can be 
written as [24] 

QSs = dtSs X ffa*F3> (80) 

where aa is the tether absorption coefficient, "P is the shining factor, 
and <b is the solar flux. 

4) Jupiter albedo radiation QA; its intensity is given by [24] 

QASs = 2dthtSs X F°TA<baa cos q (81) 

where tA denotes the Jupiter albedo, and q represents the sun zenith 
angle (i.e., the reflection angle of sun rays on Jupiter). 

To evaluate the importance of each contribution, we will substitute 
Eqs. (78-81) in Eq. (76), using the nondimensional variables r\ 
s/Lt and r = t/ic, where TC = h^/p 
time of the hyperbolic initial trajectory. This yields 

2. The latter is the characteristic 

dr 

h,P,c, 

PtC, 
m + <p(d &m 

d£ 

[T\rj,T)-2F°T]\-

h,Ptct 

2F°TA cos g] 
K,TC #r( i7 ,T) 

L2p,ct dr]2 
(82) 

The relation between both nondimensional lengths is E, = €tr\. Using 
the values of aluminum, density pt = 2700 kg/m 3 , specific heat 
ct « 900 J /kg • K, thermal conductivity Kt « 2.37 J / m • s • K, and 
resistance cc = 3.7668 • 107 l / ( i i • m), and considering that TC is in 
the interval TC G [5.4 • 103, 14 • 103] s, the order of magnitude of the 
conductivity term in Eq. (82) is 

Hence, we do not take this term into account hereafter. We are 
interested, in the first place, in knowing the steady temperature before 
the capture maneuver. In that situation, the left term of the equation 
vanishes (by assumption the temperature does not vary), and there is 
no internal heating because the electrodynamic tether is switched off. 
Therefore, the stationary temperature T0 is 

T4 
J 0 

2F°T4j [¥ + 2F°TA cos g] (84) 

Jupiter's black-body temperature is about Tj x 110 K% and the solar 
flux at Jupiter is about 0 x 5 0 . 5 W/m 2 § . The values of other 
parameters that are involved are more difficult to specify. We will take 
approximations for all of them. The view factor F° can vary between 
0 and 1; we will take F° « 0.5 because it is a conservative limit for 
vertical tethers [24]. Besides, we neglect variations on the Jupiter 
albedo, and we will consider an average value TA « 0.34§. The 
emissivity and the absorption coefficients of the aluminum are in the 
ranges: e, G [0.02,0.45] and aa G [0.1,0.9] [24]. We then choose 
values e, « 0.4, ca « 0.5. Finally, we will consider the shining factor 
"P « 0.5 and the sun zenith angle such that cos q « 0.5. In these 
conditions, the value of the stationary temperature before the capture 
maneuver is T0 « 172 K. Further, we can neglect the variations of all 
these parameters during capture so that we can rewrite Eq. (82) as 
follows: 

3T Ptc,T0 
i2(d+<p(t) 

&i(t;j 
d£ h,Ptct 

(85) 

where T(r\,i) = T(ri,i)/T0. Because the conductivity along the 
tether is negligible, we are assuming that T(r\, T) = T ( T ) . Then, we 
can integrate the equation along the tether. Considering that 

f( i2(g)+<P®¥i) <% = £'*" • '^ 
<%. 

i'dt + tpi^- r'(i2-l)dg-
0 Jo 

(Pcic + U\ 

the final form of the energy equation will be 

d3"(i) E2
macic (<pcic + U{) 

AT Ptc,T0 h,Ptc, 
[T4 - 1] 

(86) 

(87) 

Because of the definition of the nondimensional temperature T, the 
initial condition at the beginning of the capture maneuver T(0) = 1. 

§Data available online at http://nssdc.gsfc.nasa.gov/planetary/factsheet/ 
jupiterfact.html [retrieved Nov. 2012]. 

http://nssdc.gsfc.nasa.gov/planetary/factsheet/
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Fig. 8 Maximum temperature as a function of the periapsis of the initial 
hyperbolic trajectory. 

One of the results that can be obtained from Eq. (87) is an estimation 
of the maximum value of the temperature during the capture. 
Imposing the condition d T / d r = 0 yields 

-J-4 
J. n 

Grh, 

etoBTo . 
E!2 (tpcic + U0' 

k 
(88) 

In Fig. 8, the value of Tmta = TmsciT0 is shown as a function of the 
periapsis radius of the initial hyperbolic trajectory, when we suppose 
the ideal case in the current collection problem, q>c = 0, and we 
consider the attitude is controlled in such a way that tp = 0. The tether 
is made of aluminum, and its length is 100 km, with the total mass of 
the system being 3075.5 kg. Note that the mass of the end masses is 
different from the value of Table 1. 

Taking into account that the melting temperature or the aluminum 
is about 930 K, the periapsis of the initial hyperbolic trajectory should 
be greater than, say, 1.4 Rj for this particular tether. The measures we 
can implement to reduce the maximum temperature as well as the 
current are increasing the value of r„ or reducing the value ofLtorht. 
Because the current is lower along with the maximum temperature, it 
is more difficult to perform the capture. Additionally, there are other 
measures that can be taken affecting only the thermal analysis like 
increasing the value of e„ decreasing the value of ca, or performing 
the capture in such a way that the periapsis of the trajectory was 
shadowed by Jupiter (in such a case, *F = 0 and q = n/2), even 
though these changes would have a minor effect. 

VII. Preliminary Operational Limits 
According to the previous thermal analysis, it is possible to 

establish preliminary operational limits of a specific tethered system 
concerning the maximum allowed temperature of the cable material. 
That constraint imposes an upper limit on the length of the tether once 

the other parameters of the system are fixed. On the other hand, to 
perform a capture, a minimum value of the tether length will be 
needed. Both restrictions allow to draw the parametric field where the 
capture can be carried out without reaching too high temperatures. 

In Fig. 9, the operational limits for a specific nonrotating tether are 
shown. The characteristics of the tether are gathered in Table 1. 
Moreover, a hypothesis has been made concerning the attitude 
dynamics, assuming that the tether follows the nominal attitude 
defined in Fig. 3 during the capture. The maximum temperature that 
is reached during the capture is a function of the periapsis distance 
and the length of the tether. In Fig. 9, two isothermal lines are plotted, 
corresponding to 80 and 50% of the melting temperature of the 
aluminum. The determination of the maximum allowable temper­
ature is complex, given the thermal-mechanical-electrical coupling 
that exists in this problem. In addition, a line shows the minimum 
tether length requirement to complete the capture, and two more lines 
show the required length to obtain final elliptical orbits with periods 
of 100 and 50 days. 

As can be observed, the margin of operation vanishes when the 
radius of periapsis is close to the radius of Jupiter, and it is broader for 
larger values of that parameter. Nevertheless, as the radius of 
periapsis increases, the necessary lengths are also larger. 

VIII. Conclusions 
A derivation of a method to compute the effect of the 

electrodynamic forces in the center of mass and attitude dynamics of 
an electrodynamic tether during a flyby of Jupiter has been carried out 
in this paper. This method can be applied to other scenarios where low 
thrust is involved by simply changing the force model (e.g., 
aerodynamic drag). Nevertheless, it is especially well suited for the 
case of study in this work due to the great coupling between the 
attitude and center of mass dynamics. 

Using the aforementioned method, numerical simulations of the 
behavior of the tethered system can be performed easily and 
accurately to some extent. The results have been compared to those 
found in the literature and the possibility of a complete capture 
maneuver by means of only an electrodynamic tether has been 
corroborated. 

Furthermore, a new strategy is proposed to perform the capture: a 
self-balanced nonrotating electrodynamic tether with the proposed 
attitude profile. Compared to the option of using a rapidly rotating 
tethers with a spin pointing in the direction of the magnetic field at the 
equator, this new proposed technique presents advantages and 
disadvantages, which are summarized in what follows. The rotating 
tether concept does not need control to keep its operability and the 
tension required to maintain the cable straight is provided naturally 
by the centrifugal force. Nevertheless, it presents also drawbacks 
because the spin should be obtained by means of thrusters, and the 
implementation necessary to change the direction of the current each 
half-revolution is complex. In turn, the nonrotating scheme has a 
better efficiency and less complexity from the point of view of the 
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Fig. 9 Operational limits of a tethered system performing a capture at Jupiter. 
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hardware. However, the control is compulsory, and the needed 
tension to keep the tether tight considering the lateral forces that act 
on the cable are not produced passively. The means of generating 
actively the tension on the cable requires further study and could 
hamper the viability of this concept. 

Finally, preliminary operational limits for the proposed strategy 
have been provided considering the thermal constraints and the 
characteristics of the capture. The results show that it is feasible to 
perform a capture with rigid nonrotating tethers of reasonable 
characteristics in particular areas of the field of parameters (mainly, 
hyperbolic initial velocity and radius of periapsis). 
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