
A nonlinear analysis of laying a floating pipeline on the sea bed 

jaime Garda-Palacios , Avelino Samartin, Vicente Negro 

Keywords: 
Pipeline construction 
Nonlinear analysis 

1. Introduction 

ABSTRACT 

In this article, a model for the determination of displacements. strains, and stresses of a submarine pipeline 
during its constructio n is presented. Typically, polyethylene outfall pipelines are the o nes treated by this 
model. The process is carried out from an initial floating situation to the fina l laying position on the sea bed. 
The following control variables are considered in the laying process: the axial load in the pipe, the flooded 
inner length, and the distance of the control barge from the coast. External loads such as self-weight. dead 
loads, and forces due to currents and small waves are also taken into account. 

This paper describes both the conceptual framework fo r the proposed model and its practical 
application in a real engineering situation. The authors also consider how the model might be used as 
a tool to study how sensitive the behavior of the pipeline is to small changes in the values of the control 
variables. A de tailed description of the actions is considered, especially the ones related to the marine 
environment such as buoyancy, current, and sea waves. 

The structural behavior of the pipeline is simulated in the framework of a geometrically nonlinear 
dynamic analysis. The pipeline is assumed to be a two-dimensional Navier-BernouiJi beam. In the 
nonlinear analysis an updated Lagrangian formulation is used. and special care is taken regarding the 
numerical aspects of sea bed contact. fo llower forces due to external water pressures. and dynamic 
actions. 

The paper concludes by describing the implementation of the proposed techniques. using the ANSYS 
computer program with a number of subroutines developed by the authors. This implementation 
permits simulation of the two-dimensional structural pipe behavior of the whole construction process. A 
sensitivity analysis of the bending moments. axial forces. and stresses for different values of the control 
variables is carried out. Using the techniques described, the engineer may optimize the construction steps 
in the pipe laying process. 

Predicting the structural behaviour of a submarine pipeline and 
controlling it during the laying process is a complex problem. In 
fact, in this process different aspects should be considered. First, it 
is necessary to float the long flexible pipe, usually made of high 
density polyethylene, over its final position. Second, a cable is 
attached to one end of the pipe and secured to a location on the 
coast. The other end is attached to a controlling barge. Finally, the 
pipe is flooded with water. The additional mass of water should 
cause the outfall pipe to sink to its final position on the sea floor. 
The control parameters considered in the laying process include an 
imposed axia l force on the structure, the d istance of the boat from 
the coast. and the velocity at which the pipe is fi lled with water 
from the end close to the coast. 

Typically, in order to start the described laying process a 
number of other activities are carried out beforehand. Some of 
these activities include : 

• The manufacture of the pipes. 
• Where a long outfall pipeline is required, the pipes need to be 

joined together. A long ourfall pipe is usually floated relatively 
close to its fina l position, inside a harbor or estua1y, thus 
protecting it from rough seas. 

• A trench may be excavated by dredging in the location where 
the outfall pipel ine is to be placed. 

• The structure is towed by tugboats to the construction area. 
• The end closest to the coast is connected to a previously existing 

pipeline or to the coast itself by means of a cable. 
• The outfall pipeline is placed, at a previously decided posi tion, 

over the stinger located in the control barge. An axial load is 
applied at the same position. 

• The outfa ll pipeline is flooded from t he end close to the coast 
at a given velocity. At the same time the barge advances whilst 
passing out more pipeline and adjusting the axial load. 



During this process, the outfall pipeline wi ll adopt an S­
shaped geometry which is governed by the different possible 
combinations of the control variables over time, that is, the 
inundated length, the position of the barge, and the applied axial 
load. 

The structural model described in this paper can be used as 
an analytical tool in order to optimize the stresses appearing 
during the laying process, i.e. as a solution to a problem of optimal 
control [ 3 ). 

2. An overview of structural models for the analysis of pipelines 

Over the past few decades, there has been intensive develop­
ment of models for the process described. This development was 
mainly caused by the increasing power of computation and by 
the investment made by oil companies to reduce contamination 
risk during the loading and unloading of oil tankers in buoys con­
nected by means of flexible pipelines. In general, while oil pipelines 
are more flexible and placed deeper on the sea bed than outfall 
pipelines, advances in the first field can be applied to the second 
one. 

Pipeline stress analysis requires knowledge of disciplines such 
as marine hydrodynamics and solid mechanics. Hydrodynamics 
is necessary to define the actions according to the wave theory 
adopted in each case and to study the interaction between the 
fluid and structure. Solid mechanics is needed to develop the 
suitable geometrically nonlinear analysis of the pipeline structural 
behavior due to external actions. From this analysis the optimal 
response of the pipeline can be reached. 

Several types of outfall pipeline structural analyses can be 
applied. These differ according to the following characteristics: 

• Existence of inertial forces (static and dynamic nonlinear 
analysis). 

• Representation of the pipeline (beam and shell structure). 
• Number of degrees of freedom per node (3 and 6 for two­

dimensional and three-dimensional analysis, respectively). In 
the case of a three-dimensional analysis, it is possible to study 
the pipeline behavior subjected to forces that are acting out of 
the plane in which it is placed, those produced by transversal 
current and skew waves, for example. 

Outfall analysis has been the subject of several standards 
and recommendations. State-of-the-art descriptions based on 
experiences in the energy sector can be cited. These include the 
practical oriented [ 4 ) or the more theoretical [5 ). Despite the 
significant advances reached in the area, further work is needed. 
In a recent review, [ 6) describes more up-to-date techniques for 
pipeline analysis w hich include dynamic models, that take into 
account both the time domain and frequency domain. The paper 
highlights the need for a improved simulation techniques for the 
hydrodynamic actions, with the associated damping coefficients 
and the interaction between the fluid and the structure. This 
need is particularly relevant in the area of contact between the 
sea bed and the structure. This knowledge improvement could 
be achieved according to [ 6) through extensive and specialized 
experimentation. 

The first pipeline analyses were carried out assuming a catenary 
behavior for the pipe, i.e. as a cable. The cable geometry is 
successively modified in order to include bending stiffness. In [7], 
the bending stiffness is reached by incremental load steps. In [8], 
hybrid methods, a combination of load increments and iterative 
analysis, are used. As time progressed, the methods evolved, 
introducing some rigidity to the cable, thus approximating the 
influence of the bending stiffness of the pipeline. The differential 
equation derived from this kind of model is solved in [91 by 
means of finite difference techniques. According to the initial 

and boundary conditions, sea bottom contact can be simulated. A 
more sophisticated numerical analysis of this problem is described 
in [ 10). Some semi-analytical solutions including non linear 
beam-column and elastic Winkler soil fini te elements are shown 
in [11 ). 

At the present time, most of the specific computer programs 
used to solve this type of problem are based on finite elements. 
However, general commercial finite element software programs 
such as SAP [ 12]. ABAQUS )1 3). or ANSYS [ 14 I are not very suitable 
for simulating the laying of a floating outfall pipeline on t he 
seabed. They are capable of solving parts of the process such 
as large displacement, plasticity, and contact problems, i.e. they 
can typically be applied assuming a fixed position of the pipe. 
However. if the software is used to model the whole process, then 
numerical difficulties arise when trying to simulate the movement 
of the barge, the changing length of flooded pipeline, and the 
applied axial load. Furthermore, most of the loads considered in 
this problem are follower forces, as described in [ 15 ). These forces, 
due to waves, current, and water pressure, are dependent on the 
deformed geometry of the structure, and these follower forces 
should be accurately simulated within each load step. In contrast. 
if follower forces are treated as standard forces small errors at each 
computational step can be accumulated, leading to unsatisfactory 
results after several iterations. 

In [16), different theoretical scenarios are described that could 
be used to handle the nonlinear analysis of pipeline laying. 
These include the total Lagrangian, updated Lagrangian, and even 
Eulerian formulations. Typically, the last formulation is often 
used in hydrodynamics. From a different point of view, [17] 
concentrates on the computational details that need to be carried 
out at each step. However, the mathematical framework is not 
discussed in detail. 

In the oil industry some works have taken into account other 
aspects of the analysis. These can be considered of secondary 
importance for outfall pipelines. These aspects are li sted as 
follows: 

• Cross-sectional ovalization and buckling is discussed in [ 18-211 
and [22). 

• The influence of the interna l high speed flow and t he axia l stress 
on the pipe is studied in [23). 

• The flow field changes and vortex shedding due to the existence 
of a pipeline with a given diameter, and also when this outfall 
is close to a boundary layer such as the sea bed, is dealt with 
by [11 1-

The report published by CIRIA [24), w hich includes a specific 
chapter dedicated to the design of this type of pipeline, should also 
be mentioned. 

In the professional domain, there exist a number of specific 
computer programs that have been developed to analyze the 
structural behavior of the pipeline laying problem. An interesting 
example is NV457 Static and Dynamic Analysis of Marine Pipeline 
during laying developed in Norway by Det Norske Veritas. In Spain 
the initial work of Ill and most recently )25,2 ] are examples of this 
development, as well as some in-house programs used by special ist 
enterprises such as 126]. 

3. Model description 

3. 1. Hypotheses 

In this section we present a model which is used to simulate the 
behavior of the outfall pipeline during the construction process. 
The model is specifically used to study the evolution of the 
geometry, deformed shape, and stresses right up to the time when 
the pipeline has been laid on the sea bed. 



3.1.1. Hypotheses of pipe laying 
The hypotheses considered in the model are summarized as 

follows: 

1. The pipeline is passed out into the sea through a stinger situated 
at mean sea level (MSL). This stinger can be mode led either as 
a straight ramp with constant slope or as a constant curvature 
ramp. 

2. The process is irreversible. For example, when a part of the 
outfall pipeline has reached the sea bed. it cannot be lifted again. 

3. The sea bed is considered to be a continuous line that can have 
different s lopes. it is located in the same vertical plane as the 
pipeline. 

With hypothesis 1 the pipe behavior in the barge is intended 
to be simulated. In this respect, the following simplifications have 
been introduced: 

• There is no movement out of the plane of the pipeline. 
• The dynamic effects of the contact between the pipe and the 

stinger are neglected. 
• The dynamic movements of the barge are not considered, even 

the ones due to the axial deformation of the outfall. 
• The coefficient of slip between the pipe and the stinger is zero. 

The first three simplifications are acceptable when a large barge 
and small waves are considered, circumstances that are quite 
common. 

3.1.2. Hydrodynamic hypotheses 
1. The fluid is considered to be incompressible. 
2. The Airy Linear Wave Theory is applied to study the sea 

movements. 
3. The sea state is represented by a constant period T and the wave 

number k = 2~. with L = f (h) the wavelength given as a 
function of the sea depth. 

4. The velocity and acceleration fields due to waves are not 
modified by the existence of the pipeline. 

5. The characteristics of the velocity and acceleration fie lds are 
obtained for a given number of discrete subdivisions of the 
continuous sea bed. Depth is calculated as the mean depth of 
the subdivision under consideration. 

6. The transformation of the sea waves from sea to coast is 
supposed to occur within the plane of the outfall. 

3.1.3. Structural hypotheses 
1. The behavior of the pipeline is modeled as a two-dimensional 

beam with a circular cross-section subject to axial and bending 
deformations. This model is developed in the framework of 
the finite element method. The total length of the outfall (Lr) 
is divided into N two-node elements with equal length and 
three degrees of freedom per node (two displacements and one 
rotation). 

2. The pipe material is linear elastic. 
3. Torsional and shear deformation are not considered. 
4. Rotational inertia forces are neglected. 

32. Actions 

The pipeline is subjected to the following actions: 

• Constant direction actions: 
- Self-weight. This action is found assuming each pipe element 

out of the water, for both empty and flooded conditions. 
- An axial load is applied from the barge. 
- A barge displacement, that has the pipe longitudinal direc-

tion. i.e. the global X direction. 
- Contact reactions between the sea bed and the pipeline. 

y 

Fig. 1. Hydrostatic cross-section pressure distribution. 

X 

Fig. 2. Hydrostatic pressure distribution along the pipeline. 

• Follower loads. 
The forces are due to the following two sources : 

1. Hydrostatic pressure. 
In most models this action is considered as a self-weight 

reduction, i.e. as a difference between the submerged and the 
air weight of the pipe element. This common simplification 
has not been applied to d1e present model. 

2. Sea waves and current loads. 
These loads are computed through the Morison et al. [27] 

transformation of the velocity and acceleration fields. 

These two actions along the outfall pipeline are described as 
follows. 

1. Hydrostatic pressure. 
The distribution of hydrostatic pressure along the cross-section 

of the pipeline is shown in Fig. 1. The longitudinal variation of the 
resultant can be seen in Fig. 2, where three different situations are 
computed. 

The hydrostatic pressure at a section normal to pipe axis is given 
by the following expressions: 



y 

Fig. 3. Current velocity distribution and force components along the element. 

(a ) Pipeline out of water: Ye ~ Rexr cos B 

p(rp) = 0 

Pl!(yc) = 0. 

(b) Semi-submerged pipeline: Rexr cos 8 ~ Yet~ -Rexr cos B 

p(rp) = Yw [Rexr cosrpcosB- Ycl with: rpc ~ rp ~ -rpc 

2 2 [ ( Ye ) Ph(yc) = Yw Rexc cos 8 arccos . 
Rexc COS f) 

Ye l Ye ( )2] Rexc cos 8 Rexc cos B 

where rpr = arccos ( -R Ye ) . 
CXI COS tp 

(c) Submerged pipeline: YcL :;:: -Rexr cos 8 

(1) 

(2) 

(3) 

(4) 

p (rp) = Yw [Rcxt cos rp cos e-Ye I con: - j( ~ rp ~ j( (5) 

(6) 

with Ye the global Y coordinate of the pipeline cross-section 
centre , p (rp) the hydrostatic pressure intensity, and Yw the 
specific weight of water. The resultant vertical up lift force is 
designed by Ph· 

In addition to these hydrostatic pressure forces along the 
pipeline the force and moment resultants of these forces at the end 
pipeline section have been evaluated. 

2. Stationary horizontal current 
This action produces a de pth varying velocity distribution, 

Ufc(y), as shown in Fig. 3. 
This current generates a drag force (Pdo) over a vertical cylinder 

(8 = rr /2) given by 

I 
Pdo = zCdPw D]Ufc] UJc (7) 

according to M orison et al. [271, with Cd the drag coefficient. 
When the pipeline element is inclined at angle 8, the drag 

force has normal and tangential components. Their corresponding 
values are obtained as follows: 

- Normal follower load due to the normal velocity: 
The velocity of the current normal to the pipeline is 

n n 
uf, = Ufc sin 8 with - 2 :;:: 8 :;:: 2 (8) 

y 

Fig. 4. Fluid velocities due to a sea wave along the pipeline. 

which produces a normal pressure Pd given by 

1 
Pd(y) = 2CdPwD]Ufc(y) sin 8]ufr(y) sin B 

1 
= e-,zCdPwDu}c(y) sin2 8 = eJPd0 (y) sin2 8 

where 

and e- 1 =I ifu1csin 8 ~ Oand e1 = -1 ifu1csin 8 ::S 0. 

(9) 

(10) 

- Tangential follower load, obtained from the general expression 
of Morison et al. [27 I equation: 

D 
Pr = CrPtn z ]uJ]uJ, ( 11 ) 

where UJ = u,,x and u1, = ur r. with x and T the unit vectors 
in the X and tangential di rections, respectively. In t his case, 
Uft< = Ufc and UJ, = Ufc COS 8. 

Therefore, 

D 
Pr = Pr (y) = Cr:Pwz llfc(y) COS (} =Pro (y) COS 8 ( 12) 

withp,0 (y) = CrPw¥ut.(y) . 

3. Two-dimensional waves. 
This action introduces velocity ( UJ) and acceleration ( u1) fields 

that are dependent on the time and spatial coordinates, as shown 
in Fig. 4. 

The application of the generalized M orison et al. [27 1 equat ion 
leads to the normal pressure: 

Pv = CIA1il]:,, + CoAo]Uf., ]uf., 

with 

UJ(X, y , t) UJ, T + UJ, V 

u, x + VJY = u10 [cos fi x + sin fl Yl 
u1(x, y, t) = u1, T + iy., v 

UJX + VJY = Ufo [cos fJ x +sin f3 Yl 

(13) 

{14) 

(15) 

where ( v) and ( r ) are the normal and tangential unit vectors 
respectively (in relation to the pipeline) and x and y are the 
Cartesian unit vectors. The relationships between the different 
components of velocity and acceleration are 

( 2 2) ~ VJ UJ0 = u1 + v1 , tan fJ = -
llJ 

VJ 
tan fJ = ~­

VJ 

(16) 

( 17) 



The velocity field is defined in general Cartesian axes as 

DJ = UJ (cos fix+ sin ,By)= uyx + vJy (18) 

where UJ = UJ(x,y, t) and fl = fl(x,y, t) . 
Vector DJ has an angle {3 - e with the element direction, and 

can be written as 

DJ= UJ [cos(fl- B) T + sin (fi- 8)v]. 

The acceleration field can be derived in a similar way: 

u1 = iy [ cos(7J - B)T + sin(lJ- 0) v] 

2rr [ - - ] = Tu! sin(f:l- O)T- cos(f;l - B)v 

where 7i = .B + ~-

( 1 9) 

(20) 

According to the Airy Linear Wave Theory the following 
expression can be obtained: 

H gT 1 2 2 2 2 l 
UJo = -- 2 d (Cf cJ + SfsJ) 2 ; 

2 L cosh + 

. grr H 1 2 2 2 2 l 
Ufo = -- 2 d (CJsJ +5JcJ) 2 

L cosh+ 

where 

2rr 2rr 
CJ =cosh L(y +d) s1 = sinh L(y +d) 

2rr 2rr 
c1 = cose1 s1 =sin e/ Of= Lx- Tt 

. grr H 1 2 2 2 2 I 
UJo = -- 2 d (CfsJ +Stcf) z 

L cosh + 

2rr 
tan f3 = tanh T(y +d) tan eJ 

- 2rr 
tan B = - tanh L(y +d) cote1 

with L the wavelength, T the period, and d the sea depth. 
The normal follower load is 

(21 ) 

(22) 

(23) 

(24) 

(25) 

(26) 

I ll = c,A,uJ0 sin(7J- 0) + CoAo lu10 sin(f;l- O)j sin({3- 8)UJ0 .(27) 

The element force resultants at the end nodes ex (ex = 1, 2) are 

L 
Pv1 = G [2fvi + f,~z ] 

with 

f.,~ = f u (Xa ,Ya. t) = C,A,uJ0 sin(/i"- B) 

and 

litOa = ufo (xa. Ya• t) 

UJOa = Uj0 (Xa, Ya, t) 

lfa = 7J (Xa• Y<>, t) 

fla = fl (Xa, Ya. t) (0: = 1, 2). 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

It is convenient to separate these forces into two components: 
the inertia forces f~ due to the acceleration and the drag forces J,? 
due to the velocity. The latter component can be treated similarly 
to that of the previous case 2. that is, as a stationary horizontal 
current. Then 

I ll =f~ + f~ (34) 

with 

f~ = C,A,uJ0 sin(tl- 8) = k1 sin(tl - B)tit0 

f.~ = CoAo I UJ0 sin(f;l - B) lut0 sin(f;l - B) 
..a 2 2 = "e1 u10 sin ({3 - 8) 

and 

e1 = 1 si UJ0 sin(,B -B) > 0 

£ 1 = - 1 si liJo sin(f3- B) < 0. 

3.3. Matrices and vectors of the pipe element 

(35) 

(36) 

(37) 

(38) 

An updated Lagrangian formulation (UL) is used to determine 
the movements and stresses of the pipeline. 

The stiffness matrix for a general three-dimensional beam 
element can be obtained from the incremental Principle of Virtual 
Work, between configurations C1 and C2. 1n the fo llowing, standard 
notation, as presented in [28], a nd the repeated index sum 
convention wi ll be used. Applying a UL formulation to a solid in 
equilibrium in the C1 configurat ion, the fo llowing expression is 
reached: 

{ 1S;j 1t:ij 
1dV + { \rlj 1 1Jf' 1dV = ~R- :R 

11v J1v 

(i,j = 1, 2, 3) 

where 

(39) 

:R = { 1au 1eij 1dV = { :tru7 1dS + { :Jiui 1dV (40) 
J1v ]15 J1v 

~R = { ~t;ui 1 dS+ { ~f;u7 1 dV (41 ) 
J~s J~v 

is the virtual work due to the external forces measured from the C1 

configuration. 
The virtual Green strain can be expressed as a sum of linear and 

nonlinear components: 

leij = leij+ IIJij 
where 

1 ( au~ auj* ) 
1 e;j = 2 0 I ~j + a I X; 

(42) 

(43) 

* 1 ( auz auk auk au; ) 
II'Jij =2 a 1x;a 1Xj + a 1x;i) 1Xj . (44) 

Eq. (39) expresses the change in virtual work due to the 
increment of the externa l forces ~R - ) R to go from c, to C2. 

Eq. (39) can be modified by introducing terms of incremental 
updated Green strains, instead of incremental updated I<irchhoff 
stresses. This transformation can be achieved by using the material 
constitutive equations 1au = Cuk11 t:kl· and then the following 
equation is obtained: 

(45) 

Eqs. (39) and (45) cannot be di rectly solved in terms of the 
displacement variables, because they are nonlinear functions of the 
displacement increments. 

Approximate exact solutions can be obtained using the 
following two approximations: 

1eij ~ 1eij. 
Therefore. Eq. ( 45) can be linearized as 

{ 1C;ik1 1ek, 1eij 1dV + { 1uu 117ij 
1dV = ~R- :R. 

J~ v }tv 

(46) 

(47) 

(48) 



ly=y 

"• x vh 

f)t. ------ -·---- ----·----------~llhlx =; 
- ----- lL -----+ 

Fig. 5. A two-dimensional beam element in the C1 configuration. 

3.3.1. Stij]'ness matrix 
Eq. (48) can be applied to a two-dimensional beam in 

which the Navier-Bernoulli beam hypothesis is introduced. Also 
conventional two-dimensional beam notation is used (see Fig. 5) 
and only the nonzero beam stresses and strains are taking into 
account. In the fo llowing it is assumed that only external nodal 
forces, i.e. at end sections of the beam element, are applied. These 
forces are denoted by kf, (k = 1, 2) and the corresponding nodal 
di splacements by u*. Their expressions are 

k [k k k k k k ]T f = Fxa- Fya , fza, Fxb, Fyb , Mzb 

UT= (Ua , Va , ea, llb, Vb , eb ) . 

(k =1 , 2) (49) 

(50) 

Then. Eq. (48) for the two-dimensional Navier-Bernoulli beam 
e lement can be written as follows: 

1 L 1 L 1 (EAu'u•' + El2 v" v*") dx + ~ 1 1Fxv*'
2
dx 

1 L -1 1 fyu*' v*' dx = u*r [2f- 1f] (51) 

with u(x) and v(x), as well as u*(x) and v*(x). the real and vi rtual 
di splacements at point (x, 0), i.e. the centroid of the cross-section x 
of the element. The following notation has been used : (') = f ; and 
the constants EA and E/2 represent the axial and bending stitfness 
of the beam cross-section. The axial and shear stress resultants at 
section x are given by Fx = Fx(x) and fy = fy(x), respectively, 
and M1 = Mz (x) is the moment stress resultant at section x. The 
expressions for these stress resultants are 

kFx(x) = kFxa = - kf xb; kfy (X) = kFya = - kfyb 

kM1 (X) = kMzb + k fyb(L- X)= - "Mza + kFybX. 
(52) 

Eq. {51) is also known as the variational equation of the 
simplified linearized two-dimensional beam theory [28). 

The incremental virtual work due to the external forces applied 
at the element end nodes, a and b. is given by the expression 

~R = u *T CZf - 1f) (53) 

where kf, (k = 1, 2) are the external forces applied at end 
sections of the beam element and the u* are the corresponding 
displacements at the end sections: 

k [k k k k k k ]T f = Fxa· Fya . Fza· Fx!J, f yb . Mzb 

UT = (Ua, Va , ea, Ub, Vb , fJb ) · 

(k = 1. 2) (54) 

(55) 

Using the finite e lement technique, the actual and virtual 
di splacements can be written as 

u = N 1u. 
v = N3v. 
fJ = N3'8, 

u* = N1u* 
v* = N3v* 
(}* = N3'(j* 

(56) 

where N1 and N3 are respectively the linear interpolation functions 
and the cubic Hermite functions. The following notation is used: 

N3' NJ d 1: X = Cif • an ~ =I· 

Substituting (56) into (51), and taking into account the beam 
equilibrium equations between bending moments and shear forces 

and the fact that ii*, v* and 8* are arbitrary, the following system 
of equations is obtained: 

(57 ) 

(58) 

where 

kf/ = [kFxa• 0 , 0, k f.xa • 0, o] (59) 

kf/ = [o. kFya• 
kMzu 

0. kFyb· --
' L 

k:zh J (60) 

with k = 1, 2 and k~fnr = }~1 N~ TN~P ds. The superindices a and 
f3 are the a and f3 order derivatives of the shape function N, and 
Nn matrices, and y is the exponent of the natural coordinates. 

This equation can be expressed in a compact way as 

(61 ) 

with k and kg being the linear stiffness matrix and geometric 
stiffness matrix of the two-dimensional beam. respective ly. 

3.3.2. Equivalent load vector at element end nodes 
A distributed load ~g = (~gx(X) , ;gy(X)) depending only on the 

local coordinate x along the element, can be expressed as nodal 
loads at both beam end nodes using the incremental virtual work 
principle: 

1 L 

iP = 1 NT~g ldx. (62) 

If the nodal loads depend on the displacements u produced by 
its own application, or on tl1e deformed direction given by the tina l 
element end node coordinates 1x, and 1x b, this dependen cy can be 
treated using 

~p = ~p(u , 2x;) with i = a, b. (63) 

The Taylor expansion of these load expressions gives 

2 2 2 1 [ J ~p(u, lx;) l J 
1p(u, X;) = 1p(O, X;)+ . u 

iJ U u= O 

[ 
iJ ~p(u , 1

x1) Jx1 I J . _ ) + - u (1 - 1,2 . 
iJX; i)u u= O 

(64) 

Applying the same procedure that was used w ith the constant 
actions. the di splacement dependent forces can be treated as 

+ N -- N ds u [j. -r a ~P ax; ~- 1 ] _ 

1L ax; au 0 

(65 ) 



and also 

~p = ~Po + kt1U + ku\i 

where 

ku = j~f ~ N1ds f 02 I 
L au 0 

ku = N -- N s. f - T () ~p UX; 1-1 d 
L o X; au 0 

(66) 

(67) 

(68) 

(69) 

Vector ~Pis the equivalent load vector and kt1 and l<u are the 
load stiffness matrices. These matrices have been obtained for all 
the follower loads considered in the modeL These matrices should 
be added to the 1 k and 1 kg of the element. 

3.3.3. Mass matrices 
The forces due to the sea wave action are f = fr r +f. v, with 

r and v unit vectors in the normal and tangential directions of 
the pipeline element, respectively. The components of these forces, 
according to Morison et al. [27]. are 

(70) 

2 
. ( 2) i n D (" . ) f . = CMAillf ., + CoAo u1" liJ., - C1Pw4 u. + liJ., (71) 

withf" = f ,? + f}, and 

2 
0 . ( 2 )i nD. J;, = CMA1u1• + CoAo u1• liJ., - C,pw4UJ,, (72) 

1 nD2 .. 
J;, = -C,pw-- ll ,,. 

4 
(73) 

It can be observed that if f r and f ,? are s tatic follower loads, 
then these loads can be treated as indicated before. However, 
f,~ generates an inertial term due to the fluid that follows the 
movement of the pipe. This additional load can be expressed 
by the following equation in which the nonlinear terms of the 
displacements have been eliminated: 

(74) 

where ~m0 is the added fluid mass matrix. 
Finally, in addition to the above inertial forces there exist 

inertial forces due to the movement of the self-weight of the 
pipe line, both before and after flooding. In the general case of a 
partially Hooded element with a relative length of water given by 
A, where A E (0 . 1), the lumped mass matrix is 

m= diag[ma. ma. 0, mb . mb, O] (75) 

in which no rotational inertial forces are considered, and 

A(2 - A) I (1 - >._) 2 I 
ma = 2 q1 L + 2 qo L; 

(76) 

where q0 is the empty pipe mass per unit length and q1 is the 
flooded pipe mass per unit length. 

3.3.4. Damping matlix 
The numerical solution of the dynamic nonlinear equations 

of the pipeline requires the explici t derivation of a damping 
matrix. This can be done using experimental data where a different 
damping coefficient is obtained for each natural frequency. The 
simplest way of finding the damping matrix C for the whole 
structure is to assume an orthogonal damping matrix and to use 
the Rayleigh damping matrix, given by the expression 

C=aM +f:JK (77) 

with M and K being the linear matrices of mass and stiffness of the 
w hole structure and a and {:3 representing t he coefficients to be 
found experimentally. 

3.4. Dynamic equations of the pipeline 

The final structure of the assembled matrix of dimension 3N 
with N the number of pipeline nodes is 

(
1 1 ) - 1 .!!. 2 2 2 
KL + KNL U + MU = 1 Ro - 1Po+ 1Pn 

(
1 1 ) - 2 -- l<u + l<u U - 1 MU (78 ) 

with U (3N x 1) being the vector that contains the displacements 
and rotations of all the degrees of freedom, and 1 1<LY 1 1<Nt being the 
linear and nonlinear load matrices due to all the pipeline elements; 
1 M is the added mass matrix and ~M the water added mass matrix 
of each element. The consistent added load matrices are expressed 
by the term ~Po + ~P0 , and directly appl ied noda l loads are given 

by ~Ro-
Ifthe damping matrix C is introduced and a reordering is carried 

out, the following equation is reached: 

-'-
MU+ cu + KU = R(t) 

with 

I<= 1KL + 1KNt + 1l<u + 1Ku 

M(t) =M= 1 M +;M 

1R(t) = ~Po - ~Po - ~Pn . 

4. Computer program 

(79) 

(79.a) 

(79.b) 

(79.c) 

In order to implement the structural model described here. 
a computer program has been written. This program has been 
developed within the framework of ANSYS, a commercial finite 
element computer program. In this way, the ANSYS capabilities 
for non linear analysis and postprocessing are available. However. 
ANSYS is unable to handle the sequential analysis produced by 
the different structures. These are caused by the barge movement 
and the continuous filling of the pipel ine in t he framework of 
a geometric nonlinear analysis, i.e. new element introduction. 
changes in boundary conditions, and pipeline geometry. 

The computer program developed is composed of 46 subrou­
tines and has been written in the ANSYS programming language 
APDL This language is similar to FORTRAN and some of its capabil­
ities are: ( 1) to include matrices that are used by the computer pro­
gram. (2) to take decisions within ANSYS execution time according 
to the obtained results, and (3) to write data and results files with 
arbitrary format. 

The non linear analysis of the pipeline laying on the sea bed is 
carried out using an incremental-iterative procedure as described 
in !29]. The main computational steps included in the APDL 
program are summarized as follows: 
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Table 1 
Displacements at the top (node 1), and reactions at the bottom. 

Model u1 (m) v1 (m) 

1 0.5462399 0.00 
2 0.5465449 - 1.0775 X 10- 4 

1. Define the initial pipeline configuration C0 (loads and boundary 
conditions). 

2. Compute within a UL formulation the target equilibrium C2 
from the current configuration C1 : 

(a ) Update the pipeline geometry and the existing stresses with 
the last equilibrium configuration C1 • 

(b) Apply the new load step (hydrostatic pressure, water fill , 
horizontal load) or change the barge position. The objective 
of the following computational steps is to obtain the 
equilibrium target configuration C2. 

(c) Compute and input the load stiffness matrices due to all the 
follower loads. This is carried out creating new elements 
with the same two nodes of each finite beam element. 

(;11 (rad ) Rx (kN) Ry (kN) Mz(mkN) 

0.0728317 - 1.9995 0.00 9.996 
0.072877 - 1.9999 0.10931 10.000 

(d ) Solve the incremental nonlinear equilibrium equations 
between C1 and C2. This step is carried out completely 
by ANSYS. Geometrical nonJinear effects and nonlinear 
boundary conditions are considered. 

(e) Obtain the loads corresponding to the deformed shape 
configuration C2. 

(f) Compare the difference D between the applied and obtained 
load at each node with a given tolerance 8. 
i. If D < o load convergence exists. The small displacement 

hypothesis should be checked as follows. 
A. If nun < e i.e. small displacement hypothesis is valid, 

then go to point 3. 
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Fig. 8. Displacements and bending moments with an axial load ofS t (1 t = 10 kN) and cable at t he coast. 

B. if !lull > s i.e. small displacement hypothesis is not 
valid, then the current load step must be subdivided 
and each load substep should be considered as a new 
step. The execution will continue at point 2. 

Here !lull is the incremental displacement vector norm 
and e a small given tolerance. 

ii. If D < o load convergence does not exist. then return to 
point 2a and use the obtained loads found in point 2e in 
order to be applied in point 2b. 

3. Output the results of this load step. 

4. Generate a new geometry from the deformed equilibrated one 
(configuration C2 ) of the previous iteration, i.e. change C2 to C1• 

5. Input the computed stresses in this geometry as initial stresses 
in configuration C1 at each beam finite element node. 

6. Repeat from point 2 until all the load steps are completed. 

In order to validate the proposed computational model, several 
examples have been developed. as shown in the next section. 

4.1. Validation examples 

The validity of the computer program has been checked by 
comparing the results obtained with those publ ished in the 
literature and a lso with theoretical results of s imple cases. In the 
fol lowing only three examples are given. The following standard 
data have been used: 

Rexr = 0.40 
R;nr = 0.375 
Ppipe = 2.6833 

Epipe = 2.0 X 105 

y = 10.0 

Outer pipe radius 
Inner pipe radius 
Self-weight of the pipe line, as 
measured in air 
Young modules of t he pipeline 
Specific weight of water 

m 
m 
kN/m 

In the first example, the accuracy of t he flotation model for 
the buoyancy forces is shown. A rigid beam element ab of length 
L is floating at level y = 0, i.e. its self-weight is equilibrated by 
the hydrostatic pressure, as shown in Fig. 6. In addition, the beam 
is subjected to a small vertical force P at node a. The horizontal 



10.0 
-=-g 

8.0 ~ 

!i 
E 

6.0 ~ 

4.0 

2.0 

Non deformed pipeline length (m) 

20.0 30.0 40.0 

- 2.0 

-4.0 
- L.oadOt 

-6.0 - L..o.W it 

Load 2 t 

-L..oad3t 
-8.0 -L.oad4t 

l..ood SI 

- 10.0 

Fig. 9. Bending moments envelopes for axial load varying from 0.0 to 5.0 t ( I t = 10 kN). 

10.0 

9.0 

8.0 

7.0 

6.0 

5.0 
c 
""0 

.2 
4.0 ... ·;:;: 

< 
3.0 

2.0 

1.0 

0.0 
Coast distance (m) 

- 1.0 
48.0 58.0 68.0 78.0 88.0 98.0 108.0 11 8.0 
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displacement at node a is restrained. In a first analysis buoyancy is 
simulated by introducing non linear springs at two element nodes. 
In the second analysis a follower load stiffness matrix is used. The 
node vertical displacement results of the first analysis {Fig. 6, left) 
are u0 = f. and u(b) = 0. with k = k1 (0) the tangent nonlinear 
spring stif!ness. However, the results of the second analysis (Fig. 6, 
right) are lla = ¥t and u0 = - if. in agreement with the theoretical 
ones. 

In order to validate the follower forces due to the horizontal 
constant current. a second example has been carried out. A vertical 
cantilever beam element, fixed at the bottom, has been modeled 
with ten finite elements. The total length of the beam is L = 10 m. 
The Young's modulus of the pipeline material for this example has 
been reduced to the value Epipe = 100 000 kNj m2 in order to 
increase the d isplacements. 

The model verifies the horizontal displacements at the top node 
and the reactions at the bottom. Two analyses have been carried 
out. In the first one (model 1) a simple beam is considered and in 

the second one (model 2) the follower load stiffness matrix has 
been added. The difference between these two analyses is that 
in the first one the loads keep the same horizontal direction and 
magnitude. whereas in the second one the loads are follower force 
forces, i.e. they remain normal to the deformed axis of the beam. 
An uniform load of intensity q = 0.2 kN/ m has been applied. The 
ANSYS results of displacements and reactions for both cases are 
shown in Table 1. 

In model 1, the horizontal reaction is Ry = 0, which is consistent 
with the load horizontal direction hypothesis. In model 2. the 
computed value given in Table 1 for the horizontal reaction is 
Ry = 1.0931. This value can be verified by numerically solving the 

integral J~ q(x) sin Cldx = 0.01092, with Cl(x) the slope angle of the 
beam elastic at section x. 

Finally, a more elaborate example than the two previous ones 
is shown. The structural behavior of a simple laying process 
of a floating pipeline by continuous inundation is simulated by 
two models, a rather simplified model and the proposed one. 
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A comparison between them is carried out. The first model has 
been developed in [ 1 I and it introduces several simplifications. 
among them: (1) buoyancy is simulated by equivalent linear 
springs and pipeline self-weight reduction, (2) beam elements 
are modeled by isoparametric finite elements of the type C0 , (3) 
the se abed is horizontal, ( 4) the barge position is static, and (5) 
external axial load, current, and wave actions are not considered. 
The barge remains at a fixed position at a distance of 121 m from 
the original pipeline end. The results obtained by these two models 
are shown in Fig. 7, in which discontinuous lines correspond to 
results from [1 I and continuous lines are results of the present 
model. lt can be observed that the displacement and bending 
moment resulting from both models agree reasonably well. More 
details about this comparison can be found in [2,291. 

4.2. Applied numerical examples 

Fig. 8 shows the deformed shapes and the bending moments of 
the pipeline during the laying process. The pipeline is located 50 m 

from the coast and placed at a depth of 30 m w hen an axial control 
load of 50 kN is applied from the barge. The coast end is joined to 
the pipeline by means of a steel cable. 

Fig. 9 re presents six bending moment envelopes of the same 
pipeline laying process for the axial load at the barge varying 
between 0 and 50 kN. 

Fig. 10 shows the axial load variation along the same pipeline 
during its laying process subjected in addition to current actions. 
The curre nt is applied from sea water depth to the coast without 
any axial load due to the barge. The normal drag and tangential 
drag coefficients used in this case have been t he following ones: 
Co = 0 .70 and Cr = 0.07, respectively. The axial force variation 
shown is due to the friction of the current along the outfa ll. Finally, 
in Fig. 11 . the same displacements and bending moments as in 
Fig. 10 are shown. 

From these examples it can be observed that the pipe 
deformation and forces change wi th the control parameters 
described earlier, such as the axial load, and also with the inlluence 
of currents. Any of these input parameters can be varied, leading to 
a clear and straightforward optimization process. 



5. Conclusions 

This paper presents a mode l of the structural behavior of a 
floating pipeline during the laying process. The expressions for 
the stiffness matrices of the follower loads due to hydrostatic 
pressure, current, and sea waves have been developed. Also. the 
transformation of the velocity and acceleration fields into forces 
acting on the outfall pipeline has been fully investigated. These 
fields have been numerically evaluated at each point in space and 
time according to the Airy Wave Linear Theory. 

A convergence process at each load step has been developed 
with a displacement control error mechanism in order to 
accurately deal with the small deformation formulation used 
between consecutive computational steps. 

The model e mphasizes the importance o 
forces represent ing the hydrostatic pressure 
close to the free surface of the water. In t, 

1pplied follower 
·pipel ine region 
Jhen the results 

obtained are compared wit h t hose from other simplified models, 
which use springs or a reduction in self-weight, it is noted that the 
influence of hydrosta tic pressure can be very importa nt. 

The model has been implemented and tested in a computer 
program. The pipe li ne construction has been simulated using small 
steps to represent the continuous process. Some examples have 
been developed to show the capabil ities of the software, as well as 
t he significance of some of the parameters acting on the process. 

Finally, this model can be used to optimize the laying 
process. Objective fu nctions that describe stresses or curvatures 
along the pipeline can be minimized by choosing the best 
combination of control variables. These variables can be modified 
dynamically in time, during the laying process. For example, at 
each computational step (or in real time in a n actual pipeline 
laying process) various parameters can be modified, such as the 
inundated length of the pi peline, the axial load a pplied at the barge, 
or the position of the barge itself. 
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