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Abstract Beghini et al (Struct Multidisc Optim
doi:10.1007/s00158-013-1030-6, 2013) have published a

very interesting paper arriving to practically the same

nearly optimal solutions for the so named “bridge prob-

lem” that the Writers published a year before, but using

an alternative and remarkable approach to the problem.
In spite of this general agreement, the Writers think

that some details of the paper can be improved and

there are results that can be given a clear and mean-

ingful interpretation thanks to an old and practically
unknown theorem on optimal slenderness.

Keywords Layout optimization · trusses · bridge

problem · Optimal Slenderness

1 Introduction

The results from Beghini et al (2014) (the Authors here-

after) about nearly optimal layout of single span struc-
ture with uniform load, that has a very interesting ap-

proach, can be ratified by the Writers and complemen-

ted in some details that can be summarized as follows:

– The Writers present here a comparison with very
similar results that they have recently published, see
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Cervera Bravo et al (2014). These results have been
obtained using a different approach on the truss lay-

out definition and optimization that involves varia-

tional calculus.

– The application of a theorem on the condition in

slenderness for optimality of trusses with vertical
loads, stated in nineties by Professor Ricardo Aroca,

can easily explain some figures of Authors’ work.

In particular all cases in their table 1 can be re-

duced to a single problem through the consideration
and comparison between the vertical and horizontal

volumes. Their relations extend those presented in

the paper among the compression and tension vol-

umes that follow from Maxwell’s Lemma. The nec-

essary references, explanation and consequences of
this theorem will be fully adressed in section 3.

Some minor corrections to Authors’ paper are also

suggested.

2 Comparison between McConnel, Author’s
and Writer’s solutions for Layouts for

Truss–like Bridge Structures

The approach to the optimization problem followed by

the Authors (Beghini et al, 2014), —dealing with the

properties of the reciprocal graphs of layout and forces—

is a suggestive and promising one. Authors’ results can

be confirmed from Writers’ ones (Cervera Bravo et al,
2014: published online in June 2013), being the latter

slighty better. These were obtained using a variational

approach on the original truss layout. The comparison

of the main figures is summarised in Table 1. The com-
parison confirms the validity of the Authors simplifica-

tion for θ′, that is θ′ = constant, i.e. the imposition of a

constant angle change on the arch layout for segments
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Table 1 Comparison of provided values for several layout parameters.

McConnel (1974) Authors (eq. 17) Authors (eq. 37) Writers∗

parms.∗∗: ŷm/L̂ ν ŷm/L̂ ν θ1 ŷm/L̂ ν θ1 ŷm/L̂ ν θ1

0.43 0.9899 0.4307 0.9873 −8.68◦ 0.4206 0.9861 −6.4◦ 0.4419 0.9847 −4.10◦

0.33 0.8026 0.2966 0.8138 22.04◦ 0.3903 0.8026 30.2◦ 0.3170 0.8010 28.92◦

0.31 0.7578 0.3188 0.7582 16.94◦ 0.3165 0.7581 15.9◦ 0.3617 0.7580 15.87◦

Notes ∗: values obtained from tables 2, 3, 4 and the expressions for layouts provided in Cervera Bravo et al (2014)
∗∗: θ1 stands for the arch angle with vertical at support. ŷm/L̂ and ν = σVTot/P̂T L̂ as on Author’s Table 1.

between the connections of hangers equally separated

on the bridge support line.

It is worth to note that with Writers’ approach a

closed form for the arch is obtained depending on a
sole function, the angle of the hangers with the vertical

direction, whereas with Authors’ approach the angle

used is that of the arch with the vertical (the angle of

the spokes in the dual truss with the horizontal); and
as the Authors point out they were not able to find a

closed, analytical form for the original truss from the

closed form of the dual one. It can be concluded that

both approaches are not fully equivalent albeit from a

practical view their respective results are.
The Writers agree with the Authors about the prac-

tical significance of nearly optimal solutions for prob-

lems without known absolute optimal solution—or for

problems whose optimal solutions are of complex cons-
truction— but the search of the absolute optimum is

important too as these solutions account for the limit

of the economy in each problem and they will serve as

a mesure for the quality of nearly optimal solutions. In

the bridge problem, the numerical results found up to
date (Pichugin et al, 2012; Cervera Bravo et al, 2014;

Sokó l, 2014) show great evidence for the existence of a

Michell optimum in this problem. Nevertheless it must

be remembered that the Michell theorem is a “suffi-
ciency” and not a “necessity” condition theorem, and

so is the existence of a Michell net, see Michell (1904:

pp. 590–591).

3 On the explanation of some relations
between volumes of different but related

problems and layouts

Authors make several remarks about volumes involved

in the parabolic arch solution —section 2 on Maxwell

theorem and the parabolic arch—. Some of them should

be made more precise and, also, similar remarks can

be applied to structures not limited to those with a

“limiting constant stress (equal in tension and in com-
pression)” if one deals, not with the volume, but with

“quantity” of Michell or “stress volume” as shown in

Cervera Bravo et al (2014), see Lemma 8 (Michell’s

Lemma) there. Interesting remarks can be also added
trough the application of a theorem from Ricardo Aroca

that is explained below.

Let first see some remarks based on Maxwell writ-

ings. In the application of Maxwell’s Theorem to the

parabolic arch —the theorem is also known as Max-

well’s Lemma (Cervera Bravo et al, 2014: see Lemma

4)—, Authors assert that
∑−→

F ·−→r = 0 for the third case

of their Table 1 “since all the loads are applied at the
horizontal dashed line” (Beghini et al, 2014:51). This

reason is wrong. In fact, this occurs too in the second

case but, as Authors correctly say, now
∑−→

F · −→r 6= 0.

It is better to follow Maxwell: the quantity
∑−→

F ·−→r —

known as “static constant” or “Maxwell number” (Cer-

vera Bravo et al, 2014: Definition 3)— is the negative
of the virtual work done by external forces when the

virtual deformation reduces the space to a point. In the

third case the key is that since all forces —loads and

reactions— are vertical and are applied at the horizon-

tal dashed line (where can be selected the origin for −→r )
the virtual work will be null. In the second case the

reactions are not vertical, so there is no orthogonality

and the virtual work is not null.

In Maxwell and Michell approaches to structural de-

sign there are no mentions to reactions nor displacement
conditions, but to sets of equilibrated forces. That has

several interesting and fruitful consequences that are

discussed on Cervera Bravo et al (2014).
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In the third problem presented by the Authors in

their Table 1, Maxwell’s Theorem, as Authors correctly

say, imposes the identity between compression and ten-

sion volumes, as their difference should be null to assure

equality to —as the Writers call it— Maxwell number
M =

∑−→
F ·−→r = 0. That is true on any solution for the

problem, be it optimal or not. So its minimum volume

implies the minimum on any of both components and

that imposes an identical layout and a half total volume
for the pinned arch as Authors’ Table 1 shows in its first

row —solution from Rozvany and Prager (1979)— due

to the full elimination of the tension components, tie

and hangers.

Aroca’s Theorem on the Optimal Slenderness

We have seen the significancy of the relations between

solutions to first and third problems in Author’s Table

1. The interesting part comes now , with the explana-

tion of exact numerical relations between optimal so-
lutions for the second and third problem, that reduce

thus all three problems to different forms of a unique

problem. In order to do so one must consider Aroca’s

theorem on the Optimal Slenderness (OST), as Writ-
ers remark in Vázquez Esṕı and Cervera Bravo (2011),

paper that Authors cite.

As Professor Ricardo Aroca has not formally pub-

lished most of its findings, it is not easy to track them:

the first published notice of the commented Theorem,

that was enuntiated in the first years of nineties in
Aroca’s doctorate lessons, is in a PhD Thesis of a dis-

ciple (Fernández Cabo, 1998: pp. 30–33 where Author

refers to Aroca’s doctoral course notes of years 89–90

and 92–93). The theorem can be found in Spanish in
Cervera (2010: section 7.2.4). The present discussion is

probably the first place were it will be found in its full

form in English.

To present, prove and employ the theorem it must

be firstly remembered that Authors’ volume V as cost
measure can be accounted as Michell’s quantity (Michell,

1904: p. 590, line 15) V =
∑ |Fi|Li with a price 1/σ

having V = V/σ, or V = σV , as Authors’ equations

and tables emphasize. The Writers retain V as the basic

magnitude for the structural costs evaluation following
Michell’s work, under the denomination stress volume.

Secondly, as V =
∑ |Fi|Li =

∑ |Fi Li| =
∑ |−→F i ·−→

L i| (the scalar product, taking into account that
−→
F i

and
−→
L i are aligned for any bar i), that quantity or stress

volume can be decomposed into its cartesian compo-
nents and, in those problems for which all or part of

the relevant external forces are parallel, such decompo-

sition can be made in two components, i.e. the parallel

direction, and the orthogonal directions, having thus

V = V || + V⊥, both for 2D or 3D problems.

That made, given one truss–like structural form
for an equilibrated set of parallel external forces, one

may consider affine changes in the parallel direction of

that layout. That kind of transformations correspond

usually to changes in depth in a structural layout sus-
taining gravity loads with vertical reactions. In those

conditions it can be stated:

Theorem 1 (Aroca’s Optimal Slenderness The-

orem) Let be a given truss solving the problem of bal-

ancing an equilbrated system of parallel external forces,

loads and reactions. If the layout is subjected to an

affine transformation of magnitude α parallel to the
forces, which remain unchanged —but can be moved in

the transformation with the movement of their applica-

tion points— the resulting parallel and ortogonal com-

ponents of the stress volume, V || and V⊥ respectively,
change accordingly and inversely with α, their product

remaining constant and equal to the product of V
||
1 and

V⊥
1 corresponding to the original layout.

In the former conditions, let consider the set of lay-

outs obtained when the parameter α varies. There exists

an optimal layout for which the total stress volume is

minimum. It corresponds to

V
|| = V

⊥ =

√

V
||
1V

⊥
1 ,

the minimum value of the stress volume is

Vmin = 2

√

V
||
1V

⊥
1 ,

and the value of the parameter of the affine transfor-

mation for which we obtain the optimal layout is

α∗ =

√

V⊥
1

V
||
1

,

the slenderness and depth of this optimal layout being

λ∗ =
1

α∗
λ1 =

1

α∗

L

d1
, d∗ = α∗d1

where L is the unchanged reference span, and d1, λ1 are

the depth and slenderness of the original layout.

Proof For the shake of brevity let us consider the 2D
case. From this the 3D case is an easy task. Let us con-

sider a generic node, j, of the truss. Let be F̃
||
j and F̃⊥

j

the parallel and ortogonal components of the external

force applied in this node, which are to be balanced by
the internal forces of the bars joined at this node. If the

internal force of the bar i over node j is represented by

its cartesian components, F
||
i and F⊥

i , the equilibrium
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equations for the node j when the orthogonal compo-

nent of the external force F̃⊥
j is null are given by

F̃
||
j =

∑

i

F
||
i (1)

0 =
∑

i

F⊥
i (2)

where the summation is extended over all the bars joined

at the node j.

On the other hand, the components of the internal
force of the bar i F

||
i and F⊥

i are not independent. Since

Fi mut be aligned with the length vector Li, they should

verify the equation

F
||
i

F⊥
i

=
L
||
i

L⊥
i

where L
||
i and L⊥

i are the cartesian components of Li.

This geometrical compatibility equation is written in a

more convenient form as

0 = F
||
i L

⊥
i − F⊥

i L
||
i (3)

The set of equations (1) and (2) written for all nodes

and equations (3) for all bars constitute the set of equa-

tions to determine the internal forces in a given layout

—and verify both in isostatic as in internally hiper-
estatic geometries—

Let us consider an affine transformation in depth in

the layout, i.e., in the parallel direction, changing L
||
i

to L
||
i (α) = αL

||
i (and keeping L⊥

i in its original value)

for all bars.

The position of the nodes are changed accordingly,
but the external forces are not changed.

If the truss resulting from the new layout is to be in

equilibrium, the set of equations (1), (2) and (3) must

verify in each node and bar. To verify the geometri-
cal compatibility equations (3) when L

||
i is replaced by

L
||
i (α) = αL

||
i , the cartesian components of all internal

forces can be changed to

F
||
i (α) = F

||
i , F⊥

i (α) =
1

α
F⊥
i ,

where the node equilibrium equations, (1), and (2), are

satisfied in the new layout, as parallel components of

external forces F̃
||
j remain unchanged as internal are,

and orthogonal components are null being the equations

(2) for the new layout the original ones multiplied by

1/α.

Therefore given a layout, with a given system of ex-
ternal forces that have not components in the orthogo-

nal directions, the layout resulting from an affine trans-

formation in depth of parameter α that equilbrates such

set of forces has the same parallel components of the in-

ternal forces, but orthogonal components multiplied by

1/α, i.e. F
||
i (α) = F

||
i and F⊥

i (α) = 1

α
F⊥
i , and has the

same orthogonal components of bar lengths, but par-

allel bar lengths are multiplied by α, i.e. L⊥
i (α) = L⊥

i

and L
||
i (α) = αL

||
i .

From the definition of V =
∑

i |F
||
i L

||
i + F⊥

i L⊥
i |

and taking into account that sgn(F
||
i L

||
i ) = sgn(F⊥

i L⊥
i )

as result of compatibility equations (3), we can write

V = V
|| + V

⊥ where V
|| =

∑

i |F
||
i L

||
i | and V

⊥ =
∑

i |F⊥
i L⊥

i |. In the layout resulting from the affine trans-

formation we obtain

V
||(α) =

∑

i

|F ||
i L

||
i (α)| = α

∑

i

|F ||
i L

||
i | = αV

||
1

V
⊥(α) =

∑

i

|F⊥
i (α)L⊥

i | =
1

α

∑

i

|F⊥
i L⊥

i | =
1

α
V

⊥
1

where V
||
1 and V

⊥
1 stand for the parallel and orthogonal

components of the stress volume of the original layout

(corresponding to α = 1).

Therefore V
||(α) and V

⊥(α) are such that

V
||(α)V⊥(α) = V

||
1V

⊥
1

If we consider the set of layouts that balance a given

set of external forces without orthogonal components,
and can be obtained by an affine transformation of one

given form with the objective of finding the depth which

corresponds to a minimum stress volume we have to find

the minimum of

V(α) = V
||(α) + V

⊥(α)

subject to the constraint

V
||(α)V⊥(α) = V

||
1V

⊥
1

This problem is equivalent to determine the rectan-

gle of minimum (semi)perimeter between all rectangles
of given area. The solution of this problem is well known

and correspond to the rectangle of equal sides, i.e., the

square.

In our case the solution corresponds to an optimal

value of α: α∗ for which

V
||(α∗) = V

⊥(α∗) =

√

V
||
1V

⊥
1

and α∗ is given by

α∗ =
V

⊥
1

V
⊥(α)

=
V

||(α)

V
||
1

=

√

V
⊥
1

V
||
1

(4)
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If d and λ are respectively the depth and slenderness

of the original layout, the depth and slenderness of the

optimal layout are thus given by

d∗ = α∗d, λ∗ =
L

d∗
=

1

α∗

L

d
=

1

α∗
λ

where L is the unchanged reference span. (Q.E.D.).

Arocas’s Theorem can be extended to systems of

external forces where orthogonal components are not

null. In this case original equations (2) read

F̃⊥
j =

∑

i

F⊥
i (2′)

As before, with F⊥
i (α) = 1

α
F⊥
i , we must multiply equa-

tions (2′) by 1/α to keep equilibrium in the orthogonal

direction. Hence the orthogonal components of the ex-
ternal forces must be multiplied by 1/α. Thus the equi-

librium of the new layout is maintained. This is the case

for pinned archs vith vertical loads in which horizontal

reactions must change inversely to depths in order to
maintain the global moment equilibrium. The parallel

and orthogonal components of the stress volume behave

as before, and the optimal values are determined in the

same way.

Returning to the set of parabolic arch problems and

solutions —and beginning with problem in Authors’ Ta-

ble 1, third row, problem that can be stated as the ref-

erence case for all three shown there—, it can be seen
then that optimal solution will have same stress vol-

ume in tie and hangers, each one with half of the arch

stress volume that will have two equal components in

the parallel —vertical— and orthogonal —horizontal—
directions, each one corresponding to the counterparts

in hangers or tie: we have in the optimum four equal

components, two in tension V
+||
r (hangers) and V+⊥

r

(tie) and two in compression V
−||
r and V−⊥

r (both in the

arch), having thus a total stress volume Vr = 4V
+||
r .

If one changes the reference problem to a modified

one —from third row to second row of Authors’ Ta-
ble 1— by the elimination of the tie —and supporting

thus the arch ends with oblique reactions— and one

begins with the layout obtained from that one of the

reference, one begins thus with a starting system with

a total stress volume V = 3V
+||
r but where horizon-

tal and vertical components are not more equal, nor

optimum. To get the optimum the vertical part must

be reduced with an increase of the horizontal one, by

reduction of depth. This case corresponds to the com-
mented extension of Aroca’s OS Theorem, and thus the

optimal slenderness and stress volume can be deduced

from those of the reference case as follows:

– the stress volume components of the starting solu-

tion are V+||, V+⊥, V−||, V−⊥, having

– V+⊥ = 0 (no tie)

– V−|| = V+|| = V
+||
r (load ascent via hangers

equal to its descent via arch)

– V−⊥ = V
+||
r

getting V || = 2V⊥, and V = 3V⊥ = 3V
+||
r .

– using eq. (4) one gets α∗ =
√

V⊥/V || = 1/
√

2, hav-

ing thus a reduction in depth of that magnitude.
– Optimum total stress volume can be computed: V∗ =

2
√

V
||
V⊥ = 2

√

V
+||
r 2V

+||
r = 2

√
2V

+||
r , where V

+||
r

comes out from the reference system’s stress volume

and V is the starting one after the elimination of
the tie.

Thus, if reference problem depth was
√

3/4 of span, and

its stress volume divided by the product of total load
times the span was 2/

√
3 (we call this value Michell

number ν of the layout, see Cervera Bravo et al (2014),

and it can be written ν = σVTot/P̂T L̂, as Authors

head their last column in Table 1), the correspond-

ing optimum values are thus (
√

3/4)/
√

2 for the de-
pht to span relation —the inverse of slenderness— and

2
√

2 × (2/
√

3) / 4 =
√

2/
√

3 for the Michell number, as

Authors’ Table 1 shows.

4 Further notes

In Writers’ opinion, the engineering problem arises be-

cause of the magnitude, location and class of the useful

loads are ever given. The first case of Authors’ Table 1,

where the researcher puts the load as his or her conve-
nience is excepcional and of theoretical nature.

The single chord 16-Bay truss attributed to Hemp

by the Authors was obtained by W.J. Supple (cited by

Hemp, 1973:21).

Authors (p. 50) say that the pin-roller boundary

condition “is very important in the engineering practice

because it reduces the demand on the foundations”. But
from Writers’ actual experience it can be said that the

friction forces on the foundations are free of cost and

ever present, so the roller boundary condition must be

considered either as a theoretical artifact or as a prac-
tical method to eliminate thermal stresses. Frequently,

the consideration of friction forces, when possible, re-

duces the cost of the structure without increasing the

cost of the foundations (Cervera Bravo et al, 2014).

Authors say (p. 51) that “the tension force in the

tie helps stabilize the arch from buckling”, but what-
ever be the meaning of “stabilize” the same efect can

be obtained from an horizontal reaction of the same

magnitude, so it is not clear that any difference exist
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between tie or horizontal reaction of equal magnitude,

putting aside the cost of the tie.

Some of the Authors’ solutions are not restricted

to equal stress in tension and in compression. In fact,

when dealing with given external forces in equilibrium
(i.e, with Maxwell problems, see Cervera Bravo et al,

2014:Definition 1) the optimal layout does not depend

on the proportion of limiting stresses.

5 Conclusions

The present discussion has shown

– Similarities and differences between the solutions
provided by Authors (Beghini et al, 2014) and Writ-

ers (Cervera Bravo et al, 2014).

– The relevancy and fruitfulness of dealing with op-

timization problems from the Maxwell and Michell
approaches.

– The formulation of Aroca’s Theorem on Optimum

Slenderness, and its capability to explain layout and

cost parameters in related structural problems.
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Vázquez Esṕı M, Cervera Bravo J (2011) On the solu-

tion of the three forces problem and its application
in optimal designing of a class of symmetric plane

frameworks of least weight. Struct Multidisc Optim

44:723–727, DOI 10.1007/s00158-011-0702-3


